第一篇:九下数学锐角三角函数的简单应用教学案
九下数学锐角三角函数的简单应用(2)
教学案
本资料为woRD文档,请点击下载地址下载全文下载地址www.xiexiebang.com 南沙初中初三数学教学案
教学内容:7.6锐角三角函数的简单应用(2)
课
型:新授课
学生姓名:________
学习目标:
通过具体的一些实例,能将实际问题中的数量关系,归结为直角三角形中元素之间的关系。
教学过程:
一、阅读新知识:
如图所示,斜坡AB和斜坡A1B1哪一个倾斜程度比较大?
显然,斜坡A1Bl的倾斜程度比较大,说明∠A′>∠A。
从图形可以看出,即tanAl>tanA。
(注:在修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度)
二、坡度的概念,坡度与坡角的关系
如图,这是一张水库拦水坝的横断面的设计图:
_________________________________叫做坡度,记作i,即i=________。
注:坡度通常用1∶m的形式,如上图中的1:2的形式。
坡面与水平面的夹角叫做坡角。从三角函数的概念可以知道:
坡度与坡角的关系是i=________。显然,坡度越大,坡角_______,坡面就越_____。
三、例题讲解。
问题
3、如图,水坝的横截面是梯形ABcD,迎水坡Bc的坡角为30°背水坡AD的坡度i(即tan)为1:1,坝顶宽Dc=2.5m,坝高4.5m。
求:(1)背水坡AD的坡角;(2)坝底宽AB的长。
拓展与延伸:如果在问题3中,为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固坝堤,要求坝顶cD加宽0.5m,水坡AD的坡度改为i为1:,已知堤坝的总长度为5km,求完成该项工程所需的土方(精确到0.1)
四、练习:
.如图,一段路基的横断面是梯形,高为4.2米,上底的宽是12.51米,路基的坡面与地面的倾角分别是32°和28°,求路基下底的宽。
tan32°=0.6249
tan28°=0.5317
2.如图,一段河坝的断面为梯形ABcD,试根据图中数据,求出坡角α和坝底宽AD。
五、探究:
(09湖北荆州)安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF所在直线相交与水箱横截面⊙o的圆心o,⊙o的半径为0.2m,Ao与屋面AB的夹角为32°,与铅垂线oD的夹角为40°,BF⊥AB于B,oD⊥AD于D,AB=2m,求屋面AB的坡度和支架BF的长.六、小结
七、课堂作业(见作业纸58)
南沙初中初三数学课堂作业(58)
(命题,校对:王
猛)
班级__________姓名___________学号_________得分_________
.(09兰州)如图,在平地上种植树木时,要求株距
(相邻两树间的水平距离)为4m.如果在坡度为0.75 的山坡上种树,也要求株距为4m,那么相邻两树间的 坡面距离为
()
A.5m
B.6m
c.7m
D.8m
2、(09衡阳)某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为米,则这个破面的坡度为_________。
3、(09常德)如图,某人在D处测得山顶c的仰角为30o,向前走200米来到山脚A处,测得山坡Ac的坡度为i=1∶0.5,求山的高度(不计测角仪的高度,结果保留整数).
4、(09日照)如图,斜坡Ac的坡度(坡比)为1:,Ac=10米.坡顶有一旗杆Bc,旗杆顶端B点与A点有一条彩带AB相连,AB=14米.试求旗杆Bc的高度.
5、如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角,量得树干倾斜角,大树被折断部分和坡面所成的角.
(1)求的度数;(2)求这棵大树折断前的高度?
(结果精确到个位,参考数据:,).
课后探究:、(09浙江绍兴)京杭运河修建过程中,某村考虑到安全性,决定将运河边一河埠头的台阶进行改造.在如图的台阶横断面中,将坡面的坡角由减至.已知原坡面的长为6cm(所在地面为水平面)
(1)改造后的台阶坡面会缩短多少?(2)改造后的台阶高度会降低多少?
(精确到0.1m,参考数据:)
2、(09山西)有一水库大坝的横截面是梯形,为水库的水面,点在上,某课题小组在老师的带领下想测量水的深度,他们测得背水坡的长为12米,迎水坡上的长为2米,求水深.(精确到0.1米,)
3、(09江苏)如图,在航线的两侧分别有观测点A和B,点A到航线的距离为2km,点B位于点A北偏东60°方向且与A相距10km处.现有一艘轮船从位于点B南偏西76°方向的c处,正沿该航线自西向东航行,5min后该轮船行至点A的正北方向的D处.
