全国初中数学竞赛辅导(八年级)教学案全集第28讲 怎样把实际问题化成数学问题(一)

时间:2019-05-12 23:55:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《全国初中数学竞赛辅导(八年级)教学案全集第28讲 怎样把实际问题化成数学问题(一)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《全国初中数学竞赛辅导(八年级)教学案全集第28讲 怎样把实际问题化成数学问题(一)》。

第一篇:全国初中数学竞赛辅导(八年级)教学案全集第28讲 怎样把实际问题化成数学问题(一)

全国初中数学竞赛辅导(八年级)教学案全集

第二十八讲 怎样把实际问题化成数学问题(一)

数学从逻辑上讲,是训练思维的工具.通过学习数学可以使人更加聪明,办事更有条理,思维更加灵活而富于创造性.另一方面,如果从应用上讲,数学也是一种应用技术,应用数学知识、原理和方法可以解决各种实际问题.那么怎样把一个实际问题化成数学问题来解决呢?这是一个比较复杂的过程,大体上可以通过以下步骤进行:

(1)了解实际问题中量的关系和图形元素的关联;

(2)根据量或图形间的关系,寻找相应的数学模式;

(3)考虑数学模式中的条件与结论的蕴涵关系,提出数学问题;

(4)应用数学知识、原理,求出数学问题的解答;

(5)由数学问题的解答,对实际问题作出解释与讨论;

(6)推广数学模式所能解决的更广泛的实际问题.

但是由于实际问题千变万化,特别复杂,所以当把实际问题化成数学问题求解时,也有不同的思考方法.下面提出几点较为常见的方法,供读者参考.

1.抽象分析法

例1 “七桥问题”.在18世纪东普鲁士的首府哥尼斯堡有一条河,叫作布勒格尔河,横贯城区,在这条河上共架有七座桥(图2-146).所谓“七桥问题”就是:一个人要一次走过这七座桥,但对每一座桥只许通过一次,问如何走才能成功?这个问题,引起当时德国人的好奇,很多人都热衷于解决它,但谁也没有成功.

欧拉(Euler)是一位大数学家,由于千百人的失败,使他猜想:这种走法可能根本不存在.但是怎样证明这种走法不可能呢?欧拉运用抽象分

析法,将之化成数学问题,于1736年证明了他的猜想,使“七桥问题”得到圆满的解决.那么欧拉是怎样抽象成数学问题进行思考的呢?

使问题简单化.

作为解决实际问题的第一步,要尽可能使问题简单化.为此要抓住问题的要点,做初步的抽象处理.显然岛的大小和桥的长短与问题无关,因此可以不加考虑.如果把岛及陆地用点表示,桥用线表示,那么这个问题就成了一笔画问题(图2-147).

在图2-147中,由A到B有桥1;由B到D有桥2,桥3;由D到C有桥4,桥5;由C到A有桥7;由A到D有桥6,共七座桥.这样,就把实际问题数学化了,使问题的解决推进了一步.

一般说来,在数学思考中,常把原问题不改变本质地加以变形,使其简单化,以利于找到解答.例如,列方程解应用问题就是这种思想的一种体现.先把实际问题化成含有已知量和未知量的方程,然后再把方程作同解变形,化为最简方程,较容易地求出方程的解,实际问题也就解决了.

寻找解决问题的方法.

问题简化了,也不一定能得到解决,关键是如何抓住本质加以分析,从中发现规律性.为此,我们还是从更特殊的情况进行观察分析.

(1)假如只有三座桥(图2-148).对于图2-148(a)来说,无论从哪个端点起一笔画出总是可能的.但对图2-148(b)来说,无论从哪个端点起,一笔画完总是不可能的.

(2)假如有四座桥(图2-149).对于图2-149(a),(b)来说,显然可以一笔画成.但对图2-149(c)来说,却不能一笔画成.

研究了这些简单例子,对我们有什么启发呢?为此,数学家提出了网络这一概念,以便利用新概念的特性,解决已经提出的问题.

定义 网络是由有限个点(称作网络的顶点)和有限条线(称作网络的弧)所组成的图形.这些点和线满足以下条件:

(i)每条弧都以不同的两个顶点作为端点;

(ii)每个顶点至少是一条弧的端点;

(iii)各弧彼此不相交.

这样,所谓一笔画问题,就是网络中的同一条弧不许画两次,而把网络全部勾画出来的问题.

(3)研究网络能一笔画出的特点,寻找解决问题的方法.我们假定一个网络能一笔画出来,那么这个网络中显然有一点为起点,另一点为终点,其他各点为通过点.设某点为起点,如果以某点为顶点的弧不只一条,那么由某点沿一条弧画出去,必沿另一条弧画回来,因此,最初是画出去,然后进出若干次后,把集中在某点的弧全部通过完毕为止,最后一次必须是画出去,所以在起点集中的弧必须是奇数条.而终点的情况刚好与起点相反,先是画进,再画出,进出若干次,最后一次必是画进,因此终点也集中奇数条弧.但起点与终点同为一点时,必是先出后进,中间或许经过若干次进出,最终回到起点.因此在该点集中的弧必是偶数条,而在中途通过的点所集中的弧显然也必定是偶数条.

通过上面分析可知:一个网络中的点可分为两类,一类顶点集中了偶数条弧,另一类顶点集中了奇数条弧.我们称前者为偶点,后者为奇点.例如,在图2-149(b)中,A,B为奇点,C,D为偶点.通过对图2-148和图2-149的考察,我们可以直观地想到如下结论:

(i)一个网络若能一笔画出来,其中偶点个数必须是0或2.

