第一篇:全国初中数学竞赛辅导(八年级)教学案全集第18讲 归纳与发现
全国初中数学竞赛辅导(八年级)教学案全集
第十八讲 归纳与发现
归纳的方法是认识事物内在联系和规律性的一种重要思考方法,也是数学中发现命题与发现解题思路的一种重要手段.这里的归纳指的是常用的经验归纳,也就是在求解数学问题时,首先从简单的特殊情况的观察入手,取得一些局部的经验结果,然后以这些经验作基础,分析概括这些经验的共同特征,从而发现解题的一般途径或新的命题的思考方法.下面举几个例题,以见一般.
例1 如图2-99,有一个六边形点阵,它的中心是一个点,算作第一层;第二层每边有两个点(相邻两边公用一个点);第三层每边有三个点,„这个六边形点阵共有n层,试问第n层有多少个点?这个点阵共有多少个点?
分析与解 我们来观察点阵中各层点数的规律,然后归纳出点阵共有的点数.
第一层有点数:1; 第二层有点数:1×6; 第三层有点数:2×6; 第四层有点数:3×6;
„„
第n层有点数:(n-1)×6.因此,这个点阵的第n层有点(n-1)×6个.n层共有点数为
例2 在平面上有过同一点P,并且半径相等的n个圆,其中任何两个圆都有两个交点,任何三个圆除P点外无其他公共点,那么试问:
(1)这n个圆把平面划分成多少个平面区域?
(2)这n个圆共有多少个交点?
分析与解(1)在图2-100中,设以P点为公共点的圆有1,2,3,4,5个(取这n个特定的圆),观察平面被它们所分割成的平面区域有多少个?为此,我们列出表18.1.
由表18.1易知
S2-S1=2,S3-S2=3,S4-S3=4,S5-S4=5,„„
由此,不难推测
Sn-Sn-1=n.
把上面(n-1)个等式左、右两边分别相加,就得到
Sn-S1=2+3+4+„+n,因为S1=2,所以
下面对Sn-Sn-1=n,即Sn=Sn-1+n的正确性略作说明.
因为Sn-1为n-1个圆把平面划分的区域数,当再加上一个圆,即当n个圆过定点P时,这个加上去的圆必与前n-1个圆相交,所以这个圆就被前n-1个圆分成n部分,加在Sn-1上,所以有Sn=Sn-1+n.
(2)与(1)一样,同样用观察、归纳、发现的方法来解决.为此,可列出表18.2.
由表18.2容易发现
a1=1,a2-a1=1,a3-a2=2,a4-a3=3,a5-a4=4,„„
an-1-an-2=n-2,an-an-1=n-1.
n个式子相加
注意 请读者说明an=an-1+(n-1)的正确性.
例3 设a,b,c表示三角形三边的长,它们都是自然数,其中a≤b≤c,如果 b=n(n是自然数),试问这样的三角形有多少个?
分析与解 我们先来研究一些特殊情况:
(1)设b=n=1,这时b=1,因为a≤b≤c,所以a=1,c可取1,2,3,„.若c=1,则得到一个三边都为1的等边三角形;若c≥2,由于a+b=2,那么a+b不大于第三边c,这时不可能由a,b,c构成三角形,可见,当b=n=1时,满足条件的三角形只有一个.
(2)设b=n=2,类似地可以列举各种情况如表18.3.
这时满足条件的三角形总数为:1+2=3.
(3)设b=n=3,类似地可得表18.4.
这时满足条件的三角形总数为:1+2+3=6.
通过上面这些特例不难发现,当b=n时,满足条件的三角形总数为:
这个猜想是正确的.因为当b=n时,a可取n个值(1,2,3,„,n),对应于a的每个值,不妨设a=k(1≤k≤n).由于b≤c<a+b,即n≤c<n+k,所以c可能取的值恰好有k个(n,n+1,n+2,„,n+k-1).所以,当b=n时,满足条件的三角形总数为:
例4 设1×2×3ׄ×n缩写为n!(称作n的阶乘),试化简:1!×1+2!×2+3!×3+„+n!×n.分析与解 先观察特殊情况:
(1)当n=1时,原式=1=(1+1)!-1;
(2)当n=2时,原式=5=(2+1)!-1;
(3)当n=3时,原式=23=(3+1)!-1;
(4)当n=4时,原式=119=(4+1)!-1.
由此做出一般归纳猜想:原式=(n+1)!-1.下面我们证明这个猜想的正确性.
