全国初中数学竞赛辅导(八年级)教学案全集第10讲 整式的乘法与除法[教育]

时间:2019-05-13 03:01:13下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《全国初中数学竞赛辅导(八年级)教学案全集第10讲 整式的乘法与除法[教育]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《全国初中数学竞赛辅导(八年级)教学案全集第10讲 整式的乘法与除法[教育]》。

第一篇:全国初中数学竞赛辅导(八年级)教学案全集第10讲 整式的乘法与除法[教育]

全国初中数学竞赛辅导(八年级)教学案全集

第十讲 整式的乘法与除法

中学代数中的整式是从数的概念基础上发展起来的,因而保留着许多数的特征,研究的内容与方法也很类似.例如,整式的四则运算就可以在许多方面与数的四则运算相类比;也像数的运算在算术中占有重要的地位一样,整式的运算也是代数中最基础的部分,它在化简、求值、恒等变形、解方程等问题中有着广泛的应用.通过整式的运算,同学们还可以在准确地理解整式的有关概念和法则的基础上,进一步提高自己的运算能力.为此,本讲着重介绍整式运算中的乘法和除法.

整式是多项式和单项式的总称.整式的乘除主要是多项式的乘除.下面先复习一下整式计算的常用公式,然后进行例题分析.

正整数指数幂的运算法则:

(1)aM· an=aM+n;(2)(ab)n=anbn;

(3)(aM)n=aMn;(4)aM÷an=aM-n(a≠0,m>n);

常用的乘法公式:

(1)(a+b)(a+b)=a2-b2;

(2)(a±b)2=a2±2ab+b2;

(4)(d±b)3=a3±3a2b+3ab2±b3;

(5)(a+b+c)2=a2+b2+c2+2ab+2bc+2ca.

例1 求[x3-(x-1)2](x-1)展开后,x2项的系数 .

解 [x3-(x-1)2](x-1)=x3(x-1)-(x-1)3.因为x2项只在-(x-1)3中出现,所以只要看-(x-1)3=(1-x)3中x2项的系数即可.根据乘法公式有

(1-x)3=1-3x+3x2-x3,所以x2项的系数为3.

说明 应用乘法公式的关键,是要理解公式中字母的广泛含义,对公式中的项数、次数、符号、系数,不要混淆,要达到正确、熟练、灵活运用的程度,这样会给解题带来极大便利.

(x-2)(x2-2x+4)-x(x+3)(x-3)+(2x-1)2.

解 原式=(x3-2x2+4x-2x2+4x-8)-x(x2-9)+(4x2-4x+1)

=(x3-4x2+8x-8)-(x3-9x)+(4x2-4x+1)

=13x-7=9-7=2.

说明 注意本例中(x-2)(x2-2x+4)≠x3-8.

例3 化简(1+x)[1-x+x2-x3+…+(-x)n-1],其中n为大于1的整数.

解 原式=1-x+x2-x3+…+(-x)n-

1+x-x2+x3+…-(-x)n-1+(-x)n

=1+(-x)n.

说明 本例可推广为一个一般的形式:

(a-b)(an-1+an-2b+…+abn-2+bn-1)=an-bn.

例4 计算

(1)(a-b+c-d)(c-a-d-b);

(2)(x+2y)(x-2y)(x4-8x2y2+16y4).

分析与解(1)这两个多项式对应项或者相同或者互为相反数,所以可考虑应用平方差公式,分别把相同项结合,相反项结合.

原式=[(c-b-d)+a][(c-b-d)-a]=(c-b-d)2-a2

=c2+b2+d2+2bd-2bc-2cd-a2.

(2)(x+2y)(x-2y)的结果是x2-4y2,这个结果与多项式x4-8x2y2+16y4相乘时,不能直接应用公式,但

x4-8x2y2+16y4=(x2-4y2)2

与前两个因式相乘的结果x2-4y2相乘时就可以利用立方差公式了.