(ii)一个网络中的奇点个数若是0或2,那么这个网络一定能一笔画出来.

欧拉证明了以上两条猜想,得到了著名的欧拉定理:一个网络能一笔画的条件是当且仅当这个网络的任意两个顶点都有弧连接,并且奇数点的个数等于0或2.

(4)回到原问题.利用欧拉定理,“七桥问题”很容易就解决了.因为在图2-147中,奇点个数是4,不满足欧拉定理的条件,因此不可能按约定条件通过七座桥.

(5)推广.如果一个网络的奇点个数不是0或2,则这个网络不可能一笔画成.那么要多少笔才能画成呢?这就成为多笔画的问题了.多笔画的研究发展了网络理论的研究与应用,后来发展成现代数学的一个分支——图论.

归纳上述分析方法,可以大致看出利用抽象分析法解决实际问题的思维过程:

(1)把实际问题简单化,抽象成数学问题.

(2)解决问题是靠发现事物间由简单到复杂、由特殊到一般的内在联系.

(3)发现的思路是以具体实例作为经验观察,由简到繁地考察构成实例间的基本事实和关系;再由诸特例作出一般的归纳猜想,并加以理论证明.

(4)应用论证后的法则,解决各种难题,实际上是化难为易.

(5)把法则加以推广,以解决更多的实际问题,并扩展数学的理论和应用.

2.数据处理法

有些实际问题需要收集问题中的若干对应数据,从数据中观察相关变量的依存关系或对应关系,可以得到大致体现实际问题有关变量变化规律的数学模型,从而解答实际问题.下面举一个实例,说明这种方法的应用.

例2 怎样由树的断面直径来推断树的高度.

解 第一步:设计变量.根据这个问题,我们可以设预测的某种树的高度为y,离地面1.5米处的直径为x厘米.

第二步:收集x,y的对应数据,为此我们测量12棵树的x,y的对应值,列表如表28.1.

第三步:由对应数据求出y对x的函数关系式.

常用的方法是作图法.把直径x看作自变量,高度y看作因变量.每一对(x,y)看作一个点,画在坐标纸上(图2-150),作成散点图.从散点图可以直观地看出两个变量之间的大致关系.我们从图2-150可看出,y随x的增大而增大,并且这些点的分布近似一条直线.

这时,我们在图上画出尽可能接近这些点的一条直线,自然,有些点正好在直线上,有的点却有所偏离,不在直线上,这说明有些误差,但如果重复测量几次,误差不会太大.因此,我们所画出的直线近似地表示着x和y之间的线性关系,所以这条直线的函数表达式——一次函数式就可作为树的高度y和直径x间的关系式了.下面我们就来求出这个一次函数式.

设这条直线的一次函数式为:

y=ax+b.

为了求出常数a,b,在直线上取两点,取点的原则是:为使直线位置稳定,取直线上距离较远的两点;为便于计算,取坐标数据整齐些的两点.为此,我们取点(4,8.6)和(40,26),将此两点的坐标代入y=ax+b,得方程组

所以 y=0.48x+6.68.

第四步:利用上述函数关系式,根据直径x的数值,预报树高y的数值.例如,当x=15厘米时,树高y等于多少米?显然,此时

y=0.48×15+6.68=13.88(厘米).

这就是说,当树的直径为15厘米时,树高为13.88米.

上面是用两对实验数据(两个点)求出的直线方程.利用实验数据的信息较少,因此准确性较差.下面利用平均值法改进一下,作法是:在直线的上、下取两组靠近直线的点,如(4,8.6),(9.3,10.7),(14.3,13.5)为一组;(32,22.4),(40,26),(42,28)为一组,用每组x,y的平均值(9.2,10.93)和(38,25.47)作为两点,再按上面的方法求出直线方程y=0.50x+6.28,以此作为实验数据,y对x间的函数关系就比较准确些.

说明 上面的方法,是数学在解决实际问题时的一种应用,经常用在处理实验数据中,当实验数据为有序数对(x,y)时,相应地在直角坐标系中描出点(x,y)的散点图.如果散点图近于一条直线,要找出变量x,y间的函数关系时,就可用这种方法.然而由实验数据作出的散点图不一定近于直线,而近于一条曲线时,也可找到x,y间的函数关系式,不过需要更多的数学知识,我们在此就不介绍了.

3.运筹优化法

有些实际问题,可以根据问题的要求,首先筹划一些可行的处理方案,然后比较这些方案的优劣,选择其中一种或几种方案加以优化组合,并用数学方法加以处理,以便得到最佳的解决方案.下面举一个实例说明这种方法的应用.

例3 要做20个矩形钢框,每个由2.2米和1.5米的钢材各两根组成,已知原钢材长4.6米,应如何下料,使用的原钢材最省?

分析与解 要做成20个矩形的钢框,就需要2.2米和1.5米的钢材各40根.一种简单的想法是:在每一根原料上截取2.2米和1.5米的钢材各一根,这样每根原钢材剩下0.9米的料头,要做20个钢框,就要用原钢材40根,而剩下的料头总数为0.9×40=36米.

显然,上述想法,浪费材料,不太合理.因此,我们可以考虑合理套裁,就可以节省原料.下面有三种下料方案可供采用.

