第一篇:《分数连除应用题》教案-
《分数连除应用题》教案
教学目标
1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。2.进一步提高学生的分析概括能力及解题能力。教学重点
找准单位“1”,巩固分数除法应用题的解答方法。教学难点
掌握分数连除应用题的结构及数量关系。教学过程(一)复习(投影)1.找准单位“1”,并列式解答。2.出示准备题。
(1)读题,请学生找出已知条件和未知条件。
(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)提问:美术组,生物组,航模组三个数量之间有什么关系。(4)请一名同学列式解答,然后订正。(二)讲授新课 老师把准备题进行改编。
指名读题,找出已知条件和未知条件。1.指导学生画图。
提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)老师按学生的回答,把准备题的图示进行修改。2.找出含有分率的句子,进行分析。
(3)这道题中有几个单位“1”?美术组、生物组、航模组三量之间有什么关系?
(4)根据三量之间的关系,列出等量关系式。(5)这个式子的等号两边相等吗?为什么? 人。)学生回答,老师板书:
3.根据等量关系列方程解答。
提问:根据上面的分析,应设谁为x?(设美术组人数为x。)老师板书:
解设美术组有x人。答:美术组有30人。看方程提问:
(3)为什么要设美术组人数为x?
(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)师小结:对于含有两个“已知一个数的几分之几是多少,求这个数”这样条件的复合应用题,首先要找准单位“1”,在两个单位“1”都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。
(三)巩固练习(投影)先讨论以下问题,再动笔做:找出单位“1”,画图并分析数量关系。2.看图,找出数量间相等的关系,并列方程解答:(1)说出这个图所反映的等量关系式。
(2)师小结:这道题出现了“小汽车是大汽车的4倍”,而不是几分之几,但它们的数量关系不变,解题思路也一样。
师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)三好生4人。
学生动笔做,老师带领学生订正。的高是多少厘米? 根据题意填空:
是()厘米。设()为x。果树有多棵?(四)课堂总结
今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的复合题。)这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)(五)布置作业(略)课堂教学设计说明
本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。
第二篇:数学教案-分数连除、乘除复合应用题-教学教案
1.使学生掌握分数连除、乘除复合应用题的结构和数量关系,能正确解答分数连除、乘除应用题.
2.进一步提高学生的分析解题能力,发展学生思维.
教学重点
使学生掌握分数连除、乘除复合应用题的数量关系,并能正确解答.
教学难点
使学生正确解答分数连除、乘除复合应用题.
教学过程
一、复习引新
(一)找准单位“1”,并列式解答.
1.一袋面粉重50千克,吃了,吃了多少千克?
2.一条路修了200千米,正好占全长的,全长多少千米?
3.白兔有40只,白兔只数是黑兔只数的 .黑兔有多少只?
(二)光明小学美术组有30人,生物组的人数是美术组的,航模组的人数是生物组的,航模组有多少人?
二、讲授新课
(一)教学例4(把复习第二题改编成例4)
例4.光明小学航模组人数是生物组的,生物组人数是美术组的,航模组有8人,美术组有多少人?
1.找出已知条件和所求问题,说说这道题里有哪几个数量?
2.画图分析
(1)航模组的人数是生物组的,应该把谁看作单位“1”?生物组的人数看作单位“1”
(2)生物组人数是美术组的,应把谁看作单位“1”?美术组的人数看作单位“1”
(3)哪两个组的人数有关系?航模组的人数与生物组的有关,生物组的人数与美术组的有关,(4)应先画哪个组的人数?应先画出美术组
3.引导学生分析数量关系
因为:美术组的人数× =生物组的人数
生物组的人数× =航模组人数,航模组人数是8人.
所以:
解:设美术组有 人.
答:美术组有30人.
4.练习
商店运来一些水果.梨的筐数是苹果筐数的,苹果的筐数是橘子筐数的 .运来梨15筐,运来橘子多少筐?
(二)教学例5
例5.商店运来一些水果,运来苹果20筐,梨的筐数是苹果的,同时又是橘子的,运来桔子多少筐?
1.找出已知条件和问题.
2.找出分率句,找准单位“1” .
3.分析数量关系.
(1)苹果的筐数和哪个量有关系?有什么关系?
和梨的筐数有关系.苹果筐数的 是梨的筐数,即:苹果的筐数× =梨的筐数
(2)梨的筐数和哪个量有关系?有什么关系?