原式=(x2-4y2)(x2-4y2)2=(x2-4y2)3

=(x2)3-3(x2)2(4y2)+3x2·(4y2)2-(4y2)=x6-12x4y2+48x2y4-64y6.

例5 设x,y,z为实数,且

(y-z)2+(x-y)2+(z-x)2

=(y+z-2x)2+(x+z-2y)2+(x+y-2z)2,解 先将已知条件化简:

左边=2x2+2y2+2z2-2xy-2yz-2xz,右边=6x2+6y2+6z2-6xy-6yz-6xz.

所以已知条件变形为

2x2+2y2+2z2-2xy-2yz-2xz=0,即

(x-y)2+(x-z)2+(y-z)2=0.

因为x,y,z均为实数,所以x=y=z.所以

说明 本例中多次使用完全平方公式,但使用技巧上有所区别,请仔细琢磨,灵活运用公式,会给解题带来益处.

我们把形如

anxn+an-1xn-1+…+a1x+a0

(n为非负整数)的代数式称为关于x的一元多项式,常用f(x),g(x),…表示一元多项式.

多项式的除法比较复杂,为简单起见,我们只研究一元多项式的除法.像整数除法一样,一元多项式的除法,也有整除、商式、余式的概念.一般地,一个一元多项式f(x)除以另一个一元多项式g(x)时,总存在一个商式q(x)与一个余式r(x),使得f(x)=g(x)q(x)+r(x)成立,其中r(x)的次数小于g(x)的次数.特别地,当r(x)=0时,称f(x)能被g(x)整除.

例6 设g(x)=3x2-2x+1,f(x)=x3-3x2-x-1,求用g(x)去除f(x)所得的商q(x)及余式r(x).

解法1 用普通的竖式除法

解法2 用待定系数法.

由于f(x)为3次多项式,首项系数为1,而g(x)为2次,首

r(x)= bx+ c.

根据f(x)=q(x)g(x)+r(x),得

x3-3x2-x-1

比较两端系数,得

例7 试确定a和b,使x4+ax2-bx+2能被x2+3x+2整除.

解 由于x2+3x+2=(x+1)(x+2),因此,若设

f(x)=x4+ax2-bx+2,假如f(x)能被x2+3x+2整除,则x+1和x+2必是f(x)的因式,因此,当x=-1时,f(-1)=0,即

1+a+b+2=0,①

当x=-2时,f(-2)=0,即

16+4a+2b+2=0,②

由①,②联立,则有

练习十

1.计算:

(1)(a-2b+c)(a+2b-c)-(a+2b+c)2;

(2)(x+y)4(x-y)4;

(3)(a+b+c)(a2+b2+c2-ab-ac-bc).

2.化简:

(1)(2x-y+z-2c+m)(m+y-2x-2c-z);

(2)(a+3b)(a2-3ab+9b2)-(a-3b)(a2+3ab+9b2);

(3)(x+y)2(y+z-x)(z+x-y)+(x-y)2(x+y+z)×(x+y-z).

3.已知z2=x2+y2,化简

(x+y+z)(x-y+z)(-x+y+z)(x+y-z).

4.设f(x)=2x3+3x2-x+2,求f(x)除以x2-2x+3所得的商式和余式.

第二篇:全国初中数学竞赛辅导(八年级)教学案全集第18讲 归纳与发现

全国初中数学竞赛辅导(八年级)教学案全集

第十八讲 归纳与发现

归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段.这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法.下面举几个例题,以见一般.

例1 如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,„这个六边形点阵共有n层,试问第n层有多少个点?这个点阵共有多少个点?

分析与解 我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数.

第一层有点数:1; 第二层有点数:1×6; 第三层有点数:2×6; 第四层有点数:3×6;

„„

第n层有点数:(n-1)×6.因此,这个点阵的第n层有点(n-1)×6个.n层共有点数为

例2 在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:

(1)这n个圆把平面划分成多少个平面区域?