为了省料而得到20个钢框,需要混合使用各种下料方案.设用第Ⅰ种方案下料的原材料根数为x1;用第Ⅱ种方案下料的原材料根数为x2;用第Ⅲ种方案下料的原材料根数为x3.所谓原材料最省,也就是使所剩下的料头总和最少.为此根据表28.2的方案,可以列出以下的数学模型

y=0.1x1+0.2x2+0.9x3,解之得

其中0≤x3≤40.把x1,x2代入y得

可以看出,x3越大,y的值也越大,所以x3的取值应尽量小.

当x3=0时,可取x1=14,x2=20.

当x3=1时,x1=13,x2=20,都是用原材料34根,料头的总数为

y=34×4.6-(2.2+1.5)×40=8.4(米).

所以,原材料最省的下料方案是:按方案Ⅰ下料13(或14)根,用方案Ⅱ下料20根,用方案Ⅲ下料1(或0)根,这样只需34根原材料就可做出20个钢框.

练习二十八

1.下列图形是否可以一笔画出?

2.图2-154是3×3的方格型道路网,如果每个小方格的边长为1千米,那么由A点出发走完全部路段,最后又回到A点,最少要走多少千米?

3.设x表示排在弹簧上的物品的重量(千克),y表示弹簧伸长的长度(厘米),已知(x,y)有如下的对应测量值:

(1)画出此组数据的散点图;

(2)求出y关于x的函数表示式;

(3)当x=2.3千克时,试预报弹簧伸长的长度.

4.有一批长50米的钢筋,现要截成长度为9.5米和7米的两种钢筋备用,问怎样截法可使原材料的利用率最高?并求利用率是多少?

第二篇:全国初中数学竞赛辅导(八年级)教学案全集第01讲因式分解(一)

全国初中数学竞赛辅导(八年级)教学案全集

第一讲 因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.

1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;

(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;

(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解(1)原式=-2xn-1yn(x4n-2x2ny2+y4)

=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]

=-2xn-1yn(x2n-y2)

2=-2xn-1yn(xn-y)2(xn+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).

分析 我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3 的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解 原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析 这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解.

解 因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以

说明 在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析 本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解(1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析 将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.

解 设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明 本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析 先将两个括号内的多项式分解因式,然后再重新组合.

解 原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明 对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解 设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明 由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9 分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x

2=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明 本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.

解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析 本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解 原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式:

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.

第一讲 因式分解(一)

多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.

1.运用公式法

在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:

(1)a2-b2=(a+b)(a-b);

(2)a2±2ab+b2=(a±b)2;

(3)a3+b3=(a+b)(a2-ab+b2);

(4)a3-b3=(a-b)(a2+ab+b2).

下面再补充几个常用的公式:

(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;

(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);

(7)an-bn=(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)其中n为正整数;

(8)an-bn=(a+b)(an-1-an-2b+an-3b2-…+abn-2-bn-1),其中n为偶数;

(9)an+bn=(a+b)(an-1-an-2b+an-3b2-…-abn-2+bn-1),其中n为奇数.

运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.

例1 分解因式:

(1)-2x5n-1yn+4x3n-1yn+2-2xn-1yn+4;

(2)x3-8y3-z3-6xyz;

(3)a2+b2+c2-2bc+2ca-2ab;

(4)a7-a5b2+a2b5-b7.

解(1)原式=-2xn-1yn(x4n-2x2ny2+y4)

=-2xn-1yn[(x2n)2-2x2ny2+(y2)2]

=-2xn-1yn(x2n-y2)

2=-2xn-1yn(xn-y)2(xn+y)2.

(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)

=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).

(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2

=(a-b)2+2c(a-b)+c2

=(a-b+c)2.

本小题可以稍加变形,直接使用公式(5),解法如下:

原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)

=(a-b+c)2

(4)原式=(a7-a5b2)+(a2b5-b7)

=a5(a2-b2)+b5(a2-b2)

=(a2-b2)(a5+b5)

=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)

=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)

例2 分解因式:a3+b3+c3-3abc.

本题实际上就是用因式分解的方法证明前面给出的公式(6).

分析 我们已经知道公式

(a+b)3=a3+3a2b+3ab2+b3 的正确性,现将此公式变形为

a3+b3=(a+b)3-3ab(a+b).

这个式也是一个常用的公式,本题就借助于它来推导.

解 原式=(a+b)3-3ab(a+b)+c3-3abc

=[(a+b)3+c3]-3ab(a+b+c)

=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)

=(a+b+c)(a2+b2+c2-ab-bc-ca).

说明 公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为

a3+b3+c3-3abc

显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.

如果令x=a3≥0,y=b3≥0,z=c3≥0,则有

等号成立的充要条件是x=y=z.这也是一个常用的结论.

例3 分解因式:x15+x14+x13+…+x2+x+1.

分析 这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式an-bn来分解.

解 因为

x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以

说明 在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.

2.拆项、添项法

因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.

例4 分解因式:x3-9x+8.

分析 本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.

解法1 将常数项8拆成-1+9.

原式=x3-9x-1+9

=(x3-1)-9x+9

=(x-1)(x2+x+1)-9(x-1)

=(x-1)(x2+x-8).

解法2 将一次项-9x拆成-x-8x.

原式=x3-x-8x+8

=(x3-x)+(-8x+8)

=x(x+1)(x-1)-8(x-1)

=(x-1)(x2+x-8).

解法3 将三次项x3拆成9x3-8x3.

原式=9x3-8x3-9x+8

=(9x3-9x)+(-8x3+8)

=9x(x+1)(x-1)-8(x-1)(x2+x+1)

=(x-1)(x2+x-8).

解法4 添加两项-x2+x2.