(1)求观测点B到航线的距离;
(2)求该轮船航行的速度(结果精确到0.1km/h).(参考数据:,,)
www.xiexiebang.com
第二篇:7.6锐角三角函数的简单应用(二)学案
课型:新授课
编写人:
审核人:
时间:2010-2-21 7.6锐角三角函数的简单应用
(二)教、学案
一、学习目标:进一步掌握解直角三角形的方法,比较熟练地应用解直角三角形的知识解决与仰角、俯角有关的实际问题,培养学生把实际问题转化为数学问题的能力。
二、自学质疑 仰角、俯角的定义:
如图,从下往上看,视线在水平线上方,视线与水平线的夹角叫 仰角,从上往下看,视线在水平线下方,视线与水平线的夹角叫 做俯角。
图中的∠1就是仰角,∠2就是俯角。
练习:如图,测量队为测量某地区山顶P的海拔高度,选M点作为观测点,从M•点测量山顶P的仰角为30°,在比例尺为1:50000的该地区等高线地形图上,量得这两点的图上距离为6•厘米,则山顶P•的海拔高为________m.(精确到1m)
三、精讲点拨
例
2、为了测量停留在空中的气球的高度,小明先站在地面上某点处观测气球,测得仰角为27°,然后他向气球方向前进了50m,此时观测气球,测得仰角为40°。若小明的眼睛离地面1.6m,小明如何计算气球的高度呢(精确到0.1m)
Ch mA2750m40Bx mD课型:新授课
编写人:
审核人:
时间:2010-2-21 思考与探索:大海中某小岛的周围10km范围内有暗礁。一艘海轮在该岛的南偏西55°方向的某处,由西向东行驶了20km后到达该岛的南偏西25°方向的另一处。如果该海轮继续向东行驶,会有触礁的危险吗?
矫正反馈:课堂练习:书本P 56 1、2
补充例题:
某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面要盖一栋高20米的新楼.当冬季正午的阳光与水平线的夹角为30°时。问:(1)若要使超市采光不受影响,两楼应相距多少米?
(2)若新楼的影子恰好落在超市1米高的窗台处,两楼应相距多少米?
课型:新授课
编写人:
审核人:
时间:2010-2-21 7.6锐角三角函数的简单应用
(二)巩固案
1.在高200米的山顶上测得正东方向两船的俯角分别为30°和60°,•则两船间的距离是______。
2.如图所示,人们从O处的某海防哨所发现,在它的北偏东60°方向,•相距600m的A处有一艘快艇正在向正南方向航行,经过若干时间快艇到达哨所东南方向B处,则A、B间的距离是________
.
3.如图,在某建筑物AC上挂着一幅的宣传条幅BC,小明站在点F处,看条幅顶端B,测得仰角为30°;再往条幅方向前行20m到达点E处,看条幅顶端B,•测得仰角为60°,求宣传条幅BC的长.
4.某民航飞机在大连海域失事,为调查失事原因,决定派海军潜水员打捞飞机上的黑匣子,如图所示,一潜水员在A处以每小时8海里的速度向正东方向划行,在A处测得黑匣子B在北偏东60°的方向,划行半小时后到达C处,测得黑匣子B在北偏东30 °的方向,在潜水员继续向东划行多少小时,距离黑匣子B最近,并求最近距离.
第三篇:锐角三角函数学案1
九年级数学(上)教案
25.2 锐角三角函数(1)
设计时间:
授课时间:
课型:
授课人: 教学目标:(目标明确,行动才更有效!)1.正弦、余弦、正切、余切的定义。2.正弦、余弦、正切、余切的应用。课前热身:(准备一下,你会更出色!)1.两个三角形相似的条件。
2.在两个直角三角形中,如果有一个锐角对应相等,那么这两个三角形 ;并简要说明理由。
课堂探究:(我自信,我参与!)
一、自主学习:(试一试自己的学习本领有多强)聚焦目标一:
1.阅读教材P74思考,并填空。
如果改变∠A的大小,∠A的对边与邻边的比值会改变吗?
2.阅读教材P74“我们知道„„”这一段。
若一个锐角的大小不变,那么该锐角的对边与斜边、邻边与斜边的比值是否也是定值?
3.阅读教材P74“因此„„”到“统称为∠A的三角函数”这一段。锐角三角函数是研究 三角形的 关系的。
4.sinA=
A的对边A的邻边,cosA=,斜边斜边 图25.2.1
tanA=A的对边A的邻边,cotA=.
A的邻边A的对边思考:(1)0<sinA<1,0<cosA<1.
(2)sin2Acos2A=1,tanA·cotA=1.为什么? 聚焦目标二: 1.阅读教材P75例1。
2.求出如图所示的Rt△DEC(∠E=90゜)中∠D的四个三角函数值.二、合作研讨:(交流也是一种非常好的学习方法,交流过程中你一定会有所感悟,大胆提出你的问题吧!)