1+原式=1+(1!×1+2!×2+3!×3+„+n!×n)
=1!×2+2!×2+3!×3+„+n!×n
=2!+2!×2+3!×3+„+n!×n
=2!×3+3!×3+„+n!×n
=3!+3!×3+„+n!×n=„
=n!+n!×n=(n+1)!,所以原式=(n+1)!-1.例5 设x>0,试比较代数式x3和x2+x+2的值的大小.
分析与解 本题直接观察,不好做出归纳猜想,因此可设x等于某些特殊值,代入两式中做试验比较,或许能启发我们发现解题思路.为此,设x=0,显然有
x3<x2+x+2.①
设x=10,则有x3=1000,x2+x+2=112,所以
x3>x2+x+2.②
设x=100,则有x3>x2+x+2.
观察、比较①,②两式的条件和结论,可以发现:当x值较小时,x3<x2+x+2;当x值较大时,x3>x2+x+2.
那么自然会想到:当x=?时,x3=x2+x+2呢?如果这个方程得解,则它很可能就是本题得解的“临界点”.为此,设x3=x2+x+2,则
x3-x2-x-2=0,(x3-x2-2x)+(x-2)=0,(x-2)(x2+x+1)=0.
因为x>0,所以x2+x+1>0,所以x-2=0,所以x=2.这样
(1)当x=2时,x3=x2+x+2;
(2)当0<x<2时,因为
x-2<0,x2+x+2>0,所以(x-2)(x2+x+2)<0,即
x3-(x2+x+2)<0,所以 x3<x2+x+2.(3)当x>2时,因为
x-2>0,x2+x+2>0,所以(x-2)(x2+x+2)>0,即
x3-(x2+x+2)>0,所以 x3>x2+x+2.
综合归纳(1),(2),(3),就得到本题的解答.
分析 先由特例入手,注意到
例7 已知E,F,G,H各点分别在四边形ABCD的AB,BC,CD,DA边上(如图2—101).
(2)当上述条件中比值为3,4,„,n时(n为自然数),那S么S四边形EFGH与S四边形ABCD之比是多少?
∥AC交DA于M点.由平行截割定理易知
G引GM
(2)设
当k=3,4时,用类似于(1)的推理方法将所得结论与(1)的结论列成表18.5.观察表18.5中p,q的值与对应k值的变化关系,不难发现:当k=n(自然数)时有
以上推测是完全正确的,证明留给读者.
练习十八
1.试证明例7中:
2.平面上有n条直线,其中没有两条直线互相平行(即每两条直线都相交),也没有三条或三条以上的直线通过同一点.试求:
(1)这n条直线共有多少个交点?
(2)这n条直线把平面分割为多少块区域?
然后做出证明.)
4.求适合x5=656356768的整数x.
(提示:显然x不易直接求出,但可注意其取值范围:505<656356768<605,所以502<x<602.=
第二篇:全国初中数学竞赛辅导(八年级)教学案全集第32讲 自测题
全国初中数学竞赛辅导(八年级)教学案全集
第三十二讲 自测题
自测题一
1.分解因式:x4-x3+6x2-x+15.
2.已知a,b,c为三角形的三边长,且满足
a2+b2+c2+338=10a+24b+26c,试确定这个三角形的形状.
3.已知a,b,c,d均为自然数,且
a5=b4,c3=d2,c-a=19,求d-b的值.
4. a,b,c是整数,a≠0,且方程ax2+bx+c=0的两个根为a和b,求a+b+c的值.
5.设E,F分别为AC,AB的中点,D为BC上的任一点,P在BF上,DP∥CF,Q在CE上,DQ∥BE,PQ交BE于R,交
6.四边形ABCD中,如果一组对角(∠A,∠C)相等时,另一组对角(∠B,∠D)的平分线存在什么关系?
7.如图2-194所示.△ABC中,D,E分别是边BC,AB上的点,且∠1=∠2=∠3.如果△ABC,△
8.如图2-195所示.△ABC中,∠B=90°,M为AB上一点,使得AM=BC,N为BC上一点,使得CN=BM,连AN,CM交于P点.求∠APM的度数.
9.某服装市场,每件衬衫零售价为70元,为了促销,采用以下几种优惠方式:购买2件130元;购满5件者,每件以零售价的九折出售;购买7件者送1件.某人要买6件,问有几种购物方案(必要时,可与另一购买2件者搭帮,但要兼顾双方的利益)?哪种方案花钱最少?