(2)这n个圆共有多少个交点?

分析与解(1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n个特定的圆),观察平面被它们所分割成的平面区域有多少个?为此,我们列出表18.1.

由表18.1易知

S2-S1=2,S3-S2=3,S4-S3=4,S5-S4=5,„„

由此,不难推测

Sn-Sn-1=n.

把上面(n-1)个等式左、右两边分别相加,就得到

Sn-S1=2+3+4+„+n,因为S1=2,所以

下面对Sn-Sn-1=n,即Sn=Sn-1+n的正确性略作说明.

因为Sn-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在Sn-1上,所以有Sn=Sn-1+n.

(2)与(1)一样,同样用观察、归纳、发现的方法来解决.为此,可列出表18.2.

由表18.2容易发现

a1=1,a2-a1=1,a3-a2=2,a4-a3=3,a5-a4=4,„„

an-1-an-2=n-2,an-an-1=n-1.

n个式子相加

注意 请读者说明an=an-1+(n-1)的正确性.

例3 设a,b,c表示三角形三边的长,它们都是自然数,其中a≤b≤c,如果 b=n(n是自然数),试问这样的三角形有多少个?

分析与解 我们先来研究一些特殊情况:

(1)设b=n=1,这时b=1,因为a≤b≤c,所以a=1,c可取1,2,3,„.若c=1,则得到一个三边都为1的等边三角形;若c≥2,由于a+b=2,那么a+b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个.

(2)设b=n=2,类似地可以列举各种情况如表18.3.

这时满足条件的三角形总数为:1+2=3.

(3)设b=n=3,类似地可得表18.4.

这时满足条件的三角形总数为:1+2+3=6.

通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:

这个猜想是正确的.因为当b=n时,a可取n个值(1,2,3,„,n),对应于a的每个值,不妨设a=k(1≤k≤n).由于b≤c<a+b,即n≤c<n+k,所以c可能取的值恰好有k个(n,n+1,n+2,„,n+k-1).所以,当b=n时,满足条件的三角形总数为:

例4 设1×2×3ׄ×n缩写为n!(称作n的阶乘),试化简:1!×1+2!×2+3!×3+„+n!×n.分析与解 先观察特殊情况:

(1)当n=1时,原式=1=(1+1)!-1;

(2)当n=2时,原式=5=(2+1)!-1;

(3)当n=3时,原式=23=(3+1)!-1;

(4)当n=4时,原式=119=(4+1)!-1.

由此做出一般归纳猜想:原式=(n+1)!-1.下面我们证明这个猜想的正确性.

1+原式=1+(1!×1+2!×2+3!×3+„+n!×n)

=1!×2+2!×2+3!×3+„+n!×n

=2!+2!×2+3!×3+„+n!×n

=2!×3+3!×3+„+n!×n

=3!+3!×3+„+n!×n=„

=n!+n!×n=(n+1)!,所以原式=(n+1)!-1.例5 设x>0,试比较代数式x3和x2+x+2的值的大小.

分析与解 本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路.为此,设x=0,显然有

x3<x2+x+2.①

设x=10,则有x3=1000,x2+x+2=112,所以

x3>x2+x+2.②

设x=100,则有x3>x2+x+2.

观察、比较①,②两式的条件和结论,可以发现:当x值较小时,x3<x2+x+2;当x值较大时,x3>x2+x+2.

那么自然会想到:当x=?时,x3=x2+x+2呢?如果这个方程得解,则它很可能就是本题得解的“临界点”.为此,设x3=x2+x+2,则

x3-x2-x-2=0,(x3-x2-2x)+(x-2)=0,(x-2)(x2+x+1)=0.

