教案 积分乘方

时间:2019-05-15 05:23:39下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《教案 积分乘方》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《教案 积分乘方》。

第一篇:教案 积分乘方

第三课时:积的乘方

教学目标

1.知识与技能

通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质.

2.过程与方法

经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.

3.情感、态度与价值观

通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.

重、难点与关键

1.重点:积的乘方的运算.

2.难点:积的乘方的推导过程的理解和灵活运用.

3.关键:要突破这个难点,教师应该在引导这个推导过程时,步步深入,层层引导,而不该强硬地死记公式,只有在理解的情况下,才可以对积的乘方的运算性质灵活地应用.

教学方法

采用“探究──交流──展示”的方法,让学生在互动中掌握知识.

教学过程

一、自主探究

1、自学思考:

(1)复习回顾:同底数幂相乘与幂的乘方的运算特点?(2)探究:

填空,运算过程用到哪些运算律?运算结果有什么规律?

①(ab)2=(a b)(a b)=(a a)(bb)=a()b()②(ab)

3=______________=___________=a()b()

③(ab)n=______________=___________=a()b()

(3)归纳:(ab)n= _______(n为正整数)积的乘方,等于把积的每一个因式_______,再把所得的幂_______。

(4)思考:积的乘方的运算特点?(5)尝试练习:例3 2.交流讨论(1)自学情况交流(2)疑难问题讨论(3)展示问题讨论 3.展示:计算

(1)(2a)3

(2)(-5b)3

(3)(xy2)2

(4)(-2x3)4

二.点拨疑难 1.就展示情况点评。

2.积的乘方的运算特点: 一个乘积(两个或两个以上的数或因式的积)的正整数次方。3.运算步骤:(1)看运算特点;(2)把每个因式分别乘方;(3)再把所得的幂相乘;(4)结果化为最简形式;

4.注意:(1)法则逆用;

(2)综合运算。三.巩固速测:

计算:(1)(ab)4

(2)(-四.点评总结

1.注意按步骤进行;2.注意符号问题和括号运用;3.结果化简。五.达标检测:计算:

(1)xx3+x2x2

(2)(-pq)3

(3)-(-2a2b)4

(4)a3a4a+(a2)4+(-2a4)2

点评总结2:综合运算:分清运算性质按相应法则依次进行运算。六.拓展自测

1.思考:(-)2013(1.5)2014 2.练习册:课外完成。

板书设计:(ab)n=anbn

(n为正整数)拓展

逆用

1xy)3

(3)(-3102)3

(4)(2ab2)3 223

第二篇:积的乘方教案

《积的乘方》教学设计

——卢秀玲

教学目标

1.理解积的乘方的意义,学会运用积的乘方法则进行计算。2.通过法则的推导过程提升分析问题、解决问题的能力. 3.经历从特殊到一般研究问题的过程,激发学习数学的兴趣,培养实事求是、严谨、认真、务实的学习态度.渗透数学公式的结构美、和谐美.

教学重点: 掌握积的乘方法则;正确区分积的乘方、幂的乘方和同底数幂相乘等多种运算.教学难点: 用数学语言概括运算性质. 教学方法:引导发现探究、讲和练相结合. 教学流程设计:

教学过程设计

一、情景引入:

1、问题:你能心算出 吗?(引出课题]§9.9 积的乘方)

二、概念分析

1、实例1 已知一个立方体的棱长是2a,求这个立方体的体积。(请一位学生口述回答。)

解:体积= = =(根据乘方的意义)=(单项式的乘法法则)答:立方体的体积是。由实例1得到等式 =。

阐明:何为积的乘方?——从底数的运算关系入手——底数2a中,2与a的运算关系是乘法。

提问:由等式 =,你能发现积的乘方的结果有什么特别之处?(2与a都进行了3次方。)

师:对。2与a的积进行3次方就等于2的3次方与a的3次方的积。实例2 计算 ——推广到积里的因式是抽象的字母的情况。解: = =。

指明:字母可表示数、单项式或多项式。

2、继续推广到指数为n(n为正整数)时的情况,即推导积的乘方法则: =。如果n是正整数,那么 = = =。

师:这个公式表明的就是积的乘方法则。请一位学生用数学语言口述此公式:

积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

3、研讨:

师:当3个或3个以上因式乘方时,是否也具有这一性质,即 =。生:有。师:对。而且推导过程是一样的。(推导省略)

师:这说明积里有3个因式时,积的乘方法则仍然成立。那么,积里有3个以上因式时法则也成立吗?

