第一篇:15.2 分式的运算 教案
分式的运算
教学目标
1、使学生在理解和掌握分式的乘除法法则的基础上,运用法则进行分式的乘除法混合运算。
2、使学生理解并掌握分式乘方的运算性质,能运用分式的这一性质进行运算。教学重点、难点
重点:分式的乘除混合运算和分式的乘方。难点:对乘方运算性质的理解和运用。教学方法:启发式教学 教学过程
复习提问:
1、叙述分式的乘除法法则。
2、小学学习的乘除法运算法则是什么?
3、计算:(()^2=___,()^3=___,)^n=_________。
引言:我们在上节学习了分式的乘除法,对于分式乘除混合运算如何来进行计算呢?对于整式的乘方我们学习过,对分式来说如何计算呢?这就是 我们这节要学习的内容。
新课:由复习提问3知:((()^3=a^3)^n=a^n)^2=b^3; b^n。
=a^
2b^2,请同学们根据复习提问3总结出分式乘方的法则。
分式乘方,把分子、分母分别乘方。
(例1计算:(1)解: 原式=·
·
÷
·)^n=a^n
b^n。
=
分式的乘除混合运算就是分子、分母先分解因式,然后把公因式约去。例2计算:(1)()^2;(2)()^3÷
·()^2 分析:这两题是分式乘方的运用。(2)运算顺序是先乘方,然后是乘除。解:(1)原式=
(2)原式=-· ·
=-
注意在解题时正确地利用幂的乘方及符号。
第二篇:分式的加减运算
八年级数学(下)教案
班级:________姓名:_______学号:________ 学习内容:8.3分式的加减运算 学习目标:
1、知识目标:会进行分式加减法的运算.2、能力目标:通过类比分数的加减运算,得出分式的加减法的运算法则,培养学生的想象能力.学习重点:同分母的分式加减法及简单的异分母的分式加减法.学习难点:当分式的分母是多项式时的分式的减法.学习过程:
一、情景创设
问题1:回顾分数如何相加减,思考两个分式如何相加?两个分式怎样相减?
二、探索活动
bcbc+=?-=? aaaabcbc(2)异分母的分式怎样相加?怎样相减?如: =? =? adad(1)同分母的分式怎样相加?怎样相减?如:(3)你能说明你的猜想是正确的吗?
三、知识点 1.同分母的分式加减法.
公式:+=bacabcbc,-aaa=bc a文字叙述:同分母的分式相加减,分母不变,把分子相加减. 2.异分母的分式加减法.
公式:
四、例题讲解 例
1、计算:(1)bacdbdacbcbdac, adadad文字叙述:异分母的分式相加减,先通分,变为同分母的分式,然后再加减.
13a22a3m2nn2m(2)(3)aaa1a1nmmnnm 小结:(1)注意分数线有括号的作用,分子相加减时,要注意添括号.(2)注意符号问题(3)把分子相加减后,如果所得结果不是最简分式,要约分. 1 例
2、计算:(1)25a1a12(2) xxa1a1例
3、计算:(1)214a2(2)x242x42a
五、练习:①书本第45页练习②随堂作业
六、作业:补充习题及大练习册
七、小结: 1.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号. 2.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分. 3.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化. 4.作为最后结果,如果是分式则应该是最简分式. 2 8、3分式的加减作业
班级:________姓名:_______学号:_______ 一.请你填一填
62x=________.x3x3111=________.2.已知x≠0,x2x3x1.计算:x23.化简:x+=________.1x4.如果m+n=2,mn=-4,那么nm的值为________.mn
二、计算:(1)
3a2babba3bbaa22 -
(2)-
(3)xabbax5a2b5ab5ab(4)3baa2b3a4bxyy2xy
(5)222222ababbayxxyyx
三、计算: 5a6b3b4aa3b112b2(1)+
(2)a+b+
(3)2a2aab3a2bc3ba2c3cba
(4)163a6b5a6b4a5b7a8b2
(5)a3a9abababab3
第三篇:15.2 分式的运算 教学设计 教案
教学准备
1.教学目标
1.1 知识与技能:
1、使学生正确掌握分式的乘除法的法则。
2、能熟练地运用分式的乘除法的法则进行计算。1.2过程与方法 :
通过学习过程,使学生体会类比的数学思想方法 1.3情感态度与价值观 :
通过引导,鼓励学生主动参与体会数学学习的乐趣。
2.教学重点/难点
2.1 教学重点 分式的乘除法的法则 2.2 教学难点
分子或分母为多项式的分式的乘除法
3.教学用具 4.标签
教学过程
1课堂引入
问题1 一个水平放置的长方体容器,其容积为V,底面的长为a,宽为b,当容器内的水占容积的时,水面的高度为多少?