自测题二
1.分解因式:(x2+3x+5)2+2x3+3x2+1Ox.
2.对于集合
p={x丨x是1到100的整数}
中的元素a,b,如果a除以b的余数用符号表示.例如17除以4,商是4,余数是1,就表示成<17,4>=1,3除以7,商是0,余数是3,即表示成<3,7>=3.试回答下列问题:
(1)本集合{x丨<78,x>=6,x∈p}中元素的个数;
(2)用列举法表示集合
{x丨
3.已知:x+y+z=1,x2+y2+z2=2,x3+y3+z3=3,试求:(1)xyz的值;(2)x4+y4+z4的值.
4.已知方程x2-3x+a+4=0有两个整数根.
(1)求证:这两个整数根一个是奇数,一个是偶数;
(2)求证:a是负偶数;
(3)当方程的两整数根同号时,求a的值及这两个根.
5.证明:形如8n+7的数不可能是三个整数的平方和.
7.如图2-196所示.AD是等腰三角形ABC底边上的中线,BE是角平分线,EF⊥BC,EG⊥BE且交BC于G.求证:
8.如图2-197所示.AD是锐角△ABC的高,O是AD上任意一点,连BO,OC并分别延长交AC,AB于E,F,连结DE,DF.求证:∠EDO=∠FDO.
9.甲校需要课外图书200本,乙校需要课外图书240本,某书店门市部A可供应150本,门市部B可供应290本.如果平均每本书的运费如下表,考虑到学校的利益,如何安排调运,才能使学校支出的运费最少?
自测题三
2.对于任意实数k,方程
(k2+1)x2-2(a+k)2x+k2+4k+b=0
总有一个根是1,试求实数a,b的值及另一个根的范围.
4.如图2-198.ABCD为圆内接四边形,从它的一个顶点A引平行于CD的弦AP交圆于P,并且分别交BC,BD于Q,R.求证:
5.如图2-199所示.在△ABC中∠C=90°,∠A的平分线AE交BA上的高CH于D点,过D引AB的平行线交BC于F.求证:BF=EC.
6.如图2-200所示.△ABC中,AB>AC,作∠FBC=∠ECB=
7.已知三角形的一边是另一边的两倍,求证:它的最小边在它的周8.求最大的自然数x,使得对每一个自然数y,x能整除7y+12y-1.
9.某公园的门票规定为每人5元,团体票40元一张,每张团体票最多可入园10人.
(1)现有三个单位,游园人数分别为6,8,9.这三个单位分别怎样买门票使总门票费最省?
(2)若三个单位的游园人数分别是16,18和19,又分别怎样买门票使总门票费最省?
(3)若游园人数为x人,你能找出一般买门票最省钱的规律吗?
自测题四
1.求多项式2x2-4xy+5y2-12y+13的最小值.
2.设
试求:f(1)+f(3)+f(5)+…+f(1999).
3.如图2-201所示.在平行四边形ABCD的对角线BD上任取一点O,过O作边BC,AB的平行线交AB,BC于F,E,又在 EO上取一点P.CP与OF交于Q.求证:BP∥DQ.
4.若a,b,c为有理数,且等式成立,则a=b=c=0 .
5.如图2-202所示.△ABC是边长为1的正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB,AC于M,N,连接MN,求△AMN的周长.
6.证明:由数字0,1,2,3,4,5所组成的不重复六位数不可能被11整除.
7.设x1,x2,…,x9均为正整数,且
x1<x2<…<x9,x1+x2+…+x9=220.
当x1+x2+…+x5的值最大时,求x9-x1的值.
8.某公司有甲乙两个工作部门,假日去不同景点旅游,总共有m人参加,甲部门平均每人花费120元,乙部门每人花费110元,该公司去旅游的总共花去2250元,问甲乙两部门各去了多少人?
9.(1)已知如图2-203,四边形ABCD内接于圆,过AD上一点E引直线EF∥AC交BA延长线于F.求证:
FA·BC=AE·CD.
(2)当E点移动到D点时,命题(1)将会怎样?
(3)当E点在AD的延长线上时又会怎样?
自测题五
2.关于x的二次方程6x2-(2m-1)x-(m+1)=0有一根
3.设x+y=1,x2+y2=2,求x7+y7的值.
4.在三角形ABC内,∠B=2∠C.求证:b2=c2+ac.
5.若4x-y能被3整除,则4x2+7xy-2y2能被9整除.