和橘子的筐数有关.橘子筐数的 是梨的筐数,即:橘子的筐数× =梨的筐数
(3)梨、苹果、橘子三量之间是什么关系?
梨的筐数既是苹果的,也是橘子的(4)你能列出等量关系式吗?
苹果的筐数× =桔子的筐数×
解:设运来桔子 筐.
答:运来橘子25筐
(三)小结
1.今天学的应用题和以前几节课学习的应用题一样吗?(有两个分率句)
2.如何分析这类应用题?
抓住分率句,找谁单位“1”,画图来分析,列式不用急.
三、巩固练习
(一)蔬菜商店运来的茄子筐数是西红柿的,运来的西红柿筐数是黄瓜的 .运来茄子21筐,运来黄瓜多少筐?
(二)同学们踢毽子,小红踢了18个,小兰踢的是小红踢的,同时又是小华踢的,小华踢了多少个?
(三)商店里红气球的个数是蓝气球的,是黄气球的,有蓝气球240个,有黄气球多少个?
(四)对比练习
1.一个长方体的宽是长的,长是高的,宽是42厘米.高是多少厘米?(等量关系式:高× × =宽)
2.一个长方体的长45厘米,宽是长的,宽又是高的 .高是多少厘米?(等量关系式:高× =长×)
四、课堂小结
今天我们学习的分数应用题有什么特点?解题时我们应该注意什么?
五、课后作业
(一)六年级四班有三好学生4人,占本班学生人数的 .**班学生人数是六年级学生人数的 .六年级有学生多少人?
(二)停车场里有36辆小汽车,是大汽车数量的4倍,大汽车的数量是运货车数量的,运货车有多少辆?
(三)一个长方体的宽是长的,长是高的 .它的宽是20厘米,它的高是多少厘米?
(四)学校有槐树15棵,杨树的棵数是槐数的,又是柳树的 .柳树有多少棵?
六、板书设计
第三篇:《分数连除、乘除复合应用题》教学设计
教学目标
1.使学生掌握分数连除、乘除复合应用题的结构和数量关系,能正确解答分数连除、乘除应用题。
2.进一步提高学生的分析解题能力,发展学生思维。
教学重点
使学生掌握分数连除、乘除复合应用题的数量关系,并能正确解答。
教学难点
使学生正确解答分数连除、乘除复合应用题。
教学过程
一、复习引新
(一)找准单位1,并列式解答。
1.一袋面粉重50千克,吃了,吃了多少千克?
2.一条路修了200千米,正好占全长的,全长多少千米?
3.白兔有40只,白兔只数是黑兔只数的.黑兔有多少只?
(二)光明小学美术组有30人,生物组的人数是美术组的,航模组的人数是生物组的,航模组有多少人?
二、讲授新课
(一)教学例4(把复习第二题改编成例4)
例4.光明小学航模组人数是生物组的,生物组人数是美术组的,航模组有8人,美术组有多少人?
1.找出已知条件和所求问题,说说这道题里有哪几个数量?
2.画图分析
(1)航模组的人数是生物组的,应该把谁看作单位1?生物组的人数看作单位1
(2)生物组人数是美术组的,应把谁看作单位1?美术组的人数看作单位1
(3)哪两个组的人数有关系?航模组的人数与生物组的有关,生物组的人数与美术组的有关,(4)应先画哪个组的人数?应先画出美术组
3.引导学生分析数量关系
因为:美术组的人数 =生物组的人数
生物组的人数 =航模组人数,航模组人数是8人。
所以:
解:设美术组有 人。
答:美术组有30人。
4.练习
商店运来一些水果。梨的筐数是苹果筐数的,苹果的筐数是橘子筐数的.运来梨15筐,运来橘子多少筐?
(二)教学例5
例5.商店运来一些水果,运来苹果20筐,梨的筐数是苹果的,同时又是橘子的,运来桔子多少筐?
1.找出已知条件和问题。
2.找出分率句,找准单位1.3.分析数量关系。
(1)苹果的筐数和哪个量有关系?有什么关系?
和梨的筐数有关系。苹果筐数的 是梨的筐数,即:苹果的筐数 =梨的筐数
(2)梨的筐数和哪个量有关系?有什么关系?