因为x>0,所以x2+x+1>0,所以x-2=0,所以x=2.这样

(1)当x=2时,x3=x2+x+2;

(2)当0<x<2时,因为

x-2<0,x2+x+2>0,所以(x-2)(x2+x+2)<0,即

x3-(x2+x+2)<0,所以 x3<x2+x+2.(3)当x>2时,因为

x-2>0,x2+x+2>0,所以(x-2)(x2+x+2)>0,即

x3-(x2+x+2)>0,所以 x3>x2+x+2.

综合归纳(1),(2),(3),就得到本题的解答.

分析 先由特例入手,注意到

例7 已知E,F,G,H各点分别在四边形ABCD的AB,BC,CD,DA边上(如图2—101).

(2)当上述条件中比值为3,4,„,n时(n为自然数),那S么S四边形EFGH与S四边形ABCD之比是多少?

∥AC交DA于M点.由平行截割定理易知

G引GM

(2)设

当k=3,4时,用类似于(1)的推理方法将所得结论与(1)的结论列成表18.5.观察表18.5中p,q的值与对应k值的变化关系,不难发现:当k=n(自然数)时有

以上推测是完全正确的,证明留给读者.

练习十八

1.试证明例7中:

2.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:

(1)这n条直线共有多少个交点?

(2)这n条直线把平面分割为多少块区域?

然后做出证明.)

4.求适合x5=656356768的整数x.

(提示:显然x不易直接求出,但可注意其取值范围:505<656356768<605,所以502<x<602.=

第三篇:全国初中数学竞赛辅导(八年级)教学案全集第32讲 自测题

全国初中数学竞赛辅导(八年级)教学案全集

第三十二讲 自测题

自测题一

1.分解因式:x4-x3+6x2-x+15.

2.已知a,b,c为三角形的三边长,且满足

a2+b2+c2+338=10a+24b+26c,试确定这个三角形的形状.

3.已知a,b,c,d均为自然数,且

a5=b4,c3=d2,c-a=19,求d-b的值.

4. a,b,c是整数,a≠0,且方程ax2+bx+c=0的两个根为a和b,求a+b+c的值.

5.设E,F分别为AC,AB的中点,D为BC上的任一点,P在BF上,DP∥CF,Q在CE上,DQ∥BE,PQ交BE于R,交

6.四边形ABCD中,如果一组对角(∠A,∠C)相等时,另一组对角(∠B,∠D)的平分线存在什么关系?

7.如图2-194所示.△ABC中,D,E分别是边BC,AB上的点,且∠1=∠2=∠3.如果△ABC,△

8.如图2-195所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连AN,CM交于P点.求∠APM的度数.

9.某服装市场,每件衬衫零售价为70元,为了促销,采用以下几种优惠方式:购买2件130元;购满5件者,每件以零售价的九折出售;购买7件者送1件.某人要买6件,问有几种购物方案(必要时,可与另一购买2件者搭帮,但要兼顾双方的利益)?哪种方案花钱最少?

自测题二

1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox.

2.对于集合

p={x丨x是1到100的整数}

中的元素a,b,如果a除以b的余数用符号表示.例如17除以4,商是4,余数是1,就表示成<17,4>=1,3除以7,商是0,余数是3,即表示成<3,7>=3.试回答下列问题:

(1)本集合{x丨<78,x>=6,x∈p}中元素的个数;

(2)用列举法表示集合

{x丨==5,x∈P}.

3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.

4.已知方程x2-3x+a+4=0有两个整数根.

(1)求证:这两个整数根一个是奇数,一个是偶数;

(2)求证:a是负偶数;

(3)当方程的两整数根同号时,求a的值及这两个根.

5.证明:形如8n+7的数不可能是三个整数的平方和.

7.如图2-196所示.AD是等腰三角形ABC底边上的中线,BE是角平分线,EF⊥BC,EG⊥BE且交BC于G.求证:

8.如图2-197所示.AD是锐角△ABC的高,O是AD上任意一点,连BO,OC并分别延长交AC,AB于E,F,连结DE,DF.求证:∠EDO=∠FDO.