三、展示讲解:(用流利的语言和创新的思维来展示你们小组的风采!)
四、知识归纳: 巩固提升:
必做题:(试一试,你一定行!)
1.如图,在Rt△MNP中,∠N=90゜.∠P的对边是__________,∠P的邻边是_______________;
∠M的对边是__________,∠M的邻边是_______________;2.设Rt△ABC中,∠C=90゜,∠A、∠B、∠C的对边分别为a、b、c,根据下列所给条件求∠B的四个三角函数值.(1)a=3,b=4;
(2)a=6,c=10.选做题:
在Rt△ABC中,∠C=90゜,若已知tanA=
板书设计:
25.2
sinA=
3,求∠A的其他三个三角函数值。4锐角三角函数(1)
A的对边A的邻边22,cosA=,sinAcosA=1,斜边斜边
tanA=A的对边A的邻边,cotA= tanA·cotA=1
A的邻边A的对边导学反思:
第四篇:锐角三角函数的简单应用教学反思
反思一:锐角三角函数的简单应用教学反思
直角三角形中边角之间的关系,是现实世界中应用最广泛的关系之一。锐角三角函数在解决现实问题中有着重要的作用,因此,学好锐角的三种三角函数,正切,正弦,余弦的定义是关键。
1、通过课堂教学,在合作探究中培养学生的问题意识。
2、课上问题引入法,从教材探究性问题梯子的倾斜度入手,让学生主动参与学习活动。用特殊值探究锐角的三角函数时,学生们表现得非常积极,从作图,找边、角,计算各个方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状有关系吗?进一步深入地去认识三角函数。
3、在教学中,我还注重对学生进行数学学习方法的指导。在数学学习中,有一些学生往往不注重基本概念、基础知识,认为只要会作题就可以了,结果往往失分于选择题、填空题等一些概念性较强的题目。通过引导学生进行知识梳理,教会学生如何进行知识的归纳、总结,进一步帮助学生理解、掌握基本概念、基础知识。
4、教学中存在许多缺陷,使我进一步研究和探索。我们必须清醒地认识到,课程改革势在必行,在教学中加入新的理念,发挥传统教学的基础性和严谨性,不断地改善教法、学法,才能适应现代教学。
总之,在教学方法上,改变教师教、学生听的传统模式,采用学生自主交流、合作学习、教师点拨的方式,把主动权真正交给学生,让学生成为课堂的主人,才能提高学生的问题意识,才能提高学生成绩。
反思二:锐角三角函数的简单应用教学反思
教学反思数学是一门应用性很强的学科。它来源于生活,又实践于生活。以登山缆车,荡秋千情境,引导学生将实际问题抽象为数学问题,构造几何模型,应用三角函数的知识解决问题。在整体设计上,由易到难,难度层层推进,尽量满足不同层次学生的学习需要。
数学三角函数的教学在生活中的应用还是比较多的,比如,测量问题,坡度问题,旋转问题等等。解直角三角形的应用题和数学活动,有利于培养学生的空间想象能力,即要求学生通过对实物的观察或根据文字语言中的某些条件,画出适合他们的图形,多给学生充分的自主思考空间和时间,让学生自主积极地学习。
在具体教学过程中,要培养学生的注意力,更要注意兴趣的培养。
我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率,提高成绩。
反思三:锐角三角函数的简单应用教学反思
这节课是在学习了锐角三角函数之后对三角函数的应用,教的时候先从一个实际问题出发引出解直角三角形的内容,然后让学生探究讨论什么是解直角三角形,让学生知道解直角三角形需要用到的量和量之间的关系,哪五个元素,然后这些元素之间的关系,知道两个元素其中必须包括有一条边怎样求出剩下的那三个。
学生总体来说掌握还好,但有部分学生基础太差,与以前的知识不会联系,这增加了很多困难,没有什么别的办法,只好一边复习一边学习新的知识,个别情况个别对待,只是永远不会放弃对他们的期望。
第五篇:锐角三角函数的应用教学设计
锐角三角函数的应用(教学设计)
乾县长留初中张莉
教学目标:将已知元素和未知元素归结为直角三角形中元素之间的关系,运用直角三角形的有关知识(如三角函数等)解决问题。
过程与方法:经历把某些实际问题中量与量之间的关系转变成数学模型中量与量的关系,进一步培养学生的建模能力,在解决问题的过程中体会“数形结合”的思想方法。
情感与态度:感悟数学来源于生活,应用于生活的真理,培养实际操作能力和建构能力关注每一位学生参与数学活动的程度,自信心,使每位学生体验到成功的快乐。
一.知识回顾:
直角三角形的边角关系:
1)两锐角关系:———————— 2)三边之间的关系:—————————— 3)边角之间的关系——————————— 二.问题解决
问题一:热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为66 m,这栋高楼有多高?(结果精确到0.1 m,参考数据:1.73)
≈
问题二:如图所示,再一次课外实践活动中,同学们要测量某公园人工湖两侧A、B两个凉亭之间的距离,现测得AC=30m,BC=70m,∠CAB=120°,请计算A、B两个凉亭之间的距离。
变一变:如图,海上有一小岛A,它的周围8海里内有暗礁,渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏东60°,航行12海里到达D点,在D点测得小岛A在北偏东30°,如果渔船继续向正东方向行驶,问是否有触礁的危险?