生:也成立。师:积的乘方法则对积里的因式的个数没有限制。给出一反例来强调积的乘方法则中把积的每一个因式分别乘方: 对吗?

生:不对,因为3也要进行3次方。

三、例题讲解

【例1】计算:① ;

② ; ③ ;

④ ; 解:① = ; ② = ; ③ = = ;

④ = = ; 课本练习9.9 ex1;ex2 【例2】计算:(1);(2);(3)分析:混合运算时,运算顺序如何? 生:先乘方,再乘除,最后算加减。对(2)题,说明对第一个因式进行符号变换,还是对第二个因式进行符号变换都是可行的。强调:①对于底数是负数、分数或单项式或多项式时,应给它添上括号;② 课本练习9.9 ex3;ex4;解决:计算;

课本练习9.9 ex5

四、课堂小结:

1.这节课你学会了什么?(运用积的乘方法则进行计算)2.运用积的乘方法则进行计算应注意些什么?

(1、运用积的乘方法则时,先要弄清积是由哪些因式构成,然后每个因式再乘方,并注意公式可逆用;

2、一个式子中包含多种运算时,应区别对待,运算顺序是先乘方再相乘;

3、要注意积的乘方只适用于底数是积的形式,防止出现的错误,当底数的积的形式中含有“-”号时,可将“-”号看成“-1”作为一个因式,避免漏乘。)

五、作业:.课课练9.9;

《积的乘方》教学设计

兆麟初级中学 卢秀玲

第三篇:幂的乘方教案

14.1.2 幂的乘方

【学习目标】

1.经历探索幂的乘方的运算性质的过程,发展推理能力和数学语言的表述能力,体会从特殊到一般,从具体到抽象的思想方法;

2.理解幂的乘方的运算性质、幂的乘方与同底数幂的乘法的区别与联系,能运用性质进行简单的计算.

一、复习:

1.回顾同底数幂的乘法:aman=am+n(m,n都是正整数)2.计算:(1)a4·a4·a4;(2)x3·x3·x3·x3。

3.你会计算(a4)3与(x3)5吗?(第3题引入课题。对于第3题应让学生讨论。)

二、新授。1.x3表示什么意义? 2.如果把x换成a4,那么(a4)3表示什么意义? 3.怎样把a2·a2·a2·a2=a2+2+2+2写成比较简单的形式? 5.根据同底数幂的乘法填空。(1)(23)2=23×23=2();

(2)(32)3=()×()×()=3();

(3)(a3)5=a3×()×()×()×()=a()。

6.用同样的方法计算:(a3)4;(a11)9;(b3)n(n为正整数)。(23)2=23×2=26;(32)3=32×3=36;(a11)9=a11×9=a99(b3)n=b3×n=b3n

(现察结果中幂的指数与原式中幂的指数及乘方的指数,想一想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?)即(am)n=am·n(m、n是正整数)。法则:幂的乘方,底数不变,指数相乘。

三、知识应用。

1.例1 计算:(1)(103)5(2)(a4)4(3)(bm)4(4)--(x3)5; 2.练习。课本第97页练习3.下列计算过程是否正确?(1)x2·x6·x3+x5·x4·x=xll+x10=x2l。(2)(x4)2+(x5)3=x8+x15=x23

(3)a2·a·a5+a3·a2·a3=a8+a8=2a8。(4)(a2)3+a3·a3=a6+a6=2a6。

说明:(1)要让学生指出题中的错误并改正,通过解题进一步明确算理,避免公式 用错。

(2)进一步要求学生比较“同底数幂的乘法法则”与“幂的乘方法则”的区别与联系。

补充练习:(幂的乘方法则的逆用):

