第一篇:[初中数学]整式的除法教案10(6套) 华东师大版4
12.4.2 多项式除以单项式
知识技能目标
1、探索多项式除以单项式的方法,培养学生的创新精神.2、使学生掌握多项式除以单项式的法则,并能熟练地进行多项式除以单项式的计算.过程与方法目标
1、通过学习将多项式除以单项式转化为单项式除以单项式渗透转化思想;
2、培养学生的抽象、概括能力,以及运算能力.情感与态度目标
通过多项式除以单项式有步骤地计算,培养学生有条理地做事和认真仔细做事的良好习惯.教学重点和难点
重点:多项式除以单项式的法则及其应用.难点:理解法则的导出过程和依据.关键:将多项式除以单项式转化为单项式除以单项式.教学过程设计
一、温故引新 1计算并回答问题:(1)4abc2abc(-3422322abc)3ab2 4(2)以上的计算是什么运算?能否叙述这种运算的法则? 2计算并回答问题:
(1)(x2-x+1)3x-4a(32a-a+2)2(2)以上的计算是什么运算?能否叙述这种运算的法则?
二、探索新知
1、引导学生提出问题
对照整式乘法的学习,我们先后学习了单项式乘以单项式、单项式乘以多项式、多项式乘以多项式,关于整式除法又学习了单项式除以单项式,想一想接下来我们应该研究整式除法的什么内容?(多项式除以单项式)
2、引导学生探索得出多项式除以单项式的法则
引例 计算(am+bm+cm)÷m
我们曾把多项式乘以单项式的运算转化为单项式乘以单项式的运算来进行,那么多项式除以单项式的运算是否也能进行类似的转化呢? 根据除法的意义,(ma+mb+mc)÷m就是要求一个多项式,使它与m的积是ma+mb+mc.
∵ m(a+b+c)=ma+mb+mc; ∴(ma+mb+mc)÷m=a+b+c; 又ammbmmcmma+b+c;
∴(ma+mb+mc)÷m=ammbmmcmm
这就是多项式除以单项式的法则,你能用文字语言叙述吗?(想一想,多项式乘以单项式法则是怎样叙述的)
(多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加)请你与多项式乘以单项式法则比较一下,有何异同.(同学们讨论,不同点:运算种类不同;运算的条件和方法都不同;多项式乘以单项式可以交换两者的位置,多项式除以单项式却不能(并举数字例),相同点:都是多项式与单项式的运算;多项式的每一项都要与单项式发生运算;都是转化为单项式与单项式的运算)
其实,多项式除以单项式的法则也可以按下面的方法导出:(了解)根据“除以一个数等于乘以这个数的倒数”,有(a+b+c)÷m m111=a·+b·+c·
mmm=(a+b+c)·=a÷m+b÷m+c÷m
三、应用举例
例 计算:(1)(9x-15x+6x)÷3x;(2)(28abc+ab-14ab)÷(-7ab). 解(1)(9x-15x+6x)÷3x = 9x÷3x-15x÷3x+6x÷3x = 3x-5x+2. 34242322322242
(2)
3(28abc+ab-14ab)÷(-7ab)
***= 28abc÷(-7ab)+ab÷(-7ab)-14ab÷(-7ab)= -4abc-1/7b+2b.
第(1)小题由师生共同解答,教师以提问的方式对照法则学习,教师板演;第(2)小题由学生板演,根据学生的板演,教师强调指出:商中的各项的系数是如何确定的,当除式的系数为负数时,商式的各项符号与被除式各项的符号相反.变式练习:计算(12 x-5a x-2 ax)÷3x
1、课堂练习:教材41页练习题
2、错例辩析:
322
2有两个错误:第一,丢项,被除式有三项,商式只有二项,丢了最后一项1;第二项是符号上错误,商式第一项的符号为“-”,正确答案为
3、化简[(2x+y)-y(y+4x)-8x]÷2x 解:[(2x+y)-y(y+4x)-8x]÷2x =(4x+4xy+y-y-4xy-8x)÷2x =(4x-8x)÷2x=2x-4 先由学生讨论解题方法,然后指定一名学生板演,根据学生的板演,教师提醒学生注意:(1)这是一道综合题,运算要按运算顺序进行化简;(2)计算时要写出中间过程,通过练习逐步理解、掌握,提高综合运算知识的能力.四、小结
1、多项式除以单项式的法则是什么?