解析:过A作AC⊥BD于点C,求出∠CAD、∠CAB的度数,求出∠BAD和∠ABD,根据等边对等角得出AD=BD=12,根据含30度角的直角三角形性质求出CD,根据勾股定理求出AD即可.
解:只要求出A到BD的最短距离是否在以A为圆心,以8海里的圆内或圆上即可,如图,过A作AC⊥BD于点C,则AC的长是A到BD的最短距离,∵∠CAD=30°,∠CAB=60°,∴∠BAD=60°-30°=30°,∠∴∠ABD=∠BAD,∴BD=AD=12海里,∵∠CAD=30°,∠ACD=90°,∴CD= 1 2 AD=6海里,由勾股定理得:AC= 122-6
2=6
ABD=90°-60°=30°,3 ≈10.392>8,即渔船继续向正东方向行驶,没有触礁的危险.
三、拓展延伸
用本节课的知识怎样测量停留在空中的气球的高度呢?(仪器:卷尺测角仪)四:小结
谈谈本节课你有哪些收获?
五:作业布置
锐角三角函数复习(说课稿)
乾县长留初中张莉
教材分析:锐角三角函数是九年级数学下册第一章内容,它是中招考试的重要考点,在中学数学中占有举足轻重的地位。
复习目标:1.掌握锐角三角函数的基本知识,能利用解直角三角形的有关知识,解决生活中的实际问题;
2.进一步体会锐角三角函数的应用,提高数形结合、分析、解决问题的能力及应用数学的意识。
复习重点:锐角三角函数概念及性质的应用。复习难点:把实际问题转化为数学问题。教学流程:
一、复习回顾 :
1、锐角三角函数的定义,及跟踪练习,这一练习旨在巩固学生对锐角三角函数概念的理解。复习回顾
2、特殊角的三角函数值及相应练习旨在检查学生对特殊角三角函数值的记忆情况。复习回顾
3、解直角三角形,复习直角三角形边角关系应用解直角三角形的知识解决实际问题培养学生的建模能力技术型结合思想,感悟数学源于生活,应用于生活的真理。
二、课堂反馈:以实际问题作为检测,使学生明白把实际问题转化成数学问题(解直角三角形的问题)选用恰当的关系求出问题的答案。
三、小结并布置作业
教后反思:学生有积极性,但语用知识不够熟练,计算速度慢部分学生基本概念和基本知识点记忆不准确。教师在教学中应给予学生足够时间让学生完成知识的构建。《锐角三角函数的应用》说课稿
乾县长留初中 张莉
说教材:本节课是在学习了锐角三角函数的概念,锐角三角函数值的求法的基础上进一步阐述三角函数在生活中的应用。
教学目标:将已知元素和未知元素归结为直角三角形中元素之间的关系,运用直角三角形的有关知识(如三角函数等)解决问题。
过程与方法:经历把某些实际问题中量与量之间的关系转变成数学模型中量与量的关系,进一步培养学生的建模能力,在解决问题的过程中体会“数形结合”的思想方法。
情感与态度:感悟数学来源于生活,应用于生活的真理,培养实际操作能力和建构能力关注每一位学生参与数学活动的程度,自信心,使每位学生体验到成功的快乐。
教学方法:体现以教师为主导,学生为主体的思想,深化课堂教学改革。教学流程:
1.复习引入、复习直角三角形边角关系及生活中的相关角,为解决后面的问题做铺垫。
2.问题探究:通过两组问题的探索引导学生如何应用锐角三角函数解决实际问题,培养学生的建模能力及数形结合的思想,感悟数学源于生活应用于生活的真理,通过变式练习启发学生自主性学习,充分调动学生的积极性、主动性及灵活运用知识的能力。3.小结:用锐角三角函数解决实际问题的一般步骤就是将实际问题转化成数学问题(解直角三角形的问题)选用恰当的关系求出数学问题的答案从而也就得到了实际问题的答案。
4.作业布置
最后用一句话结束了本节课的内容:愿同学们拥有一双能用数学视觉观察世界的眼睛,一个能用数学思维思考世界的头脑。
当然本节课还有许多不足,望各位老师多提宝贵意见!