6.a,b,c是三个自然数,且满足
abc=a+b+c,求证:a,b,c只能是1,2,3中的一个.
7.如图2-204所示.AD是△ABC的BC边上的中线,E是BD的中点,BA=BD.求证:AC=2AE.
8.设AD是△ABC的中线,(1)求证:AB2+AC2=2(AD2+BD2);
(2)当A点在BC上时,将怎样?
按沿河距离计算,B离A的距离AC=40千米,如果水路运费是公路运费的一半,应该怎样确定在河岸上的D点,从B点筑一条公路到D,才能使A到B的运费最省?
第三篇:全国初中数学竞赛辅导(八年级)教学案全集第31讲 复习题
全国初中数学竞赛辅导(八年级)教学案全集
第三十一讲复习题
1.分解因式:3x2+5xy-2y2+x+9y-4.
2.分解因式:(x2+xy+y2)(x2+xy+2y2)-12y4.
5.已知
求ab+cd的值.
为任意正数,证明1<s<2.7.设a,b是互不相等的正数,比较M,N的大小.
8.求分式 的值.
9.已知:
求证:px+qy+rz=(p+q+r)(x+y+z).
11.已知实数x,y满足等式
求x,y的值.
12.若14(a2+b2+c2)=(a+2b+3c)2,求a∶b∶c.
13.解方程:x2+2x-3丨x+1丨+3=0.
14.已知三个二次方程x2-3x+a=0,2x2+ax-4=0,ax2+bx-3=0有公共解,试求整数a和整数b的值.
15.如图2-178所示.在△ABC中,过点B作∠A的平分线的垂线,足为D.DE∥AC交AB于E点.求证:E是AB的中点.
16.求证:直角三角形勾股平方的倒数和等于弦上的高的平方的倒数.
17.如图2-179所示.在△ABC中,延长BC至D,使CD=BC.若BC中点为E,AD=2AE,求证:AB=BC.
18.如图2-180所示.ABCD是平行四边形,BCGH及CDFE都是正方形.求证:AC⊥EG.
19.证明:梯形对角线中点的连线平行于底,并且等于两底差的一半.
20.如图2-181所示.梯形ABCD中,∠ADC=90°,∠AEC=3∠BAE,AB∥CD,E是 BC的中点.求证:
CD=CE.
21.如图2-182所示.梯形ABCD中,AD∥BC(AD<BC),AC和BD交于M,EF过M且平行于AD,EC和FB交于N,GH过N且平行于AD.求证:
22.如图2-183所示.在矩形ABCD中,M是AD的中点,N是BC的中点,P是CD延长线上的一点,PM交AC于Q.求证:∠QNM=∠MNP.
23.在(凸)四边形ABCD中,求证:
AC·BD≤AB·CD+AD·BC.
24.如图2-184所示.AD是等腰△ABC底边BC上的高,BM与BN是∠B的三等分角线,分别交AD于M,N点,连CN并延长交AB于E.求证:
25.已知n是正整数,且n2-71能被7n+55整除,求n的值.
26.求具有下列性质的最小正整数n:
(1)它以数字6结尾;
(2)如果把数字6移到第一位之前,所得的数是原数的4倍.
27.求出整数n,它的2倍被3除余1,3倍被5除余2,5倍被7除余3.
28.把 1,2,3,„,81这 81个数任意排列为:a1,a2,a3,„,a81.计算
丨a1-a2+a3丨,丨a4-a5+a6丨,„,丨a79-a80+a81丨;
再将这27个数任意排列为b1,b2,„,b27,计算
丨b1-b2+b3丨,丨b4-b5+b6丨,„,丨b25-b26+b27丨.
如此继续下去,最后得到一个数x,问x是奇数还是偶数?
29.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,30.设凸四边形ABCD的对角线AC,BD相交于O,且AC⊥BD,已知OA>OC,OB>OD,求证:
BC+AD>AB+CD.
31.如图2-185.在梯形ABCD中,AD∥BC,E,F分别在AB和DC上,EF∥BC,EF平分梯形ABCD的面积,若AD=a,BC=b,求EF的长.
32.四边形ABCD的面积为1,M为AD的中点,N为BC的中点,的面积.
33.已知一元二次方程
x2-x+1-m=0 的两实根x1,x2满足丨x1丨+丨x2丨≤5,求实数m的取值范围.
34.求所有的正实数a,使得方程x2-ax+4a=0仅有整数根.
35.求证:当p,q为奇数时,方程
x2+px+q=0
无整数根.