2、多项式除以单项式的法则确定了运算思路是什么?(先将多项式除以单项式转化为单项式除以单项式;然后又转化为同底数幂相除)
五、作业
课堂作业:教材42页习题12.4 第1(4)、2、3、4题 补充:计算: 222222
.(1)[28x7y3-21x5y5+2y(7x3y3)2]7x5y3(2)(3an+1+6an+2-9an)3an-1 家庭作业:预习12.5因式分解
第二篇:整式的除法教案 人教版数学
教学设计思想本节分为2个小节。同底数幂的除法是学习整式除法的基础,因此教科书在第1小节中首先介绍同底数幂的除法性质。熟练地进行单项式除法是学好多项式除以单项式的关键,在第2小节,教科书根据乘、除互为逆运算的关系,并以分配律、同底数幂的除法为依据,由计算具体的实例得到单项式除法的法则。对于多项式除以单项式,教科书是从计算 来导出运算法则的,根据是乘、除法互为逆运算及分配律。可以看出,法则的基本点是把多项式除以单项式转化为单项式除以单项式,而单项式除法是已经学习并掌握了的。教学目标知识与技能:总结出同底数幂的除法的运算性质、整式除法运算法则;会用同底数幂的除法性质、零指数幂的意义和整式除法运算法则进行计算。过程与方法:经历探索同底数幂的除法的运算性质和整式除法运算法则的过程,发展推理能力。情感态度价值观:感受数学公式的简洁美、和谐美;体会转化的思想方法。教学重点和难点教学重点:会用同底数幂的除法性质、整式除法运算法则进行计算。教学难点:会用同底数幂的除法性质、整式除法运算法则进行计算。教学方法:小组讨论、合作探究教学媒体多媒体课时安排2课时教学过程第一课时(一)创设情境,复习导入1.前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确。(1)叙述同底数幂的乘法性质。
第三篇:整式的除法教案
课题: 8.4 整式的除法
一、教学目标:
1、经历探索单项式除以单项式法则的过程,会进行单项式除以单项式的运算。
2、掌握单项式除以单项式的运算
3、经历探索多项式除以单项式法则的过程,会进行多项式除以单项式的运算。
4、熟练掌握多项式除以单项式的运算
二、教学重难点:
1、运用法则计算单项式除法
2、单项式除以单项式法则的探索
3、运用法则计算多项式除以单项式
4、(1)多项式除以单项式法则的探索;(2)多项式除以单项式法则的逆应用;
三、教具:PPT
四、教学过程:
1、引入新课
一、创设情境
问题:木星的质量约是1.90×1024吨,地球的质量约是5.98×1021吨,你知道木星的质量约为地球质量的多少倍吗?
如何计算:(1.90×1024)÷(5.98×1021),并说明依据。
二、合作讨论
讨论如何计算:
(1)8a3÷2a(2)6x3y÷3xy(3)12a3b3x3÷3ab
2[注:8a3÷2a就是(8a3)÷(2a)]
三、复习提问: 计算:(1)am÷m+bm÷m(2)a÷a+ab÷a(3)4x2y÷2xy+2xy2÷2xy
四、合作探究,探索多项式除以单项式法则
计算:(am+bm)÷m,并说明计算的依据
∵(a+b)m = am+bm ∴(am+bm)÷m=a+b 又am÷m+bm÷m=a+b 故(am+bm)÷m=am÷m+bm÷m
2、知识点讲解
知识点一:单项式除以单项式法则:
单项式相除,把系数与同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。知识点二:用语言描述上式,得到多项式除以单项式法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所2得的商相加。
3、例题分析 例1:计算
423534(1)28xy÷7xy(2)-5abc÷15ab
例2:计算下列各题
(1)(a+b)÷(a+b)
3324(2)[(x-y)]÷[(y-x)](3)(-6x2y)3÷(-3xy)3
例3:计算(1)(4x2y+2xy2)÷2xy
(3)(12a3-6a2+3a)÷3a
例4:计算
(1)(2/5ax-0.9ax)÷3/5ax 3
433 4
2(2)(21x4y3-35x3y2+7x2y2)÷(-7x2y)
(4)[(x+y)2-y(2x+y)-8x]÷2x
(2)(2/5xy-7xy+2/3y)÷2/3y
32232
4、课堂练习
一、选择题:
1.如果(3x2y-2xy2)÷m=-3x+2y,则单项式m为()A.xy B.-xy C.x D.-y 2.计算:[2(3x2)2-48x3+6x]÷(-6x)等于()
A.3x-8x B.-3x+8x C.-3x+8x-1 D.-3x-8x-13.下列计算正确的是()
A.6a2b3÷(3a2b-2ab2)=2b2-3ab B.[12a3·(-6a2)÷(-3a)=-4a2+2a C.(-xy2-3x)÷(-2x)=
432323
y2+
324