和橘子的筐数有关。橘子筐数的 是梨的筐数,即:橘子的筐数 =梨的筐数
第四篇:《连除应用题》教案
教学内容:教科书第102、103页上的内容,练习二十三的第1-4题。
教学目的:使学生初步了解连除应用题的基本结构及数量关系,通过不同的分析思路进行解答。同时学习解题的检验方法,进一步提高学生的分析和解题能力。
教学重点:了解连除应用题的基本结构及数量关系。
教学难点:了解连除应用题的数量关系,并通过不同的分析思路进行解答。
教学关键:通过不同数量关系、分析思路进行解答。
教学过程
一、复习。
1、根据条件,提出问题进行解答。
(1)三年级同学去参观农业展览,他们平均分成2队,每队分成3组?
(2)三年级同学去参观农业展览。他们每队有3组,每组有15人,?
(3)三年级90个同学去参观农业展览,他们平均分成2队,?
(4)三年级同学去参观农业展览,他们每队有45人,平均分成3组,?
2、三年级同学去参观农业展览,他们平均分成2队,每队分成3组,每组15人,一共有多少人?
教师引导学生小结后,把复习中的连乘应用题改变一个条件和问题,使它成为例2导入新课。
二、新授。
l、教学例2。三年级同学参观农业展览。把90人平均分成2队,每队平均分成3组,每组有多少人?
(1)读题,结合线段图理解题意。
训练学生离开原题目,看线段图复述题意。参观农业展览的三年级同学90人平均分成2队,每队平均分成3组,每组有多少人?
(2)引导学生结合线段图进行思路分析。
①从条件上分析。提问:
(a)题目中哪些条件可以解诀哪些问题?
(b)要求每组有多少人,应先求什么?
学生回答时,教师引导学生得出以下两个方面的内容:
(a)根据已知条件,把90人平均分成2队,可以求出每队有多少人。把求出的每队有(90÷2)人当作条件与已知的每队平均分成3组,就能求出每组有多少人。因此要求每组有多少人,必须先求出每队有多少人。
(b)根据已知条件,平均分成2队,每队有3组,可以求出一共有多少组,把求出的一共有(3×2)组当作条件与总人数90人,就能求出每组有多少人。因此要求每组有多少人,可以先算一共分成多少组。
从问题上分析。提问:
(a)要求每组有多少人,应需要哪两个条件?
(b)要求出问题,应先求出什么?
教师引导学生讨论回答,得出以下两个方面的内容:
(a)要求每组有多少人?需要每队人数与每队组数这两个条件,而已知每队平均分成3组,所以应先求出每队有多少人。
(b)要求每组有多少人?也可以从总人数与总组数这两个条件出发。已知总人数90人,所以应先求一共分成多少组。
(3)教师小结以上分析方法,与学生共同探讨得出以下两种不同的解答方法。
①解法一:(a)平均每队有多少人?
90÷2=45(人)
(b)平均每组有多少人?
45÷3=15(人)
综合列式:90÷2÷3
=45÷3
=15(人)答:平均每组15人。
②解法二:(a)一共分了多少组?
3×2=6(组)
(b)平均每组有多少人?
90÷6=15(人)
综合列式:90÷(3×2)
=90÷6
=15(人)答:平均每组15入。
2、指导解题的检验方法。
(1)引导想一想:这道题除了用一种解法检验另一种解法以外,还可以怎样检验?
(2)指导学生用问题与条件交换的方法进行检验。如:
想:已经算出每组有15人,又知每队平均分成3组,可能算出每队的人数。(1)15×3=45(人)
已经算出每队有45入,已知平均分成2队,可以算出一共有多少人、(2)45×2=90(人)
这样算得的结果和题里的已知条件相同,说明解答正确。
三、巩固。完成教科书第103页的做一做题目。
四、作业。做练习二十三的第1-4题。
(3)归一应用题
教学内容:教科书第107页、109页上的内容,练习二十四的第1、2、4题。
教学目的:使学生初步掌握正、反归一应用题的数量关系、结构特征及解题关键,学会用综合算式解答正、反归一应用题,逐步培养学生的分析和解答应用题的能力。
教学重点:掌握正、反归一应用题的数量关系、结构特征。
教学难点:用综合算式解答正、反归一应用题。
教学关键:逐步培养学生的分析和解答应用题的能力。
教学过程
一、复习。
1、设问。我校开展读书活动,添置一批书架,要买这样的5个需要多少元?这道题能解答吗?为什么?(要求买5个书架需要多少元,就是求总价,必须知道单价和数量,数量题目已经告诉我们了,单价却没有告诉,所以不能解答。)
2、解答下面各题,并说出题中的数量关系。
(1)书架每个25元,买5个要用多少元?(已知单价和数量求总价,就用单价乘以数量。)
(2)书架每个25元,200元可以买多少个书架?(已知单价和总价求数量,就用总价除以单价。)
3、求下列问题,需要知道哪两个条件?