9.甲校需要课外图书200本,乙校需要课外图书240本,某书店门市部A可供应150本,门市部B可供应290本.如果平均每本书的运费如下表,考虑到学校的利益,如何安排调运,才能使学校支出的运费最少?

自测题三

2.对于任意实数k,方程

(k2+1)x2-2(a+k)2x+k2+4k+b=0

总有一个根是1,试求实数a,b的值及另一个根的范围.

4.如图2-198.ABCD为圆内接四边形,从它的一个顶点A引平行于CD的弦AP交圆于P,并且分别交BC,BD于Q,R.求证:

5.如图2-199所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D点,过D引AB的平行线交BC于F.求证:BF=EC.

6.如图2-200所示.△ABC中,AB>AC,作∠FBC=∠ECB=

7.已知三角形的一边是另一边的两倍,求证:它的最小边在它的周8.求最大的自然数x,使得对每一个自然数y,x能整除7y+12y-1.

9.某公园的门票规定为每人5元,团体票40元一张,每张团体票最多可入园10人.

(1)现有三个单位,游园人数分别为6,8,9.这三个单位分别怎样买门票使总门票费最省?

(2)若三个单位的游园人数分别是16,18和19,又分别怎样买门票使总门票费最省?

(3)若游园人数为x人,你能找出一般买门票最省钱的规律吗?

自测题四

1.求多项式2x2-4xy+5y2-12y+13的最小值.

2.设

试求:f(1)+f(3)+f(5)+…+f(1999).

3.如图2-201所示.在平行四边形ABCD的对角线BD上任取一点O,过O作边BC,AB的平行线交AB,BC于F,E,又在 EO上取一点P.CP与OF交于Q.求证:BP∥DQ.

4.若a,b,c为有理数,且等式成立,则a=b=c=0 .

5.如图2-202所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周长.

6.证明:由数字0,1,2,3,4,5所组成的不重复六位数不可能被11整除.

7.设x1,x2,…,x9均为正整数,且

x1<x2<…<x9,x1+x2+…+x9=220.

当x1+x2+…+x5的值最大时,求x9-x1的值.

8.某公司有甲乙两个工作部门,假日去不同景点旅游,总共有m人参加,甲部门平均每人花费120元,乙部门每人花费110元,该公司去旅游的总共花去2250元,问甲乙两部门各去了多少人?

9.(1)已知如图2-203,四边形ABCD内接于圆,过AD上一点E引直线EF∥AC交BA延长线于F.求证:

FA·BC=AE·CD.

(2)当E点移动到D点时,命题(1)将会怎样?

(3)当E点在AD的延长线上时又会怎样?

自测题五

2.关于x的二次方程6x2-(2m-1)x-(m+1)=0有一根

3.设x+y=1,x2+y2=2,求x7+y7的值.

4.在三角形ABC内,∠B=2∠C.求证:b2=c2+ac.

5.若4x-y能被3整除,则4x2+7xy-2y2能被9整除.

6.a,b,c是三个自然数,且满足

abc=a+b+c,求证:a,b,c只能是1,2,3中的一个.

7.如图2-204所示.AD是△ABC的BC边上的中线,E是BD的中点,BA=BD.求证:AC=2AE.

8.设AD是△ABC的中线,(1)求证:AB2+AC2=2(AD2+BD2);

(2)当A点在BC上时,将怎样?

按沿河距离计算,B离A的距离AC=40千米,如果水路运费是公路运费的一半,应该怎样确定在河岸上的D点,从B点筑一条公路到D,才能使A到B的运费最省?

第四篇:全国初中数学竞赛辅导(八年级)教学案全集第31讲 复习题

全国初中数学竞赛辅导(八年级)教学案全集

第三十一讲复习题

1.分解因式:3x2+5xy-2y2+x+9y-4.

2.分解因式:(x2+xy+y2)(x2+xy+2y2)-12y4.