原式=x3-9x+8

=x3-x2+x2-9x+8

=x2(x-1)+(x-8)(x-1)

=(x-1)(x2+x-8).

说明 由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.

例5 分解因式:

(1)x9+x6+x3-3;

(2)(m2-1)(n2-1)+4mn;

(3)(x+1)4+(x2-1)2+(x-1)4;

(4)a3b-ab3+a2+b2+1.

解(1)将-3拆成-1-1-1.

原式=x9+x6+x3-1-1-1

=(x9-1)+(x6-1)+(x3-1)

=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)

=(x3-1)(x6+2x3+3)

=(x-1)(x2+x+1)(x6+2x3+3).

(2)将4mn拆成2mn+2mn.

原式=(m2-1)(n2-1)+2mn+2mn

=m2n2-m2-n2+1+2mn+2mn

=(m2n2+2mn+1)-(m2-2mn+n2)

=(mn+1)2-(m-n)2

=(mn+m-n+1)(mn-m+n+1).

(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.

原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4

=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)=[(x+1)2+(x-1)2]2-(x2-1)2

=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).

(4)添加两项+ab-ab.

原式=a3b-ab3+a2+b2+1+ab-ab

=(a3b-ab3)+(a2-ab)+(ab+b2+1)

=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)

=a(a-b)[b(a+b)+1]+(ab+b2+1)

=[a(a-b)+1](ab+b2+1)

=(a2-ab+1)(b2+ab+1).

说明(4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.

3.换元法

换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.

例6 分解因式:(x2+x+1)(x2+x+2)-12.

分析 将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.

解 设x2+x=y,则

原式=(y+1)(y+2)-12=y2+3y-10

=(y-2)(y+5)=(x2+x-2)(x2+x+5)

=(x-1)(x+2)(x2+x+5).

说明 本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.

例7 分解因式:

(x2+3x+2)(4x2+8x+3)-90.

分析 先将两个括号内的多项式分解因式,然后再重新组合.

解 原式=(x+1)(x+2)(2x+1)(2x+3)-90

=[(x+1)(2x+3)][(x+2)(2x+1)]-90

=(2x2+5x+3)(2x2+5x+2)-90.

令y=2x2+5x+2,则

原式=y(y+1)-90=y2+y-90

=(y+10)(y-9)

=(2x2+5x+12)(2x2+5x-7)

=(2x2+5x+12)(2x+7)(x-1).

说明 对多项式适当的恒等变形是我们找到新元(y)的基础.

例8 分解因式:

(x2+4x+8)2+3x(x2+4x+8)+2x2.

解 设x2+4x+8=y,则

原式=y2+3xy+2x2=(y+2x)(y+x)

=(x2+6x+8)(x2+5x+8)

=(x+2)(x+4)(x2+5x+8).

说明 由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.

例9 分解因式:6x4+7x3-36x2-7x+6.

解法1 原式=6(x4+1)+7x(x2-1)-36x2

=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2

=6[(x2-1)2+2x2]+7x(x2-1)-36x2

=6(x2-1)2+7x(x2-1)-24x2

=[2(x2-1)-3x][3(x2-1)+8x]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

说明 本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.

解法2

原式=x2[6(t2+2)+7t-36]

=x2(6t2+7t-24)=x2(2t-3)(3t+8)

=x2[2(x-1/x)-3][3(x-1/x)+8]

=(2x2-3x-2)(3x2+8x-3)

=(2x+1)(x-2)(3x-1)(x+3).

例10 分解因式:(x2+xy+y2)-4xy(x2+y2).

分析 本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.

解 原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则

原式=(u2-v)2-4v(u2-2v)

=u4-6u2v+9v2

=(u2-3v)2

=(x2+2xy+y2-3xy)2

=(x2-xy+y2)2.

练习一

1.分解因式:

(2)x10+x5-2;

(4)(x5+x4+x3+x2+x+1)2-x5.

2.分解因式:

(1)x3+3x2-4;

(2)x4-11x2y2+y2;

(3)x3+9x2+26x+24;

(4)x4-12x+323.

3.分解因式:

(1)(2x2-3x+1)2-22x2+33x-1;

(2)x4+7x3+14x2+7x+1;

(3)(x+y)3+2xy(1-x-y)-1;

(4)(x+3)(x2-1)(x+5)-20.

第三篇:全国初中数学竞赛辅导(八年级)教学案全集第12讲平行线问题

全国初中数学竞赛辅导(八年级)教学案全集

第十二讲平行线问题

平行线是我们日常生活中非常常见的图形.练习本每一页中的横线、直尺的上下两边、人行横道上的“斑马线”以及黑板框的对边、桌面的对边、教室墙壁的对边等等均是互相平行的线段.

正因为平行线在生活中的广泛应用,因此有关它的基本知识及性质成为中学几何的基本知识.

正因为平行线在几何理论中的基础性,平行线成为古往今来很多数学家非常重视的研究对象.历史上关于平行公理的三种假设,产生了三种不同的几何(罗巴切夫斯基几何、黎曼几何及欧几里得几何),它们在使人们认识宇宙空间中起着非常重要的作用.

现行中学中所学的几何是属于欧几里得几何,它是建立在这样一个公理基础之上的:“在平面中,经过直线外一点,有且只有一条直线与这条直线平行”.

在此基础上,我们学习了两条平行线的判定定理及性质定理.下面我们举例说明这些知识的应用.