D.[(-4x2y)÷2xy2]÷2xy=-2x+y 4.下列计算正确的是()A、(a)÷a=a B、(a)÷a=a C、(-5ab)(-2a)=10ab D、(-ab)÷5.-a6÷(-a)2的值是()
A、-a4 B、a4 C、-a3 D、a3 6.已知8xy÷28xy=323
333
332510
212ab=-2ab
224mn227y2,那么m,n的值为()A.m=4,n=3 C.m=2,n=3
二、填空题
B.m=4,n=1 D.m=1,n=
3347.(1)a2bx3÷a2x=_________;(2)3a2b2c÷(-a2b2)=________;
(3)(a5b6-a3b2)÷ab=________;(4)(8x2y-12x4y2)÷(-4xy)=________. 8.(1)(6×10)÷()=-2×10;(2)()·(-3
4210
52512ax)=-5a; xy=_____+_____-1.(3)()÷n=a-b+2c;(4)(3xy+xy-______)÷9.若-12ab÷mab=2a,则m=_______. 210.(24x3y3-6x4y3)÷(-3x2y2)=_____;(-54a5+45a4-18a2)÷(-9a2)=_____.三、解答题
11.化简:[(3x+2y)(3x-2y)-(x+2y)(5x-2y)]÷4x.
12.计算:(3an+2+6an+1-9an)÷3an-1.
13.设梯形的面积为35m2n-25mn2,高线长为5mn,下底长为4m,求上底长(m>n).
14.一颗人造卫星的速度为2.88×104千米/时,一架喷气式飞机的速度是1.•8•×103千米/时,这颗人造卫星的速度是这架喷气式飞机的速度的多少倍?
5、课后作业 教师安排配套练习
6、教学反思
应用单项式除法法则应注意:
①系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;
②把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
③被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
④要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同 级运算从左到右的顺序进行.
第四篇:整式除法原教案
教学目标:
1、经历探索整式除法运算法则的过程,会进行简单的整式除法运算;
2、理解整式除法运算的算理,发展有条理的思考及表达能力。
教学重点:可以通过单项式与单项式的乘法来理解单项式的除法,要确实弄清单项式除法的含义,会进行单项式除法运算。
教学难点:确实弄清单项式除法的含义,会进行单项式除法运算。教学方法:探索讨论、归纳总结。准备活动:
1、填空:
1、x4x教学过程:
一、探索练习,计算下列各题,并说明你的理由。(1)x5yx2(2)8m2n22m2n(3)a4b2c3a2b
提醒:可以用类似于分数约分的方法来计算。
讨论:通过上面的计算,该如何进行单项式除以单项式的运算?
结论:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
2、anan1
3、x6x3
二、例题讲解:
3234322221、计算(1)xy3xy
(2)10abc5abc
5(3)2ab32ab
做巩固练习1。
2、月球距离地球大约3.84×105千米,一架飞机的速度约为8×102千米/时,如果乘坐此飞机飞行这么远的距离,大约需要多少时间?
做巩固练习2。
三、巩固练习:
1、计算:
(1)12x3y4z24x2y2z
(2)(3)2mn1
2、计算:(1)3a314abc2ac5643
38m2n
1(4)6ab13ab3
b8ab 23(2)8a4b3c2a2b3232abc 3学生活动:让六名学生到黑板板演,其余同学在练习本上计算,同伴可交流,互相订正。教师巡回检查,对存在问题时及时更正。小
结:本节课主要学习了单项式除以单项式的运算.在运用法则应注意以下几点:
1、系数相除与同底数幂相除的区别。
2、符号问题。
3、指数相同的同底数幂相除商为1而不是0。
4、在混合运算中,要注意运算的顺序。作
业: 课本P48习题1.15:1、2、3。
9、整式的除法
第二课时 整式的除法(2)教学目的
使学生熟练地掌握多项式除以单项式的法则,并能准确地进行运算. 教学重点
多项式除以单项式的法则是本节的重点. 教学过程
一、复习提问
1. 计算并回答问题:
(3)以上的计算是什么运算?能否叙述这种运算的法则? 2.计算并回答问题:
(3)以上的计算是什么运算?能否叙述这种运算的法则? 3.请同学利用2、3、6其间的数量关系,写出仅含以上三个数的等式.
说明:希望学生能写出 2×3=6,(2的3倍是6)3×2=6,(3的2倍是6)6÷2=3,(6是2的3倍)6÷3=2.(6是3的2倍)
然后向大家指明,以上四个式子所表示的三个数间的关系是相同的,只是表示的角度不同,让学生理解被除式、除式与商式间的关系.