5.已知

求ab+cd的值.

为任意正数,证明1<s<2.7.设a,b是互不相等的正数,比较M,N的大小.

8.求分式 的值.

9.已知:

求证:px+qy+rz=(p+q+r)(x+y+z).

11.已知实数x,y满足等式

求x,y的值.

12.若14(a2+b2+c2)=(a+2b+3c)2,求a∶b∶c.

13.解方程:x2+2x-3丨x+1丨+3=0.

14.已知三个二次方程x2-3x+a=0,2x2+ax-4=0,ax2+bx-3=0有公共解,试求整数a和整数b的值.

15.如图2-178所示.在△ABC中,过点B作∠A的平分线的垂线,足为D.DE∥AC交AB于E点.求证:E是AB的中点.

16.求证:直角三角形勾股平方的倒数和等于弦上的高的平方的倒数.

17.如图2-179所示.在△ABC中,延长BC至D,使CD=BC.若BC中点为E,AD=2AE,求证:AB=BC.

18.如图2-180所示.ABCD是平行四边形,BCGH及CDFE都是正方形.求证:AC⊥EG.

19.证明:梯形对角线中点的连线平行于底,并且等于两底差的一半.

20.如图2-181所示.梯形ABCD中,∠ADC=90°,∠AEC=3∠BAE,AB∥CD,E是 BC的中点.求证:

CD=CE.

21.如图2-182所示.梯形ABCD中,AD∥BC(AD<BC),AC和BD交于M,EF过M且平行于AD,EC和FB交于N,GH过N且平行于AD.求证:

22.如图2-183所示.在矩形ABCD中,M是AD的中点,N是BC的中点,P是CD延长线上的一点,PM交AC于Q.求证:∠QNM=∠MNP.

23.在(凸)四边形ABCD中,求证:

AC·BD≤AB·CD+AD·BC.

24.如图2-184所示.AD是等腰△ABC底边BC上的高,BM与BN是∠B的三等分角线,分别交AD于M,N点,连CN并延长交AB于E.求证:

25.已知n是正整数,且n2-71能被7n+55整除,求n的值.

26.求具有下列性质的最小正整数n:

(1)它以数字6结尾;

(2)如果把数字6移到第一位之前,所得的数是原数的4倍.

27.求出整数n,它的2倍被3除余1,3倍被5除余2,5倍被7除余3.

28.把 1,2,3,„,81这 81个数任意排列为:a1,a2,a3,„,a81.计算

丨a1-a2+a3丨,丨a4-a5+a6丨,„,丨a79-a80+a81丨;

再将这27个数任意排列为b1,b2,„,b27,计算

丨b1-b2+b3丨,丨b4-b5+b6丨,„,丨b25-b26+b27丨.

如此继续下去,最后得到一个数x,问x是奇数还是偶数?

29.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,30.设凸四边形ABCD的对角线AC,BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:

BC+AD>AB+CD.

31.如图2-185.在梯形ABCD中,AD∥BC,E,F分别在AB和DC上,EF∥BC,EF平分梯形ABCD的面积,若AD=a,BC=b,求EF的长.

32.四边形ABCD的面积为1,M为AD的中点,N为BC的中点,的面积.

33.已知一元二次方程

x2-x+1-m=0 的两实根x1,x2满足丨x1丨+丨x2丨≤5,求实数m的取值范围.

34.求所有的正实数a,使得方程x2-ax+4a=0仅有整数根.

35.求证:当p,q为奇数时,方程

x2+px+q=0

无整数根.

36.如图2-186.已知圆中四弦AB,BD,DC,CA分别等于a,b,c,d(且cd>ab).过C引直线CE∥AD交AB的延长线于E,求BE之长.

37.设A={2,x,y},B={2,x,y2},其中x,y是整数,并且A∩B={2,4},A∪B={2,x,2x,16x},求x,y的值.