1、填空。

(1)a12=(a3)()=(a2)()=a3 ·a()=(a())2;(2)93=3();

n(3)32×9n=32×3()=3()。(4)若(x2)=x8,则m=_____________.(5)若[(x3)m]2=x12,则m=_____________。

2、求值

(1)若xm·x2m=2,求x9m的值。(2)若a2n=3,求(a3n)4的值。

(3)已知am=2,an=3,求a2m+3n的值.(此题要求学生会逆用幂的乘方和同底数幂的乘法公式,灵活、简捷地解题。)

四、课堂小结。

1.(am)n=am·n(m、n是正整数),这里的底数a,可以是数、是字母、也可以是代数式;这里的指数是指幂指数及乘方的指数。

2.对于同底数幂的乘法、幂的乘方、要理解它们的联系与区别。在利用法则解题时,要正确选用法则,防止相互之间发生混淆(如:am·an=amn(am)n=am+n)。并逐步培养自己“以理驭算”的良好运算习惯。

第四篇:《幂的乘方》教案

《幂的乘方》教案

:

1.知识与技能

理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.

2.过程与方法

经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.

3.情感、态度与价值观

培养学生合作交流意义和探索精神,让学生体会数学的应用价值. 教学重、难点与关键:

1.重点:幂的乘方法则.

2.难点:幂的乘方法则的推导过程及灵活应用.

3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导,要求对性质深入地理解. 教学方法:

采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则. 教学过程:

一、创设情境,导入新知

【情境导入】

大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你,木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么,请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=r3)

【学生活动】进行计算,并在黑板上演算.

解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为

V木星=·(102)3=?(引入课题).

【教师引导】(102)3=?利用幂的意义来推导.

【学生活动】有些同学这时无从下手.

【教师启发】请同学们思考一下a3代表什么?(102)3呢?

【学生回答】a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106,•因此(102)3=106.

【教师活动】下面有问题:

利用刚才的推导方法推导下面几个题目:

(1)(a2)3;(2)(24)3;(3)(bn)3;(4)-(x2)2.

【学生活动】推导上面的问题,个别同学上讲台演示.

【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少?

【学生活动】归纳总结并进行小组讨论,最后得出结论:

(am)n== amn.

评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.

二、范例学习,应用所学

【例】计算:

(1)(103)5;(2)(b3)4;(3)(xn)3;(4)-(x7)7.

【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.

【教师活动】启发学生共同完成例题.

【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:

解:(1)(103)5=103×5=1015;(3)(xn)3=xn×3=x3n;

(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.

三、随堂练习,巩固练习

课本P143练习.

【探研时空】

计算:-x2·x2·(x2)3+x10.

【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.

【学生活动】书面练习、板演.

四、课堂总结,发展潜能

1.幂的乘方(am)n=amn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.

2.知识拓展:这里的底数、指数可以是数,可以是字母,也可以是单项式或多项式.

3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”,一个是“指数相加”.

五、布置作业,专题突破

课本P148习题15.1第1、2题

第五篇:第一章 有理数乘方教案

第周第节

§1.5.1有理数乘方(2)教案

备课人:李冶

学习目标:

1、掌握有理数混合运算的顺序,能正确的进行有理数的加,减,乘除,乘

方的混合运算。

2、培养学生观察,归纳,猜想,推理的能力。重点:能正确的进行有理数的混合运算。难点:灵活的运用运算律,使计算简单。教学过程:

一课前提问:

1、我们已经学习了哪几种有理数的运算?

2、有理数的乘方的意义是什么?

3、下列的 算式里有哪些运算?应按照怎样的顺序运算?