二、新课
1.新课引入.
对照整式乘法的学习顺序,下面我们应该研究整式除法的什么内容?在学生思考的基础上,点明本节的主题,并板书标题.
2.法则的推导.
引例:(8x3-12x2+4x)÷4x=(?)
分析:利用除法是乘法的逆运算的规定,我们可将上式化为
4x ·
(?)
=8x3-12x2+4x. 原乘法运算:
乘式
乘式
积(现除法运算):(除式)(待求的商式)(被除式)然后充分利用单项式乘多项式的运算法则,引导学生对“待求的商式”做大胆的猜测:大体上可以从结构(应是单项式还是多项式)、项数、各项的符号能否确定、各具体的项能否“猜”出几方面去思考.根据课上学生领悟的情况,考虑是否由学生完成引例的解答.
解:(8x3-12x2+4x)÷4x =8x3÷4x-12x2÷4x+4x÷4x =2x2-3x+4x.
思考题:(8x3-12x2+4x)÷(-4x)=? 以上的思想,可以概括为“法则”:
法则的语言表达是
3.巩固法则. 例
1计算:
(l)(28a3-14a2+7a)÷7a;
(2)(36x4y3-24x3y2+3x2y2)÷(-6x2y). 解:(l)(28a3-14a2+7a)÷7a
=28a3÷7a-14a2+7a+7a÷7a =4a2-2a+1;
(2)(36x4y3-24x3y2+3x2y2)÷(-6x2y)
=36x4y3÷(-6x2y)-24x3y2÷(-6x2y)+3x2y2÷(-6x2y)
小结:
(l)当除式的系数为负数时,商式的各项符号与被除多项式各项的符号相反,要特别注意;
(2)多项式除以单项式是利用相应法则,转化为单项式除以单项式而求得结果的.
(3)在学习、巩固新的法则阶段,应尽量要求学生写出表现法则的那一步.
本节是学习多项式与单项式的除法,因此对于单项式除以单项式的计算则可以从简.
练习1.计算:
(1)(6xy+5x)÷x;(2)(15x2y-10xy2)÷5xy;
(3)(8a2b-4ab2)÷4ab;(4)(4c2d+c3d3)÷(-2c2d). 例2 化简[(2x+y)2-y(y+4x)-8x]÷2x. 解:[(2x+y)2-y(y+4x)-8x]÷2x
=(4x2+4xy+y2-y2-4xy-8x)÷2x =(4x2-8x)÷2x=2x-4.
三、小结
1.多项式除以单项式的法则写成下面的形式是否正确?
(a+b+c)÷m=a÷m+b÷m+c÷m.
答:上面的等式也反映出多项式除以单项式的基本方法(两个要点):
(1)多项式的每一项除以单项式;(2)所得的商相加.
所以它也可以是多项式除以单项式法则的数字表示形成. 学习了负指数之后,我们可以理解a、b、c是否能被m整除不是关键问题.
2.多项式除以单项式的商在项数与各项的符号与什么式子有联系?有何联系?
作
业: 课本P50习题1.16:1。
第五篇:整式的除法教案
《整式的除法(第一课时)》教学设计
泾源县第一中学
李 俭
《整式的除法(第一课时)》教学设计
一、教案背景
1、面向学生:中学七年级学生
2、学科:数学
3、课时:一课时
4、课前准备:学生预习课本内容,并复习有理数的除法合同底数幂的除法运算。
二、教学课题:整式的除法(第一课时)
三、教材分析、本节课是北师大版七年级数学下册第一章《整式的运算》第九小节内容。是在学生学习了有理数的除法,同底幂的基础上学习的。它是下节课学习《多项式除以单项式》和八年级学习分式约分的基础。
教学目标:
1、知识与技能目标:
①、会进行单项式除以单项式的整式除法运算
②、理解单项式除以单项式的运算算理,发展学生有条的思考及表达能力
2、过程与方法目标:通过观察、归纳等训练,培养学生能力
3、情感态度与价值观目标:培养学生耐心细致的良好品质 教学重点:单项式除以单项式的整式除法运算 教学难点:单项式除以单项式运算法则的探究过程 教学方法:“自主、合作交流、探究”的探究式和启发式
课型:新授课 教学流程:
一、回顾与思考
1、忆一忆:
幂的运算性质: aa=a mn mn m+n aa=amm-n(a)=a(ab)=an m n n n 〃n
b2、口答:
(5x)〃(2xy2)(-3mn)〃(4n2)
3、填空:
(2m2n)〃(4n)=8m2n2
(-x)〃(2x)=-2x
→(8mn)÷(2mn)=4n
2→(-2x)÷(-x)=2x
324、导入新课:整式的除法1
二、探究新知:
探究单项式除以单项式的运算法则(各小组交流讨论)
(8m2n2)÷(2m2n)=4n(-2x3)÷(-x)=2x2
1、学生汇报,教师概括并课件显示:
单项式相除,把系数、同底数幂分别相除,作为商的因式.在上面的引例中,继续探究单项式除以单项式的运算法则
(8m2n2x)÷(2m2n)=4nx(-2x3y)÷(-x)=2x2y
22对于只在被除式里含有的 x、y,应该怎样处理 ?(对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.)