36.如图2-186.已知圆中四弦AB,BD,DC,CA分别等于a,b,c,d(且cd>ab).过C引直线CE∥AD交AB的延长线于E,求BE之长.
37.设A={2,x,y},B={2,x,y2},其中x,y是整数,并且A∩B={2,4},A∪B={2,x,2x,16x},求x,y的值.
38.在梯形ABCD中,与两条平行底边平行的直线和两腰AB,CD交于P,Q(图2-187).如果AP∶PB=m∶n,那么PQ的值如何用m,n,AD,BC表示?
39.在平行四边形ABCD中,设∠A,∠B,∠C,∠D的平分线两两相交的交点分别为P,Q,R,S,那么四边形PQRS是什么图形?如果原来的四边形ABCD是矩形,那么四边形PQRS又是什么图形?
40.在直角三角形ABC中,以边AB,BC,AC为对应边分别作三个相似三角形,那么这三个相似三角形面积之间有什么关系?
41.如果三角形的三边用m2+n2,m2-n2,2mn来表示,那么这个三角形的形状如何?如果m2+n2=4mn,又将怎样?
42.在圆柱形容器中装水,当水的高度为6厘米时,重4.4千克,水高为10厘米时,重6.8千克,试用图像表示水高为0~10厘米时,水高与重量之间的关系,并预测当水高为8厘米时,水重为多少千克?
43.有7张电影票,10个人抽签,为此先做好10个签,其中7个签上写“有票”,3个签上写“无票”,然后10个人排好队按顺序抽签.问第一人与第二人抽到的可能性是否相同?
44.在直径为50毫米(mm)的铁板中,铳出四个互相外切,并且同样大小的垫圈(图2-188),那么垫圈的最大直径是多少?
45.唐代诗人王之涣的著名诗篇:
白日依山尽,黄河入海流. 欲穷千里目,更上一层楼.
按诗人的想象,要看到千里之外的景物,需要站在多高的建筑物上呢?试化成数学问题加以解释.
46.在一个池塘中,一棵水草AC垂直水面,AB为水草在水面上的部分,如图2-189,问如何利用这根水草测出水深?
47.在一条运河的两侧有两个村子A,B,河的两岸基本上是平行线.现在要在河上架一座桥与河岸垂直,以便使两岸居民互相往来,那么这座桥架在什么地方,才能使从A到B的路程最近呢(图2-190)?
48.要在一条河边修一座水塔,以便从那里给A,B两个城市供水(设A,B在河岸EF的同侧),那么水塔应建在河岸EF的什么地方,才能使水塔到A,B两市供水管道总长度最短(图2-191)?
49.三个同学在街头散步,发现一辆汽车违反了交通规则.但他们没有完全记住这辆汽车的车号(车号由4位数字组成),可是第一个同学记住车号的前两位数是相同的,第二个同学记得后两位数也相同,第三个同学记得这个四位数恰好是一个数的平方数.根据这些线索,能找出这辆汽车的车号吗?
50.图2-192是一个弹簧秤的示意图,其中:图(a)表示弹簧称东西前的状况,此时刻度0齐上线,弹簧伸长的初始长度为b.图(b)表示弹簧秤上挂有重物时,弹簧伸长的状况.如果弹簧秤上挂上不同重量的砝码,那么弹簧秤的长度也相应地伸长.现获得如下一组数据:
(1)以x,y的对应值(x,y)为点的坐标,画出散点图;
(2)求出关于x的函数y的表达式,(3)求当x=500克时,y的长度.
第四篇:全国初中数学竞赛辅导(八年级)教学案全集第08讲平行四边形
全国初中数学竞赛辅导(八年级)教学案全集
第八讲平行四边形
平行四边形是一种极重要的几何图形.这不仅是因为它是研究更特殊的平行四边形——矩形、菱形、正方形的基础,还因为由它的定义知它可以分解为一些全等的三角形,并且包含着有关平行线的许多性质,因此,它在几何图形的研究上有着广泛的应用.
由平行四边形的定义决定了它有以下几个基本性质:
(1)平行四边形对角相等;
(2)平行四边形对边相等;
(3)平行四边形对角线互相平分.
除了定义以外,平行四边形还有以下几种判定方法:
(1)两组对角分别相等的四边形是平行四边形;
(2)两组对边分别相等的四边形是平行四边形;
(3)对角线互相平分的四边形是平行四边形;
(4)一组对边平行且相等的四边形是平行四边形.