例1 如图 1-18,直线a∥b,直线 AB交 a与 b于 A,B,CA平分∠1,CB平分∠ 2,求证:∠C=90°

分析 由于a∥b,∠1,∠2是两个同侧内角,因此∠1+∠2=

过C点作直线 l,使 l∥a(或 b)即可通过平行线的性质实现等角转移.

证 过C点作直线l,使l∥a(图1-19).因为a∥b,所以b∥l,所以

∠1+∠2=180°(同侧内角互补).

因为AC平分∠1,BC平分∠2,所以

又∠3=∠CAE,∠4=∠CBF(内错角相等),所以

∠3+∠4=∠CAE+∠CBF

说明 做完此题不妨想一想这个问题的“反问题”是否成立,即“两条直线a,b被直线AB所截(如图1-20所示),CA,CB分别是∠BAE与∠ABF的平分线,若∠C=90°,问直线a与直线b是否一定平行?”

由于这个问题与上述问题非常相似(将条件与结论交换位置),因此,不妨模仿原问题的解决方法来试解.

例2 如图1-21所示,AA1∥BA2求∠A1-∠B1+∠A2.

分析 本题对∠A1,∠A2,∠B1的大小并没有给出特定的数值,因此,答案显然与所给的三个角的大小无关.也就是说,不管∠A1,∠A2,∠B1的大小如何,答案应是确定的.我们从图形直观,有理由猜想答案大概是零,即

∠A1+∠A2=∠B1. ①

猜想,常常受到直观的启发,但猜想必须经过严格的证明.①式给我们一种启发,能不能将∠B1一分为二使其每一部分分别等于∠A1与∠A2.这就引发我们过B1点引AA1(从而也是BA2)的平行线,它将∠B1一分为二.

证 过B1引B1E∥AA1,它将∠A1B1A2分成两个角:∠1,∠2(如图1-22所示).

因为AA1∥BA2,所以B1E∥BA2.从而

∠1=∠A1,∠2=∠A2(内错角相等),所以

∠B1=∠1+∠2=∠A1+∠A2,即 ∠A1-∠B1+∠A2=0.

说明(1)从证题的过程可以发现,问题的实质在于AA1∥BA2,它与连接A1,A2两点之间的折线段的数目无关,如图1-23所示.连接A1,A2之间的折线段增加到4条:A1B1,B1A2,A2B2,B2A3,仍然有

∠A1+∠A2+∠A3=∠B1+∠B2.

(即那些向右凸出的角的和=向左凸的角的和)即

∠A1-∠B1+∠A2-∠B2+∠A3=0.

进一步可以推广为

∠A1-∠B1+∠A2-∠B2+„-∠Bn-1+∠An=0.

这时,连结A1,An之间的折线段共有n段A1B1,B1A2,„,Bn-1An(当然,仍要保持 AA1∥BAn).

推广是一种发展自己思考能力的方法,有些简单的问题,如果抓住了问题的本质,那么,在本质不变的情况下,可以将问题推广到复杂的情况.

(2)这个问题也可以将条件与结论对换一下,变成一个新问题.

问题1 如图1-24所示.∠A1+∠A2=∠B1,问AA1与BA2是否平行?

问题2 如图1-25所示.若

∠A1+∠A2+„+∠An=∠B1+∠B2+„+∠Bn-1,问AA1与BAn是否平行?

这两个问题请同学加以思考.

例3 如图1-26所示.AE∥BD,∠1=3∠2,∠2=25°,求∠C.

分析 利用平行线的性质,可以将角“转移”到新的位置,如∠1=∠DFC或∠AFB.若能将∠1,∠2,∠C“集中”到一个顶点处,这是最理想不过的了,过F点作BC的平行线恰能实现这个目标.

解 过F到 FG∥CB,交 AB于G,则

∠C=∠AFG(同位角相等),∠2=∠BFG(内错角相等).

因为 AE∥BD,所以

∠1=∠BFA(内错角相等),所以

∠C=∠AFG=∠BFA-∠BFG =∠1-∠2=3∠2-∠2 =2∠2=50°.

说明(1)运用平行线的性质,将角集中到适当位置,是添加辅助线(平行线)的常用技巧.

(2)在学过“三角形内角和”知识后,可有以下较为简便的解法:∠1=∠DFC=∠C+∠2,即

∠C=∠1-∠2=2∠2=50°.

例4 求证:三角形内角之和等于180°.

分析平角为180°.若能运用平行线的性质,将三角形三个内角集中到同一顶点,并得到一个平角,问题即可解决,下面方法是最简单的一种.

证 如图1-27所示,在△ABC中,过A引l∥BC,则

∠B=∠1,∠C=∠2(内错角相等).

显然 ∠1+∠BAC+∠2=平角,所以 ∠A+∠B+∠C=180°.

说明 事实上,我们可以运用平行线的性质,通过添加与三角形三条边平行的直线,将三角形的三个内角“转移”到任意一点得到平角的结论.如将平角的顶点设在某一边内,或干脆不在三角形的边上的其他任何一点处,不过,解法将较为麻烦.同学们不妨试一试这种较为麻烦的证法.

例5 求证:四边形内角和等于360°.

分析 应用例3类似的方法,添加适当的平行线,将这四个角“聚合”在一起使它们之和恰为一个周角.在添加平行线中,尽可能利用原来的内角及边,应能减少推理过程.

证 如图1-28所示,四边形ABCD中,过顶点B引BE∥AD,BF∥CD,并延长 AB,CB到 H,G.则有∠A=∠2(同位角相等),∠D=∠1(内错角相等),∠1=∠3(同位角相等).