师:(1)这个长方体容器的高怎么表示?
(2)容器内水面的高与容器内的水所占容积间有何关系? 生:容器内水面的高与容器高的比和容器内的水所占容积的比相等.所以水面的高度为
问题2 大拖拉机m 天耕地a hm2,小拖拉机n天耕地b hm2,大拖拉机的工作效率是小拖拉机的工作效率的多少倍?
师:请大家思考:大拖拉机和小拖拉机的工作效率怎样表示? 生:大拖拉机的工作效率为率是小拖拉机的工作效率的,小拖拉机的工作效率为倍。,所以大拖拉机的工作效师:由上面两题可以看出,讨论数量关系时会进行分式的乘除运算。我们可以类比分数的乘除运算来认识分式的乘除。问题3 计算:
师:在计算的过程中,你运用了分数的什么法则?你能叙述这个法则吗?
如果将分数换成分式,那么你能类比分数的乘除法法则,说出分式的乘除法法则吗? 怎样用字母来表示分式的乘除法法则呢?
分式的乘除法法则:
师:如何用文字语言来描述? 乘法法则:
分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.2例1 计算:
师:分析(1)题并引导学生解答:
①(1)题是几个分式进行什么运算?
②每个分式的分子和分母都是什么代数式?
③运用分式乘除法法则得到的积的分子、分母各是什么?
④积的符号是什么?
⑤怎样应用分式的约分法则使积化成最简分式或单项式? 生回答,板演:
师:①(2)题两个分式进行什么运算?
②每个分式的分子、分母各是什么代数式?
③怎样应用分式的除法法则把分式的除法运算变成分式的乘法运算
师小结:分子和分母都是单项式的分式乘除法的解题步骤是:
①含有分式除法运算时,先用分式除法法则把分式除法运算变成分式乘法运算;
②再用分式乘法法则得出积的分式;
③用分式符号法则确定积的符号;
④用分式约分法则使积化成最简分式或整式(一般为单项式). 2.2练习1 计算:
答案:(1)(2)
(3)
练习2 计算:
答案:(1)(2)(3)(4)-1 3例2
师:①本题是几个分式在进行什么运算?
②每个分式的分子和分母都是什么代数式?
③在分式的分子、分母中的多项式是否可以分解因式,怎样分解?
④怎样应用分式乘法法则得到积的分式?
⑤怎样应用分式约分法则使积化成最简分式或整式(一般为多项式)? 生回答并板演:
课堂练习2: 计算:
=-y
小结:分子或分母是多项式的分式乘除法的解题步骤是:
①将原分式中含同一字母的各多项式按降幂(或升幂)排列;在乘除过程中遇到整式则视其为分母为1,分子为这个整式的分式;
②把各分式中分子或分母里的多项式分解因式;
③应用分式乘除法法则进行运算得到积的分式;
④应用分式约分法则使积化成最简分式或整式.
课堂小结 这节课你学会了哪些内容?(1)分式的乘除法法则;(2)运用法则时注意符号变化;(3)因式分解在分式乘除法中的应用;
(4)步骤要完整,结果要最简,最后结果中的分子、分母既可保持乘积的形式,也可以写成一个多项式
板书
分式乘除法 问题1 问题2 问题3 分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.例1 例2 练习:
第四篇:分式的运算教学设计
分式的运算教学设计
香庙中学
王小龙
一.教材分析
(1)本节内容在教材中的地位和作用
$
它是在分式的概念、分式的基本性质以及约分、通分的基础上学习了分式的混合运算,同时结合分式的运算,研究了整数指数幂的问题,将正整数指数幂的运算性质推广到整数范围,完善了科学记数法。
$
他是前面所学知识的巩固、延伸与拓展,又是后续学习分式方程的基础,是中考的一个重要考点,是式运算的综合。$ 全章的重点也是本章难点。
$ 巩固代数知识的常用方法,提高代数恒等变形能力,感受代数学习的价值。(2)教学目标 通过复习让学生进一步理解分式的乘除、乘方、加减法则; 熟练的运用各运算法则进行分式的混合运算,提高学生代数式变形能力; 3 在竞赛中培养学生无私合作交流的情感,亲密无间的团队精神,强烈的上进心和竞争意识; 4 关注学生的学习个性,提高学生的学习积极性和主动性;(3)教学重难点
1.重点:熟练的运用各运算法则进行分式的混合运算。 2.难点:异分母分式的加减运算、分式混合运算。
二
教学方法与学法分析
采用“必答――抢答――小组接力――小组合作赛”的教学模式. 运用多媒体等多种教学手段来扩大教学容量和空间,充分刺激学生的感官,引起学生的无意注意,激发学生的潜在兴趣. 采用讲练结合、层层深入、归纳总结的教学方法。
三、教学程序设计
1、必答题
1、忆一忆
(1)分式运算已学过哪些?