例1 如图2-32所示.在EF与MN互相平分.
ABCD中,AE⊥BC,CF⊥AD,DN=BM.求证:
分析 只要证明ENFM是平行四边形即可,由已知,提供的等量要素很多,可从全等三角形下手.
证 因为ABCD是平行四边形,所以
AD
BC,AB
CD,∠B=∠D.
又AE⊥BC,CF⊥AD,所以AECF是矩形,从而
AE=CF.
所以
Rt△ABE≌Rt△CDF(HL,或AAS),BE=DF.又由已知BM=DN,所以
△BEM≌△DFN(SAS),ME=NF. ①
又因为AF=CE,AM=CN,∠MAF=∠NCE,所以
△MAF≌△NCE(SAS),所以 MF=NF. ②
由①,②,四边形ENFM是平行四边形,从而对角线EF与MN互相平分.
例2 如图2-33所示.Rt△ABC中,∠BAC=90°,AD⊥BC于D,BG平分∠ABC,EF∥BC且交AC于F.求证:AE=CF.
分析 AE与CF分处于不同的位置,必须通过添加辅助线使两者发生联系.若作GH⊥BC于H,由于BG是∠ABC的平分线,故AG=GH,易知△ABG≌△HBG.又连接EH,可证△ABE≌△HBE,从而AE=HE.这样,将AE“转移”到EH位置.设法证明EHCF为平行四边形,问题即可获解.
证 作GH⊥BC于H,连接EH.因为BG是∠ABH的平分线,GA⊥BA,所以GA=GH,从而
△ABG≌△HBG(AAS),所以 AB=HB. ①
在△ABE及△HBE中,∠ABE=∠CBE,BE=BE,所以 △ABE≌△HBE(SAS),所以 AE=EH,∠BEA=∠BEH.
下面证明四边形EHCF是平行四边形.
因为AD∥GH,所以
∠AEG=∠BGH(内错角相等). ②
又∠AEG=∠GEH(因为∠BEA=∠BEH,等角的补角相等),∠AGB=∠BGH(全等三角形对应角相等),所以
∠AGB=∠GEH.
从而
EH∥AC(内错角相等,两直线平行).
由已知EF∥HC,所以EHCF是平行四边形,所以
FC=EH=AE.
说明 本题添加辅助线GH⊥BC的想法是由BG为∠ABC的平分线的信息萌生的(角平分线上的点到角的两边距离相等),从而构造出全等三角形ABG与△HBG.继而发现△ABE≌△HBE,完成了AE的位置到HE位置的过渡.这样,证明EHCF是平行四边形就是顺理成章的了.
人们在学习中,经过刻苦钻研,形成有用的经验,这对我们探索新的问题是十分有益的.
例3 如图2-34所示.∠EMC=3∠BEM.
ABCD中,DE⊥AB于E,BM=MC=DC.求证:
分析 由于∠EMC是△BEM的外角,因此∠EMC=∠B+∠BEM.从而,应该有∠B=2∠BEM,这个论断在△BEM内很难发现,因此,应设法通过添加辅助线的办法,将这两个角转移到新的位置加以解决.利用平行四边形及M为BC中点的条件,延长EM与DC延长线交于F,这样∠B=∠MCF及∠BEM=∠F,因此,只要证明∠MCF=2∠F即可.不难发现,△EDF为直角三角形(∠EDF=90°)及M为斜边中点,我们的证明可从这里展开.
证 延长EM交DC的延长线于F,连接DM.由于CM=BM,∠F=∠BEM,∠MCF=∠B,所以
△MCF≌△MBE(AAS),所以M是EF的中点.由于AB∥CD及DE⊥AB,所以,DE⊥FD,三角形DEF是直角三角形,DM为斜边的中线,由直角三角形斜边中线的性质知
∠F=∠MDC,又由已知MC=CD,所以
∠MDC=∠CMD,则
∠MCF=∠MDC+∠CMD=2∠F.
从而
∠EMC=∠F+∠MCF=3∠F=3∠BEM.
例4 如图2-35所示.矩形ABCD中,CE⊥BD于E,AF平分∠BAD交EC延长线于F.求证:CA=CF.
分析 只要证明△CAF是等腰三角形,即∠CAF=∠CFA即可.由于∠CAF=45°-∠CAD,所以,在添加辅助线时,应设法产生一个与∠CAD相等的角a,使得∠CFA=45°-a.为此,延长DC交AF于H,并设AF与BC交于G,我们不难证明∠FCH=∠CAD.