3+50÷22

×(-1

5)-1

二、新课探究:

有理数混合运算的顺序:

1、先乘方,再乘除,最后加减;

2、同级运算,从左到右进行;

3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进行;

三、例题精析:例1、计算:

(1)2(3)3

4(3)15(2)(2)3

(3)[(4)2

2](3)2

(2)

2、观察下面三行数:

-2,4,-8,16,-32,64,…;

0,6,-6,18,-30,66,…; -1,2,-4,8,-16,32,…。

(1)第①行数按什么规律排列?

(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第10个数,计算这三个数的和。

四、巩固练习:

1、计算:(1)(1)10

×2+(2)3÷4(2)(5)3

-3×(

2)

1111(3)5

×(3

2)×

311

÷(4)(10)4

+[(4)2

-(3+32

4)×2]

2、观察下列各数列,研究它们各自的规律,接着填出后面的数。(1)1,-3,7,-13,21,-31,,…(2)-1,4,-10,19,-31,46,,…

(3)-2,-3,5,-8,-13,21,-34,-55,,…

五、跟踪测试

1、在有理数的混合运算中,先算,再算,最后算。

2、对于同级运算,按从到的顺序进行,如果有括号,就先做。

3、(-5)×(2)2-32×(3)2-32 ÷32()

×(6)2;

(2)

-32;

(1)

-(2)3×(3)2

(1)

2000

-(1)2001;

(1)

2000

÷(1)2001;

4、当n为奇数时,1+(1)n; 当n为偶数时,1+(1)n ;

5、当a是有理数时,下列说法正确的是()A

(a1)

平方的值是正数。B

a

+1的值是正数

C-(a1)

值是负数。D -a2+1小于1。

6、在等式①a2=0② a2+b2=0③(a

b)

=0

④ a2

b

=0中,a必须等于0的式子有()

A1个B2个C3 个D4 个

7、已知:a+b=0,且a≠0,则当n是自然数时()

Aa2n

b

2n

0Ba

4n

+b4n=0

Ca3n+b3n=oDan+bn

=0

课堂小结:有理数混合运算的顺序。

下载教案 积分乘方word格式文档
下载教案 积分乘方.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    积的乘方教案

    一、教学目标 1.进一步理解积的乘方的运算性质,准确掌握积的乘方的运算性质,熟练应用这一性质进行有关计算. 2.通过推导性质进一步训练学生的抽象思维能力,通过完成例2,培养学生综......

    积的乘方教案

    15.2.3 积的乘方教案 [教学目标]1、经历探索积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。 2、了解积的乘方的运算性质,并能解决一些实际问题。......

    有理数的乘方教案

    有理数的乘方教案 (一)教学目标 知识技能:在现实背景中,理解有理数乘方的意义.能进行有理数的乘方运算,并会用计算器进行乘方运算.掌握幂的符号法则. 数学思考:培养观察.类比.......

    有理数的乘方的教案

    有理数的乘方一、 学什么1、 知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。2、 知道底数、指数和幂的概念,会求有理数的正整数指数幂。二、 怎样学归纳概念n个a相乘......

    有理数的乘方3教案

    学科:数学 教学内容:有理数的乘方 【学习目标】 1.能说出乘方的意义及其与乘法之间的关系. 2.了解底数、指数及幂的概念,并会辨识. 3.掌握有理数乘方的运算法则. 4.能说出科学记数法的......

    1.5有理数的乘方教案

    1有理数的乘方教案 教学目标1的运算;2力,以及学生的探索精神;3问题在小学我们已经学习过a·a,记作a2,读作a的平方;a·a·a作a3,读作a的立方;那么,a·a·a·a可以记作什么?读作什么?a......

    14.1.2幂的乘方教案

    §14.1.2幂的乘方 【学习目标】 1、掌握幂的乘方计算公式. 2、熟练应用幂的乘方公式解决问题. 【预习检测】 1、同底数幂的乘法法则是_____________________ 用公式如何表示......

    9.8 幂的乘方教案

    9.8幂的乘方 教学目标 熟练掌握幂的乘方的运算性质并能运用它进行快速计算和熟练的计算.初步形成探索未知的能力。 教学重点及难点 幂的乘方运算性质的灵活运用; 幂的乘方、同......