(2)分式乘除法则是什么?用式子如何表示?(3)分式乘除法关键是什么?
(4)分式乘方法则是什么?用式子如何表示?(5)同分母分式相加减呢?
(6)异分母分式相加减呢?(7)分式加减运算关键是什么?(8)分式的混合运算顺序是什么?
设计意图:让学生学生自己整理本章知识结构,形成系统化。
2、抢答题:(1) xx
2x24x(3)2 a2a
2b23(2)aa21a(4)2a1aba2b2(6)1(5)aabba设计意图:通过课堂小测验对本课基本知识进行检测。
3、小组接力赛
化简或化简求值: 2x63xx22(1)2x4x4x4xx26y22y2(2) x2yx2y2yx 162(3)m3m9
9a3(4)a其中a1aa
aba2b2(5)12其中a1,b22 a2ba4ab4b设计意图:通过题组一的解答,复习分式的定义、分是有意义的条件、分式值为零的条件等基本知识,通过题目变式提升学生解决问题的方法。
4、小组合作、交流
,B2已知:两个分式,Ax1x1x1
其中,x
,下面有三个结论:①A=B; ②A、B互为相反数;③A、B互为倒数。请问这三个结论中哪个结论正确?为什么?
112设计意图:通过小组交流,发现不同学生在学案中出现的错误,生生交流,用学生的语言讲解清楚知识点。为小组展示做好准备。
5、课堂小结
谈一谈
通过本节课《分式的运算》复习后,你有何收获?
设计意图:通过课堂小结再次强调本节课的重点问题。
补充:
1、计算 111111(1)(2)
122334xx1x2x1x2x3
112x2yxy
2、已知:3,求的值。yxx2xyy
6、设计作业
练习册3-4页
[板书设计]
分式复习课
一、分式的基本知识网络
二、典型习题展示
第五篇:八年级数学《分式》(分式运算_分式方程)练习题
《分式》训练题一.解答题(共10小题)1.化简:(1)
(2)
(3)
(4)
.
2.计算; ①
②
3.先化简:;若结果等于,求出相应x的值.
4.如果,试求k的值.
.
5.(2011•咸宁)解方程
6.(2010•岳阳)解方程:
7.(2010•苏州)解方程:
8.(2011•苏州)已知|a﹣1|+
9.(2009•宁波)如图,点A,B在数轴上,它们所对应的数分别是﹣4,求x的值.
10.(2010•钦州)某中学积极响应“钦州园林生活十年计划”的号召,组织团员植树300棵.实际参加植树的团员人数是原计划的1.5倍,这样,实际人均植树棵数比原计划的少2棵,求原计划参加植树的团员有多少人?,且点A、B到原点的距离相等,=0,求方裎+bx=1的解.
. ﹣
=1.
.
©2010-2012 菁优网
答案与评分标准
一.解答题(共10小题)1.化简:(1)
(2)
(3)
(4).
考点:分式的混合运算;约分;通分;最简分式;最简公分母;分式的乘除法;分式的加减法。专题:计算题。分析:(1)变形后根据同分母的分式相加减法则,分母不变,分子相加减,最后化成最简分式即可;(2)根据乘法的分配律展开后,先算乘法,再合并同类项即可;
(3)先根据异分母的分式相加减法则算括号里面的,再把除法变成乘法,进行约分即可;(4)先把除法变成乘法,进行约分,再进行加法运算即可. 解答:解:(1)原式=﹣
﹣
=
=
=
=﹣ ;
(2)原式=3(x+2)﹣=3x+6﹣x =2x+6;
(3)原式=[== ; ••(x+2)
]•
©2010-2012 菁优网
(4)原式=•
+
===+
=1.
点评:本题主要考查对分式的混合运算,约分,通分,最简分母,分式的加、减、乘、除运算等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.
2.计算; ①②
.
考点:分式的混合运算。专题:计算题。
分析:①首先进行乘方计算,然后把除法转化为乘法计算,最后进行乘法运算即可; ②运用乘法的分配律和完全平方公式先去括号,再算除法. 解答:解:①
=•(﹣)
==﹣②•(﹣;)
2=[﹣x﹣1+1﹣x﹣1+x+2]÷(x﹣1)
2=(x﹣1)÷(x﹣1)=x﹣1.
点评:考查了分式的乘除法,解决乘法、除法、乘方的混合运算,容易出现的是符号的错误,在计算过程中要首先确定符号.同时考查了分式的混合运算,分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.
3.先化简:
;若结果等于,求出相应x的值.