38.在梯形ABCD中,与两条平行底边平行的直线和两腰AB,CD交于P,Q(图2-187).如果AP∶PB=m∶n,那么PQ的值如何用m,n,AD,BC表示?

39.在平行四边形ABCD中,设∠A,∠B,∠C,∠D的平分线两两相交的交点分别为P,Q,R,S,那么四边形PQRS是什么图形?如果原来的四边形ABCD是矩形,那么四边形PQRS又是什么图形?

40.在直角三角形ABC中,以边AB,BC,AC为对应边分别作三个相似三角形,那么这三个相似三角形面积之间有什么关系?

41.如果三角形的三边用m2+n2,m2-n2,2mn来表示,那么这个三角形的形状如何?如果m2+n2=4mn,又将怎样?

42.在圆柱形容器中装水,当水的高度为6厘米时,重4.4千克,水高为10厘米时,重6.8千克,试用图像表示水高为0~10厘米时,水高与重量之间的关系,并预测当水高为8厘米时,水重为多少千克?

43.有7张电影票,10个人抽签,为此先做好10个签,其中7个签上写“有票”,3个签上写“无票”,然后10个人排好队按顺序抽签.问第一人与第二人抽到的可能性是否相同?

44.在直径为50毫米(mm)的铁板中,铳出四个互相外切,并且同样大小的垫圈(图2-188),那么垫圈的最大直径是多少?

45.唐代诗人王之涣的著名诗篇:

白日依山尽,黄河入海流. 欲穷千里目,更上一层楼.

按诗人的想象,要看到千里之外的景物,需要站在多高的建筑物上呢?试化成数学问题加以解释.

46.在一个池塘中,一棵水草AC垂直水面,AB为水草在水面上的部分,如图2-189,问如何利用这根水草测出水深?

47.在一条运河的两侧有两个村子A,B,河的两岸基本上是平行线.现在要在河上架一座桥与河岸垂直,以便使两岸居民互相往来,那么这座桥架在什么地方,才能使从A到B的路程最近呢(图2-190)?

48.要在一条河边修一座水塔,以便从那里给A,B两个城市供水(设A,B在河岸EF的同侧),那么水塔应建在河岸EF的什么地方,才能使水塔到A,B两市供水管道总长度最短(图2-191)?

49.三个同学在街头散步,发现一辆汽车违反了交通规则.但他们没有完全记住这辆汽车的车号(车号由4位数字组成),可是第一个同学记住车号的前两位数是相同的,第二个同学记得后两位数也相同,第三个同学记得这个四位数恰好是一个数的平方数.根据这些线索,能找出这辆汽车的车号吗?

50.图2-192是一个弹簧秤的示意图,其中:图(a)表示弹簧称东西前的状况,此时刻度0齐上线,弹簧伸长的初始长度为b.图(b)表示弹簧秤上挂有重物时,弹簧伸长的状况.如果弹簧秤上挂上不同重量的砝码,那么弹簧秤的长度也相应地伸长.现获得如下一组数据:

(1)以x,y的对应值(x,y)为点的坐标,画出散点图;

(2)求出关于x的函数y的表达式,(3)求当x=500克时,y的长度.

第五篇:全国初中数学竞赛辅导(八年级)教学案全集第08讲平行四边形

全国初中数学竞赛辅导(八年级)教学案全集

第八讲平行四边形

平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用.

由平行四边形的定义决定了它有以下几个基本性质:

(1)平行四边形对角相等;

(2)平行四边形对边相等;

(3)平行四边形对角线互相平分.

除了定义以外,平行四边形还有以下几种判定方法:

(1)两组对角分别相等的四边形是平行四边形;

(2)两组对边分别相等的四边形是平行四边形;

(3)对角线互相平分的四边形是平行四边形;

(4)一组对边平行且相等的四边形是平行四边形.

例1 如图2-32所示.在EF与MN互相平分.

ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:

分析 只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.

证 因为ABCD是平行四边形,所以

AD

BC,AB

CD,∠B=∠D.

又AE⊥BC,CF⊥AD,所以AECF是矩形,从而

AE=CF.

所以

Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以

△BEM≌△DFN(SAS),ME=NF. ①

又因为AF=CE,AM=CN,∠MAF=∠NCE,所以

△MAF≌△NCE(SAS),所以 MF=NF. ②

由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.

例2 如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.

分析 AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解.

证 作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而

△ABG≌△HBG(AAS),所以 AB=HB. ①

在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以 △ABE≌△HBE(SAS),所以 AE=EH,∠BEA=∠BEH.

下面证明四边形EHCF是平行四边形.

因为AD∥GH,所以

∠AEG=∠BGH(内错角相等). ②

又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以

∠AGB=∠GEH.

从而

EH∥AC(内错角相等,两直线平行).

由已知EF∥HC,所以EHCF是平行四边形,所以

FC=EH=AE.

说明 本题添加辅助线GH⊥BC的想法是由BG为∠ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与△HBG.继而发现△ABE≌△HBE,完成了AE的位置到HE位置的过渡.这样,证明EHCF是平行四边形就是顺理成章的了.

人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的.

例3 如图2-34所示.∠EMC=3∠BEM.

ABCD中,DE⊥AB于E,BM=MC=DC.求证:

分析 由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.从而,应该有∠B=2∠BEM,这个论断在△BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决.利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样∠B=∠MCF及∠BEM=∠F,因此,只要证明∠MCF=2∠F即可.不难发现,△EDF为直角三角形(∠EDF=90°)及M为斜边中点,我们的证明可从这里展开.

证 延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以

△MCF≌△MBE(AAS),所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知

∠F=∠MDC,又由已知MC=CD,所以

∠MDC=∠CMD,则

∠MCF=∠MDC+∠CMD=2∠F.

从而

∠EMC=∠F+∠MCF=3∠F=3∠BEM.

例4 如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.

分析 只要证明△CAF是等腰三角形,即∠CAF=∠CFA即可.由于∠CAF=45°-∠CAD,所以,在添加辅助线时,应设法产生一个与∠CAD相等的角a,使得∠CFA=45°-a.为此,延长DC交AF于H,并设AF与BC交于G,我们不难证明∠FCH=∠CAD.

证 延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此,∠FCH=∠CAD. ①

又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF的外角,所以

∠CHG=∠CFH+∠FCH=45°,所以 ∠CFH=45°-∠FCH. ②

由①,②

∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有

CA=CF.

例5 设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:

分析 作∠BAF的平分线,将角分为∠1与∠2相等的两部分,设法证明∠DAE=∠1或∠2.

证 如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以

FA=FH.

设正方形边长为a,在Rt△ADF中,从而

所以 Rt△ABG≌Rt△HCG(AAS),从而

Rt△ABG≌Rt△ADE(SAS),例6 如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.

分析 准确地画图可启示我们证明∠GDH=∠GHD.

证 因为DEBD=FD,所以

BC,所以四边形BCED为平行四边形,所以∠1=∠4.又

所以 BC=GC=CD.

因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以

所以 ∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.

练习十二

1.如图2-38所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是平行四边形.

2.如图2-39所示.在平行四边形ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.

3.如图2-40所示.CB于E.求证:BE=CF.

ABCD中,AF平分∠BAD交BC于F,DE⊥AF交

4.如图2-41所示.矩形ABCD中,F在CB延长线上,AE=EF,CF=CA.求证:BE⊥DE.

5.如图2-42所示.在正方形ABCD中,CE垂直于∠CAB的平分

下载全国初中数学竞赛辅导(八年级)教学案全集第10讲 整式的乘法与除法[教育]word格式文档
下载全国初中数学竞赛辅导(八年级)教学案全集第10讲 整式的乘法与除法[教育].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