∠C=∠4(同位角相等),又 ∠ABC(即∠B)=∠GBH(对顶角相等).

由于∠2+∠3+∠4+∠GBH=360°,所以

∠A+∠B+∠C+∠D=360°.

说明(1)同例3,周角的顶点可以取在平面内的任意位置,证明的本质不变.

(2)总结例

3、例4,并将结论的叙述形式变化,可将结论加以推广:

三角形内角和=180°=(3-2)×180°,四边形内角和=360°=2×180°=(4-2)×180°.

人们不禁会猜想:

五边形内角和=(5-2)×180°=540°,„„„„„„„„„„ n边形内角和=(n-2)×180°.

这个猜想是正确的,它们的证明在学过三角形内角和之后,证明将非常简单.

(3)在解题过程中,将一些表面并不相同的问题,从形式上加以适当变形,找到它们本质上的共同之处,将问题加以推广或一般化,这是发展人的思维能力的一种重要方法.

例6 如图1-29所示.直线l的同侧有三点A,B,C,且AB∥l,BC∥l.求证: A,B,C三点在同一条直线上.

分析A,B,C三点在同一条直线上可以理解为∠ABC为平角,即只要证明射线BA与BC所夹的角为180°即可,考虑到以直线l上任意一点为顶点,该点分直线所成的两条射线为边所成的角均为平角,结合所给平行条件,过B作与l相交的直线,就可将l上的平角转换到顶点B处.

证 过B作直线 BD,交l于D.因为AB∥l,CB∥l,所以

∠1=∠ABD,∠2=∠CBD(内错角相等).

又∠1+∠2=180°,所以

∠ABD+∠CBD=180°,即∠ABC=180°=平角.

A,B,C三点共线.

思考 若将问题加以推广:在l的同侧有n个点A1,A2,„,An-1,An,且有AiAi+1∥l(i=1,2,„,n-1).是否还有同样的结论?

例7 如图1-30所示.∠1=∠2,∠D=90°,EF⊥CD.

求证:∠3=∠B.

分析 如果∠3=∠B,则应需EF∥BC.又知∠1=∠2,则有BC∥AD.从而,应有EF∥AD.这一点从条件EF⊥CD及∠D=90°不难获得.

证 因为∠1=∠2,所以

AD∥BC(内错角相等,两直线平行).

因为∠D=90°及EF⊥CD,所以

AD∥EF(同位角相等,两直线平行).

所以 BC∥EF(平行公理),所以

∠3=∠B(两直线平行,同位角相等).

练习十二

1.如图1-31所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.

2.如图1-32所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.

3.如图1-33所示.AB∥CD,∠BAE=30°,∠DCE=60°,EF,EG三等分∠AEC.问:EF与EG中有没有与AB平行的直线,为什么?

4.证明:五边形内角和等于540°.

5.如图1-34所示.已知CD平分∠ACB,且DE∥ACCD∥EF.求证:EF平分∠DEB.

第四篇:全国初中数学竞赛辅导(八年级)教学案全集第32讲 自测题

全国初中数学竞赛辅导(八年级)教学案全集

第三十二讲 自测题

自测题一

1.分解因式:x4-x3+6x2-x+15.

2.已知a,b,c为三角形的三边长,且满足

a2+b2+c2+338=10a+24b+26c,试确定这个三角形的形状.

3.已知a,b,c,d均为自然数,且

a5=b4,c3=d2,c-a=19,求d-b的值.

4. a,b,c是整数,a≠0,且方程ax2+bx+c=0的两个根为a和b,求a+b+c的值.

5.设E,F分别为AC,AB的中点,D为BC上的任一点,P在BF上,DP∥CF,Q在CE上,DQ∥BE,PQ交BE于R,交

6.四边形ABCD中,如果一组对角(∠A,∠C)相等时,另一组对角(∠B,∠D)的平分线存在什么关系?

7.如图2-194所示.△ABC中,D,E分别是边BC,AB上的点,且∠1=∠2=∠3.如果△ABC,△

8.如图2-195所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连AN,CM交于P点.求∠APM的度数.

9.某服装市场,每件衬衫零售价为70元,为了促销,采用以下几种优惠方式:购买2件130元;购满5件者,每件以零售价的九折出售;购买7件者送1件.某人要买6件,问有几种购物方案(必要时,可与另一购买2件者搭帮,但要兼顾双方的利益)?哪种方案花钱最少?

自测题二

1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox.

2.对于集合

p={x丨x是1到100的整数}

中的元素a,b,如果a除以b的余数用符号表示.例如17除以4,商是4,余数是1,就表示成<17,4>=1,3除以7,商是0,余数是3,即表示成<3,7>=3.试回答下列问题:

(1)本集合{x丨<78,x>=6,x∈p}中元素的个数;

(2)用列举法表示集合

{x丨==5,x∈P}.

3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.

4.已知方程x2-3x+a+4=0有两个整数根.

(1)求证:这两个整数根一个是奇数,一个是偶数;

(2)求证:a是负偶数;

(3)当方程的两整数根同号时,求a的值及这两个根.

5.证明:形如8n+7的数不可能是三个整数的平方和.

7.如图2-196所示.AD是等腰三角形ABC底边上的中线,BE是角平分线,EF⊥BC,EG⊥BE且交BC于G.求证:

8.如图2-197所示.AD是锐角△ABC的高,O是AD上任意一点,连BO,OC并分别延长交AC,AB于E,F,连结DE,DF.求证:∠EDO=∠FDO.