证 延长DC交AF于H,显然∠FCH=∠DCE.又在Rt△BCD中,由于CE⊥BD,故∠DCE=∠DBC.因为矩形对角线相等,所以△DCB≌△CDA,从而∠DBC=∠CAD,因此,∠FCH=∠CAD. ①
又AG平分∠BAD=90°,所以△ABG是等腰直角三角形,从而易证△HCG也是等腰直角三角形,所以∠CHG=45°.由于∠CHG是△CHF的外角,所以
∠CHG=∠CFH+∠FCH=45°,所以 ∠CFH=45°-∠FCH. ②
由①,②
∠CFH=45°-∠CAD=∠CAF,于是在三角形CAF中,有
CA=CF.
例5 设正方形ABCD的边CD的中点为E,F是CE的中点(图2-36).求证:
分析 作∠BAF的平分线,将角分为∠1与∠2相等的两部分,设法证明∠DAE=∠1或∠2.
证 如图作∠BAF的平分线AH交DC的延长线于H,则∠1=∠2=∠3,所以
FA=FH.
设正方形边长为a,在Rt△ADF中,从而
所以 Rt△ABG≌Rt△HCG(AAS),从而
Rt△ABG≌Rt△ADE(SAS),例6 如图2-37所示.正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G.求证:△GHD是等腰三角形.
分析 准确地画图可启示我们证明∠GDH=∠GHD.
证 因为DEBD=FD,所以
BC,所以四边形BCED为平行四边形,所以∠1=∠4.又
所以 BC=GC=CD.
因此,△DCG为等腰三角形,且顶角∠DCG=45°,所以
又
所以 ∠HDG=∠GHD,从而GH=GD,即△GHD是等腰三角形.
练习十二
1.如图2-38所示.DE⊥AC,BF⊥AC,DE=BF,∠ADB=∠DBC.求证:四边形ABCD是平行四边形.
2.如图2-39所示.在平行四边形ABCD中,△ABE和△BCF都是等边三角形.求证:△DEF是等边三角形.
3.如图2-40所示.CB于E.求证:BE=CF.
ABCD中,AF平分∠BAD交BC于F,DE⊥AF交
4.如图2-41所示.矩形ABCD中,F在CB延长线上,AE=EF,CF=CA.求证:BE⊥DE.
5.如图2-42所示.在正方形ABCD中,CE垂直于∠CAB的平分
第五篇:全国初中数学竞赛辅导(八年级)教学案全集第21讲 分类与讨论
全国初中数学竞赛辅导(八年级)教学案全集
第二十一讲 分类与讨论
分类在数学中是常见的,让我们先从一个简单的例子开始.
有四张卡片,它们上面各写有一个数字:1,9,9,8.从中取出若干张按任意次序排列起来得到一个数,这样的数中有多少个是质数?
因为按要求所得的数可能是一位数、二位数、三位数和四位数,我们分别给予讨论.
任取一张卡片,只能得3个数:1,8,9,其中没有质数;任取二张卡片,可得7个数:18,19,81,89,91,98,99,其中19,89两个是质数;任取三张卡片,可得12个数:189,198,819,891,918,981,199,919,991,899,989,998,其中199,919,991三个数是质数;取四张,所得的任一个四位数的数字和是27,因而是3的倍数,不是质数.综上所述,质数共有2+3=5个.
上面的解题方法称为分类讨论法.当我们要解决一个比较复杂的问题时,经常把所要讨论的对象分成若干类,然后逐类讨论,得出结论.
分类讨论法是一种很重要的数学方法.在分类中须注意题中所含的对象都必须在而且只在所分的一类中.分类讨论一般分为三个步骤,首先确定分类对象,即对谁实施分类.第二是对对象实施分类,即分哪几类,这里要特别注意,每次分类要按照同一标准,并做到不重复、不遗漏,有些复杂的问题,还要逐级分类.最后对讨论的结果进行综合,得出结论.
例1 求方程
x2-│2x-1│-4=0 的实根.
x2+2x-1-4=0,x2-2x+1-4=0,x1=3,x2=-1.
说明 在去绝对值时,常常要分类讨论.
例2 解方程x2-[x]=2,其中[x]是不超过x的最大整数.
解 由[x]的定义,可得
x≥[x]=x2-2,所以 x2-x-2≤0,解此不等式得
-1≤x≤2.