板书:单项式相除,把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.三、例题讲解 例
1、计算:
232 3
2(1)(-xy)÷(3x y)5(2)(10abc)÷(5abc)(3)(-5mn)÷(3m)(4)(2xy)〃(-7xy)÷(14xy)(5)[9(2a+b)] ÷ [ 3(2a+b)] 分析:①运算顺序:先算乘方,在算乘除,最后算加减;如果有括号,先算括号里面的。
②将 2a+b看作一个整体 32 3
2解:(1)(-xy)÷(3x y)
5422
324322434
3223 =(-÷3)〃(x÷x)〃(y÷y)
512-23-1 = - x y
5102 = -xy5 = -1 y(2)((10abc)÷(5abc)=(10÷5)〃a〃b〃c
4-3
3-
12-1 4323=2abc 222(3)(-5mn)÷(3m)
2-1 =(-5 ÷ 3)m〃n 52 = -mn323
4363
43(4)(2xy)〃(-7xy)÷(14xy)=(8xy)〃(-7xy)÷(14xy)=(-56xy)÷(14xy)= -4xy32 75
43(5)[9(2a+b)] ÷ [ 3(2a+b)] =(9÷3)〃(2a+b)-
42= 3(2a+b)22 = 12a+12ab+3b
四、练习巩固
(1)(2ab)÷(ab)= 2a 6
231b(2)(485
xy
12)÷(16xy)= 1/3xy
(3)(3mn)÷(mn)= 9n(4)xy)÷(6xy)= 4/3xy(5)-a2b4c3÷(-5abc2)=
.6232 23323
五、巩固小结:
本节课你学到了什么?
1、单项式相除,把系数、同底数幂分别相除,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.它的一般步骤:(1)系数相除,作为商的系数;(2)同底数幂相除作为商的因式;(3)对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。(而同底数幂相除实质是单项式相除的特殊情况.)
2、本节课中涉及了两个重要的数学思想和方法:(1)整体思想.例2中将(2a+b)看作了一个整体,从而利用本节课中所学的知识很容易的解决了 [9(2a+b)] ÷ [ 3(2a+b)] 这道题的计算。用好整体思想和方法,常常能使我们走出困境,走向成功。(2)转化思想.在单项式除以单项式的法则的探求过程中我们使用了观察、归纳的方法,再利用转化思想,把未知问题转化为已知问题,从而使复杂的问题简单化、陌生的问题熟悉化、抽象的问题具体化,达到了我们解决问题的目的。这是我们学习数学、发现规律的一种常用方法。
六、课堂检测:(一)口答:
1、(39ab)÷(-3ab)68
56422、(3a-b)÷(3a-b)
3、(-2rs)÷(4rs)
4、„12(m-n)‟÷„3(n-m)‟
(二)计算
(1)(7abc)÷(14abc)(2)(-2rs)÷(4rs)53
322
24(3)(5x2y3)2÷(25x4y5)(4)(x+y)(5)6(a-b)5÷[1(a-b)23](6)(七、布置作业
八、课后反思
3÷(x+y)1xy)
2(-2x2
y)÷(-4x
3339y)7
七、课后反思: 纵观整节课,我始终以新课程为理论依据,以教材资源为中心,力求在学法和教法上有所突破,让学生成为学习的主人、学习的主体,在探索中有所得,体验成功与快乐.新课程倡导培养创新精神和实践能力.问起于疑,疑源于思,课堂上要为学生的质疑创造足够的时间和空间,但本节课在探索运算法则的关键时刻,我由于要急于完成教学内容、也缺乏足够的耐心,急于得出结论,致使个别同学理解不透。另外个别由于运算基础不够好,做题时还有个别同学有计算错误。在以后的教学中吸取教训,力求效果更好。.8