9.甲校需要课外图书200本,乙校需要课外图书240本,某书店门市部A可供应150本,门市部B可供应290本.如果平均每本书的运费如下表,考虑到学校的利益,如何安排调运,才能使学校支出的运费最少?

自测题三

2.对于任意实数k,方程

(k2+1)x2-2(a+k)2x+k2+4k+b=0

总有一个根是1,试求实数a,b的值及另一个根的范围.

4.如图2-198.ABCD为圆内接四边形,从它的一个顶点A引平行于CD的弦AP交圆于P,并且分别交BC,BD于Q,R.求证:

5.如图2-199所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D点,过D引AB的平行线交BC于F.求证:BF=EC.

6.如图2-200所示.△ABC中,AB>AC,作∠FBC=∠ECB=

7.已知三角形的一边是另一边的两倍,求证:它的最小边在它的周8.求最大的自然数x,使得对每一个自然数y,x能整除7y+12y-1.

9.某公园的门票规定为每人5元,团体票40元一张,每张团体票最多可入园10人.

(1)现有三个单位,游园人数分别为6,8,9.这三个单位分别怎样买门票使总门票费最省?

(2)若三个单位的游园人数分别是16,18和19,又分别怎样买门票使总门票费最省?

(3)若游园人数为x人,你能找出一般买门票最省钱的规律吗?

自测题四

1.求多项式2x2-4xy+5y2-12y+13的最小值.

2.设

试求:f(1)+f(3)+f(5)+…+f(1999).

3.如图2-201所示.在平行四边形ABCD的对角线BD上任取一点O,过O作边BC,AB的平行线交AB,BC于F,E,又在 EO上取一点P.CP与OF交于Q.求证:BP∥DQ.

4.若a,b,c为有理数,且等式成立,则a=b=c=0 .

5.如图2-202所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周长.

6.证明:由数字0,1,2,3,4,5所组成的不重复六位数不可能被11整除.

7.设x1,x2,…,x9均为正整数,且

x1<x2<…<x9,x1+x2+…+x9=220.

当x1+x2+…+x5的值最大时,求x9-x1的值.

8.某公司有甲乙两个工作部门,假日去不同景点旅游,总共有m人参加,甲部门平均每人花费120元,乙部门每人花费110元,该公司去旅游的总共花去2250元,问甲乙两部门各去了多少人?

9.(1)已知如图2-203,四边形ABCD内接于圆,过AD上一点E引直线EF∥AC交BA延长线于F.求证:

FA·BC=AE·CD.

(2)当E点移动到D点时,命题(1)将会怎样?

(3)当E点在AD的延长线上时又会怎样?

自测题五

2.关于x的二次方程6x2-(2m-1)x-(m+1)=0有一根

3.设x+y=1,x2+y2=2,求x7+y7的值.

4.在三角形ABC内,∠B=2∠C.求证:b2=c2+ac.

5.若4x-y能被3整除,则4x2+7xy-2y2能被9整除.

6.a,b,c是三个自然数,且满足

abc=a+b+c,求证:a,b,c只能是1,2,3中的一个.

7.如图2-204所示.AD是△ABC的BC边上的中线,E是BD的中点,BA=BD.求证:AC=2AE.

8.设AD是△ABC的中线,(1)求证:AB2+AC2=2(AD2+BD2);

(2)当A点在BC上时,将怎样?

按沿河距离计算,B离A的距离AC=40千米,如果水路运费是公路运费的一半,应该怎样确定在河岸上的D点,从B点筑一条公路到D,才能使A到B的运费最省?

第五篇:全国初中数学竞赛辅导(八年级)教学案全集第31讲 复习题

全国初中数学竞赛辅导(八年级)教学案全集

第三十一讲复习题

1.分解因式:3x2+5xy-2y2+x+9y-4.

2.分解因式:(x2+xy+y2)(x2+xy+2y2)-12y4.

5.已知

求ab+cd的值.

为任意正数,证明1<s<2.7.设a,b是互不相等的正数,比较M,N的大小.

8.求分式 的值.

9.已知:

求证:px+qy+rz=(p+q+r)(x+y+z).

11.已知实数x,y满足等式

求x,y的值.

12.若14(a2+b2+c2)=(a+2b+3c)2,求a∶b∶c.

13.解方程:x2+2x-3丨x+1丨+3=0.

14.已知三个二次方程x2-3x+a=0,2x2+ax-4=0,ax2+bx-3=0有公共解,试求整数a和整数b的值.

15.如图2-178所示.在△ABC中,过点B作∠A的平分线的垂线,足为D.DE∥AC交AB于E点.求证:E是AB的中点.

16.求证:直角三角形勾股平方的倒数和等于弦上的高的平方的倒数.

17.如图2-179所示.在△ABC中,延长BC至D,使CD=BC.若BC中点为E,AD=2AE,求证:AB=BC.

18.如图2-180所示.ABCD是平行四边形,BCGH及CDFE都是正方形.求证:AC⊥EG.

19.证明:梯形对角线中点的连线平行于底,并且等于两底差的一半.

20.如图2-181所示.梯形ABCD中,∠ADC=90°,∠AEC=3∠BAE,AB∥CD,E是 BC的中点.求证:

CD=CE.

21.如图2-182所示.梯形ABCD中,AD∥BC(AD<BC),AC和BD交于M,EF过M且平行于AD,EC和FB交于N,GH过N且平行于AD.求证:

22.如图2-183所示.在矩形ABCD中,M是AD的中点,N是BC的中点,P是CD延长线上的一点,PM交AC于Q.求证:∠QNM=∠MNP.