考点:分式的混合运算;解分式方程。专题:计算题。
分析:首先将所给的式子化简,然后根据代数式的结果列出关于x的方程,求出x的值.
©2010-2012 菁优网
解答:解:原式=
2=;
由 =,得:x=2,解得x=±.
点评:本题考查了实数的运算及分式的化简计算.在分式化简过程中,首先要弄清楚运算顺序,先去括号,再进行分式的乘除.
4.如果,试求k的值.
考点:分式的混合运算。专题:计算题。
分析:根据已知条件得a=(b+c+d)k①,b=(a+c+d)k②,c=(a+b+d)k③,d=(a+b+c)k④,将①②③④相加,分a+b+c+d=0与不等于0两种情况讨论,所以k有两个解. 解答:解:∵,∴a=(b+c+d)k,① b=(a+c+d)k,② c=(a+b+d)k,③ d=(a+b+c)k,④
∴①+②+③+④得,a+b+c+d=k(3a+3b+3c+3d),当a+b+c+d=0时,∴b+c+d=﹣a,∵a=(b+c+d)k,∴a=﹣ak ∴k=﹣1,当a+b+c+d≠0时,∴两边同时除以a+b+c+d得,3k=1,∴k=.
故答案为:k=﹣1或.
点评:本题考查了分式的混合运算,以及分式的基本性质,比较简单要熟练掌握.
5.(2011•咸宁)解方程
.
考点:解分式方程。专题:方程思想。
分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:两边同时乘以(x+1)(x﹣2),得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)解这个方程,得x=﹣1.(7分)检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,∴原分式方程无解.(8分)点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
6.(2010•岳阳)解方程: ﹣=1.
©2010-2012 菁优网
考点:解分式方程。专题:计算题。
分析:观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解答:解:去分母,得4﹣x=x﹣2
(4分)解得:x=3
(5分)检验:把x=3代入(x﹣2)=1≠0.
∴x=3是原方程的解.
(6分)点评:本题考查解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.
7.(2010•苏州)解方程:
.
考点:换元法解分式方程;解一元二次方程-因式分解法。专题:换元法。
分析:方程的两个分式具备平方关系,设程.先求t,再求x. 解答:解:令=t,则原方程可化为t﹣t﹣2=0,2=t,则原方程化为t﹣t﹣2=0.用换元法转化为关于t的一元二次方
2解得,t1=2,t2=﹣1,当t=2时,当t=﹣1时,=2,解得x1=﹣1,=﹣1,解得x2=,经检验,x1=﹣1,x2=是原方程的解.
点评:换元法是解分式方程的常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法求解的分式方程的特点,寻找解题技巧.
8.(2011•苏州)已知|a﹣1|+=0,求方裎+bx=1的解.
考点:解分式方程;非负数的性质:绝对值;非负数的性质:算术平方根。专题:综合题;方程思想。
分析:首先根据非负数的性质,可求出a、b的值,然后再代入方程求解即可. 解答:解:∵|a﹣1|+=0,∴a﹣1=0,a=1;b+2=0,b=﹣2. ∴﹣2x=1,得2x+x﹣1=0,解得x1=﹣1,x2=.
经检验:x1=﹣1,x2=是原方程的解. ∴原方程的解为:x1=﹣1,x2=.
点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.同时考查了解分式方程,注意解分式方程一定注意要验根.
2©2010-2012 菁优网
9.(2009•宁波)如图,点A,B在数轴上,它们所对应的数分别是﹣4,求x的值.
考点:解分式方程;绝对值。专题:图表型。
分析:A到原点的距离为|﹣4|=4,那么B到原点的距离为4,就可以转换为分式方程求解. 解答:解:由题意得,解得经检验∴x的值为,是原方程的解,. =|﹣4|,且点A、B到原点的距离相等,点评:(1)到原点的距离实际是绝对值.正数的绝对值是它本身,负数的绝对值是它的相反数;(2)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
10.(2010•钦州)某中学积极响应“钦州园林生活十年计划”的号召,组织团员植树300棵.实际参加植树的团员人数是原计划的1.5倍,这样,实际人均植树棵数比原计划的少2棵,求原计划参加植树的团员有多少人? 考点:分式方程的应用。专题:应用题。
分析:设原计划参加植树的团员有x人,则实际参加植树的团员有1.5x人,人均植树棵树=树﹣实际人均植树棵树=2,列分式方程求解,结果要检验. 解答:解:设原计划参加植树的团员有x人,根据题意,得,用原人均植树棵解这个方程,得x=50,经检验,x=50是原方程的根,答:原计划参加植树的团员有50人.
点评:找到合适的等量关系是解决问题的关键.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.
©2010-2012 菁优网