现把x的取值范围分成4个小区间(分类)来进行求解.
(1)当-1≤x≤0时,原方程为
x2-(-1)=2,所以x=-1(因x=1不满足-1≤x<0).
(2)当0≤x<1时,原方程为
x2=2.
(3)当1≤x<2时,原方程为
x2-1=2,所以
(4)当x=2时,满足原方程.
例3 a是实数,解方程
x│x+1│+a=0.
分析 方程中既含有绝对值,又含有参数a,若以平方化去绝对值的话,则引入了高次方程,把问题更加复杂化了.对这种问题,宜讨论x的取值范围来求解.
解(1)当x<-1时,原方程变形为
x2+x-a=0.①
当△=1+4a≥0(且a=-x│1+x│>0),即a>0时,①的解为
(2)当x≥-1时,原方程为
x2+x+a=0.②
又x≥-1,即
综上所述,可得:当a<0时,原方程的解为
例5 已知三角形中两角之和为n,最大角比最小角大24°,求n的取值范围.
解 设三角形的三个角度数分别是α,β,γ,且有α≥β≥γ. 由题设α-γ=24.
(1)若β+γ=n,则α=180°-n,γ=α-24°=156°-n,β=n-γ=2n-156°.
所以
156°-n≤2n-156°≤180°-n,所以 104°≤n≤112°.
(2)若α+γ=n,则β=180°-n,于是
所以
所以 112°≤n≤128°.
(3)若α+β=n,则γ=180°-n,α=γ+24°=204°-n,β=n-α=2n-204°.于是
180°-n≤2n-204°≤204°-n,所以 128°≤n≤136°.
综上所述,n的取值范围是104°≤n≤136°.
例6 证明:若p是大于5的质数,则p2-1是24的倍数.
分析 关于整数的问题,我们常把它分成奇数和偶数(即按模2分类)来讨论,有时也把整数按模3分成三类:3k,3k+1,3k+2.一般地,可根据问题的需要,把整数按模n来分类.本题我们按模6来分类.
证 把正整数按模6分类,可分成6类:6k,6k+1,6k+2,6k+3,6k+4,6k+5.因p是大于5的质数,故p只能属于6k+1,6k+5这两类.
当p=6k+1时,p2-1=36k2+12k=12k(3k+1).
因k,3k+1中必有一个偶数,此时24│p2-1.
当p=6k+5时,p2-1=36k2+60k+24
=12k2+12k
=12k(k+1)≡0(mod 24).
所以,P2-1是24的倍数.
例7 证明
A=││x-y│+x+y-2z│+│x-y│+x+y+2z
=4max{x,y,z},其中max{x,y,z}表示x,y,z这三个数中的最大者.
分析 欲证的等式中含有三个绝对值符号,且其中一个在另一个内,要把绝对值去掉似乎较为困难,但等式的另一边对我们有所提示,如果x为x,y,z中的最大者,即证A=4x,依次再考虑y,z是它们中的最大值便可证得.
证(1)当x≥y,x≥z时,A=│x-y+x+y-2z│+x-y+x+y+2z
=2x-2z+2x+2z=4x.(2)当y≥z,y≥x时,A=│y-x+x+y-2z│+y-x+x+y+2z
=2y-2z+2y+2z=4y.
(3)当z≥x,z≥y时,因为
│x-y│+x+y=max{x,y}≤2z,所以
A=2z-│x-y│-x-y+│x-y│+x+y+2z=4z.
从而 A=4max{x,y,z}.
例8 在1×3的矩形内不重叠地放两个与大矩形相似的小矩形,且每个小矩形的每条边相应地与大矩形的一条边平行,求两个小矩形周长和的最大值.
解 两个小矩形的放置情况有如下几种:
(2)两个小矩形都“横放”,如图2-124及图2-125所示,这时两个小矩形的周长和的最大值是
2(a+3a)+2[1-a+3(1-a)]=8.
(3)两个小矩形一个“横放”,一个“竖放”,如图2-126,这时两个小矩形的周长和为
练习二十一
1.解不等式:│x+1│+│x│<2.
2.解关于x的不等式:a(ax-1)>x-1.3.解方程:││x-3│-2│=a.
4.解方程:x2-2[x]-3=0.
6.设等腰三角形的一腰与底边分别是方程x2-bx+a=0的两根,当这样的三角形只有一个时,求a的取值范围.
7.x,y都是自然数,求证:x2+y+1和y2+4x+3的值不能同时是完全平方.