23.在(凸)四边形ABCD中,求证:

AC·BD≤AB·CD+AD·BC.

24.如图2-184所示.AD是等腰△ABC底边BC上的高,BM与BN是∠B的三等分角线,分别交AD于M,N点,连CN并延长交AB于E.求证:

25.已知n是正整数,且n2-71能被7n+55整除,求n的值.

26.求具有下列性质的最小正整数n:

(1)它以数字6结尾;

(2)如果把数字6移到第一位之前,所得的数是原数的4倍.

27.求出整数n,它的2倍被3除余1,3倍被5除余2,5倍被7除余3.

28.把 1,2,3,„,81这 81个数任意排列为:a1,a2,a3,„,a81.计算

丨a1-a2+a3丨,丨a4-a5+a6丨,„,丨a79-a80+a81丨;

再将这27个数任意排列为b1,b2,„,b27,计算

丨b1-b2+b3丨,丨b4-b5+b6丨,„,丨b25-b26+b27丨.

如此继续下去,最后得到一个数x,问x是奇数还是偶数?

29.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,30.设凸四边形ABCD的对角线AC,BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:

BC+AD>AB+CD.

31.如图2-185.在梯形ABCD中,AD∥BC,E,F分别在AB和DC上,EF∥BC,EF平分梯形ABCD的面积,若AD=a,BC=b,求EF的长.

32.四边形ABCD的面积为1,M为AD的中点,N为BC的中点,的面积.

33.已知一元二次方程

x2-x+1-m=0 的两实根x1,x2满足丨x1丨+丨x2丨≤5,求实数m的取值范围.

34.求所有的正实数a,使得方程x2-ax+4a=0仅有整数根.

35.求证:当p,q为奇数时,方程

x2+px+q=0

无整数根.

36.如图2-186.已知圆中四弦AB,BD,DC,CA分别等于a,b,c,d(且cd>ab).过C引直线CE∥AD交AB的延长线于E,求BE之长.

37.设A={2,x,y},B={2,x,y2},其中x,y是整数,并且A∩B={2,4},A∪B={2,x,2x,16x},求x,y的值.

38.在梯形ABCD中,与两条平行底边平行的直线和两腰AB,CD交于P,Q(图2-187).如果AP∶PB=m∶n,那么PQ的值如何用m,n,AD,BC表示?

39.在平行四边形ABCD中,设∠A,∠B,∠C,∠D的平分线两两相交的交点分别为P,Q,R,S,那么四边形PQRS是什么图形?如果原来的四边形ABCD是矩形,那么四边形PQRS又是什么图形?

40.在直角三角形ABC中,以边AB,BC,AC为对应边分别作三个相似三角形,那么这三个相似三角形面积之间有什么关系?

41.如果三角形的三边用m2+n2,m2-n2,2mn来表示,那么这个三角形的形状如何?如果m2+n2=4mn,又将怎样?

42.在圆柱形容器中装水,当水的高度为6厘米时,重4.4千克,水高为10厘米时,重6.8千克,试用图像表示水高为0~10厘米时,水高与重量之间的关系,并预测当水高为8厘米时,水重为多少千克?

43.有7张电影票,10个人抽签,为此先做好10个签,其中7个签上写“有票”,3个签上写“无票”,然后10个人排好队按顺序抽签.问第一人与第二人抽到的可能性是否相同?

44.在直径为50毫米(mm)的铁板中,铳出四个互相外切,并且同样大小的垫圈(图2-188),那么垫圈的最大直径是多少?

45.唐代诗人王之涣的著名诗篇:

白日依山尽,黄河入海流. 欲穷千里目,更上一层楼.

按诗人的想象,要看到千里之外的景物,需要站在多高的建筑物上呢?试化成数学问题加以解释.

46.在一个池塘中,一棵水草AC垂直水面,AB为水草在水面上的部分,如图2-189,问如何利用这根水草测出水深?

47.在一条运河的两侧有两个村子A,B,河的两岸基本上是平行线.现在要在河上架一座桥与河岸垂直,以便使两岸居民互相往来,那么这座桥架在什么地方,才能使从A到B的路程最近呢(图2-190)?

48.要在一条河边修一座水塔,以便从那里给A,B两个城市供水(设A,B在河岸EF的同侧),那么水塔应建在河岸EF的什么地方,才能使水塔到A,B两市供水管道总长度最短(图2-191)?

49.三个同学在街头散步,发现一辆汽车违反了交通规则.但他们没有完全记住这辆汽车的车号(车号由4位数字组成),可是第一个同学记住车号的前两位数是相同的,第二个同学记得后两位数也相同,第三个同学记得这个四位数恰好是一个数的平方数.根据这些线索,能找出这辆汽车的车号吗?

50.图2-192是一个弹簧秤的示意图,其中:图(a)表示弹簧称东西前的状况,此时刻度0齐上线,弹簧伸长的初始长度为b.图(b)表示弹簧秤上挂有重物时,弹簧伸长的状况.如果弹簧秤上挂上不同重量的砝码,那么弹簧秤的长度也相应地伸长.现获得如下一组数据:

(1)以x,y的对应值(x,y)为点的坐标,画出散点图;

(2)求出关于x的函数y的表达式,(3)求当x=500克时,y的长度.

下载全国初中数学竞赛辅导(八年级)教学案全集第28讲 怎样把实际问题化成数学问题(一)word格式文档
下载全国初中数学竞赛辅导(八年级)教学案全集第28讲 怎样把实际问题化成数学问题(一).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