锐角三角函数:解直角三角形的应用
一.解直角三角形的应用(共9小题)
3.如图,要测量一条河两岸相对的两点A,B之间的距离,我们可以在岸边取点C和D,使点B,C,D共线且直线BD与AB垂直,测得∠ACB=56.3°,∠ADB=45°,CD=10m,则AB的长约为()
(参考数据sin56.3°≈0.8,cos56.3°≈0.6,tan56.3°≈1.5,sin45°≈0.7,cos45°≈0.7,tan45°=1)
A.15m
B.30m
C.35m
D.40m
4.如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE的夹角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF∥BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()
(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)
A.2.6m
B.2.8m
C.3.4m
D.4.5m
5.如图所示的是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平线AE垂直,AB=154cm,∠A=30°,另一根辅助支架DE=78cm,∠E=60°.
(1)求CD的长度.(结果保留根号)
(2)求OD的长度.(结果保留一位小数.参考数据:≈1.414,≈1.732)
6.图1是某种路灯的实物图片,图2是该路灯的平面示意图,MN为立柱的一部分,灯臂AC,支架BC与立柱MN分别交于A,B两点,灯臂AC与支架BC交于点C,已知∠MAC=60°,∠ACB=15°,AC=40cm,求支架BC的长.(结果精确到1cm,参考数据:≈1.414,≈1.732,≈2.449)
7.襄阳东站的建成运营标志着我市正式进入高铁时代,郑万高速铁路襄阳至万州段的建设也正在推进中.如图,工程队拟沿AC方向开山修路,为加快施工进度,需在小山的另一边点E处同时施工.要使A、C、E三点在一条直线上,工程队从AC上的一点B取∠ABD=140°,BD=560米,∠D=50°.那么点E与点D间的距离是多少米?
(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)
8.天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A处开始,沿A﹣B﹣C路线对索道进行检修维护.如图:已知AB=500米,BC=800米,AB与水平线AA1的夹角是30°,BC与水平线BB1的夹角是60°.求:本次检修中,检修人员上升的垂直高度CA1是多少米?(结果精确到1米,参考数据:≈1.732)
9.某数学课题研究小组针对兰州市住房窗户“如何设计遮阳蓬”这一课题进行了探究,过程如下:
问题提出:
如图1是某住户窗户上方安装的遮阳蓬,要求设计的遮阳蓬能最大限度地遮住夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内.
方案设计:
如图2,该数学课题研究小组通过调查研究设计了垂直于墙面AC的遮阳蓬CD.
数据收集:
通过查阅相关资料和实际测量:兰州市一年中,夏至日这一天的正午时刻太阳光线DA与遮阳蓬CD的夹角∠ADC最大(∠ADC=77.44°);冬至日这一天的正午时刻,太阳光线DB与遮阳蓬CD的夹角∠BDC最小(∠BDC=30.56°).窗户的高度AB=2m.
问题解决:
根据上述方案及数据,求遮阳蓬CD的长.
(结果精确到0.1m,参考数据:sin30.56°≈0.51,cos30.56°≈0.86,tan30.56°≈0.59,sin77.44°≈0.98,cos77.44°≈0.22,tan77.44°≈4.49)
10.如图,同学们利用所学知识去测量三江源某河段某处的宽度.小宇同学在A处观测对岸点C,测得∠CAD=45°,小英同学在距点A处60米远的B点测得∠CBD=30°,请根据这些数据算出河宽(精确到0.01米,≈1.414,≈1.732).
11.如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.
(1)求楼间距AB;
(2)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)
二.解直角三角形的应用-坡度坡角问题(共5小题)
12.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()
A.5米
B.6米
C.8米
D.(3+)米
13.如图,一河坝的横断面为等腰梯形ABCD,坝顶宽10米,坝高12米,斜坡AB的坡度i=1:1.5,则坝底AD的长度为()
A.26米
B.28米
C.30米
D.46米
14.如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC∥AD,BE⊥AD,斜坡AB长26m,斜坡AB的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A不动,则坡顶B沿BC至少向右移
m时,才能确保山体不滑坡.(取tan50°≈1.2)
15.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).
(1)求灯杆CD的高度;
(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
16.如图,为测量一座山峰CF的高度,将此山的某侧山坡划分为AB和BC两段,每一段山坡近似是“直”的,测得坡长AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.(1.414,CF结果精确到米)
三.解直角三角形的应用-仰角俯角问题(共5小题)
17.如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角∠ADE为55°,测角仪CD的高度为1米,其底端C与旗杆底端B之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()
A.tan55°=
B.tan55°=
C.sin55°=
D.cos55°=
18.如图,小明想要测量学校操场上旗杆AB的高度,他作了如下操作:
(1)在点C处放置测角仪,测得旗杆顶的仰角∠ACE=α;
(2)量得测角仪的高度CD=a;
(3)量得测角仪到旗杆的水平距离DB=b.
利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为()
A.a+btanα
B.a+bsinα
C.a+
D.a+
19.如图,在离铁塔150米的A处,用测倾仪测得塔顶的仰角为α,测倾仪高AD为1.5米,则铁塔的高BC为()
A.(1.5+150tanα)米
B.(1.5+)米
C.(1.5+150sinα)米
D.(1.5+)米
20.如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上).为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为()
A.800sinα米
B.800tanα米
C.米
D.米
21.如图,为测量一棵与地面垂直的树OA的高度,在距离树的底端30米的B处,测得树顶A的仰角∠ABO为α,则树OA的高度为()
A.米
B.30sinα米
C.30tanα米
D.30cosα米
四.解直角三角形的应用-方向角问题(共4小题)
22.如图,一艘轮船从位于灯塔C的北偏东60°方向,距离灯塔60nmile的小岛A出发,沿正南方向航行一段时间后,到达位于灯塔
C的南偏东45°方向上的B处,这时轮船B与小岛A的距离是()
A.30nmile
B.60nmile
C.120nmile
D.(30+30)nmile
23.如图,海面上产生了一股强台风.台风中心A在某沿海城市B的正西方向,小岛C位于城市B北偏东29°方向上,台风中心沿北偏东60°方向向小岛C移动,此时台合风中心距离小岛200海里.
(1)过点B作BP⊥AC于点P,求∠PBC的度数;
(2)据监测,在距离台风中心50海里范围内均会受到台风影响(假设台风在移动过程中风力保持不变).问:在台风移动过程中,沿海城市B是否会受到台风影响?请说明理由.(参考数:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60,≈1.73)
24.如图,一艘轮船以每小时30海里的速度自东向西航行,在A处测得小岛P位于其西北方向(北偏西45°方向),2小时后轮船到达B处,在B处测得小岛P位于其北偏东60°方向.求此时船与小岛P的距离(结果保留整数,参考数据:≈1.414,≈1.732).
25.黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学们测量学校附近一电线杆的高.已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D处测得电线杆顶端A的仰角为30°,在C处测得电线杆顶端A得仰角为45°,斜坡与地面成60°角,CD=4m,请你根据这些数据求电线杆的高(AB).
(结果精确到1m,参考数据:≈1.4,≈1.7)