(1)3小时行多少千米?(每小时行多少千米与行了几小时)
(2)需要几小时完成?(做多少个零件与每小时做多少个)
二、新授。
1、引言。复习题中第1小题书架的单价已经直接告诉我们,现在老师把它改为间接条件,变为两步计算应用题,这就是要学习的新内容例3。
上一阶段,我问学习了连乘,连除应用题,今天学习的例3又不同于这两类应用题的乘、除两步计算应用题。
2、教学例3。学校买3个书架,一共用75元。照这样计算,买5个书架要用多少元?
(1)读题,审题。
①摘录条件和问题:
3个书架共用--75元
5个书架--?元
②训练学生根据摘录的条件和问题复述题意。
结合复述题意说明照这样计算的意思是每个书架按照同样的价钱计算。
(2)画线段图示意并分析题意。
3个书架用75元,用线段图表示。
买5个书架用多少元,要用另一条线段表示:
接着,引导学生看线段图进行分析:
①要求买5个书架要用多少元,必须知道哪两个条件?(要求总价必须知道单价与数量。)
③已知数量买5个,所以应先求什么?(单价)
③怎样求出单价?
议论后,让学生在黑板上的第一条线段图上标出问题。
(3)分步列式解答:
①每个书架多少元?75÷3=25(元)
②5个书架多少元?25×5=125(元)
答:买5个书架要用125元。
分步列式计算后,让学生在黑板上画的第二条线段图上标出总价。
(4)引导学生列综合算式解答,并说出每步算式表示的意思。
75÷3×5
=25×5
=125(元)
(5)让学生检验计算结果是否正确。
3、练习:第107页上做一做题目。
小结:从以上的例题与做一做题目可以看到,今天学习的解题方法是:根据前两个已知条件用平均分方法来出单位数量,即每份数、(具体地说,例题中的1个书架多少元?做一做题目中的1小时行多少千米?)然后以它为标准(照这样计算)再用乘法求出有几个这样的单位数量是多少。
4、教学例4。学校买3个书架,一共用75元。照这样计算,200元可以买多少个书架?
(1)读题,审题。①摘录条件和问题:
3个书架共用--75元
?个书架--200元
②训练学生根据摘录的条件和问题复述题意。
(2)指导画线段图。
可让学生利用例3的线段图来改画。其中第一条不变,擦去第二条上的分段点;将5个书架的5用?替换,?元的?用200元替换。然后引导学生想,200元买的书架要多一些,所以第二条线段要加长一些,要成为:
(3)引导学生看线段图分析,同时在第一条和第二条的线段图上分别标上所求的问题。
思考:要求200元可以买多少个书架,要先算什么?
①每个书架多少元?75÷3=25(元)
③200元可以买多少个书架?200÷25=8(个)
答:200元可以买8个书架。
用综合列式:注意为什么要加上小括号?(要改变其运算顺序,必须加上小括号。)
200÷(75÷3)
=200÷25
=8(个)
(4)让学生说说怎样检验计算结果是否正确。
5、引导比较例
3、例4的相同点和不同点。
(1)相同点:两道题的前两个已知条件完全相同。解题的第一步都是除法求出一个单位数量是多少?(一个书架多少元。)
(2)不同点:两个例题中的第三个条件和问题不同。例3求出一个单位数量是多少后,用乘法来出所求的问题;例4求出一个单位数量是多少后,用除法求出所求的问题。
三、巩固。完成教科书第108页上的做一做题目。
(1)读题,解析照这样计算。
(2)学生独立做题:先分步列式,再列综合算式。
四、总结。今天,学习的例
3、例4及两道做一做题目中,都有一个共同的特点:第一步用除法求出一个单位数量是多少,(如例
3、例4的求一个书架多少元)然后以这个单位数量为标准,(即题中的照这样计算)根据题目的要求用乘法或除法求出所要求的问题。有这样解题特征的应用题,通常是叫做归一应用题。
五、作业。做练习二十四的第1、2、4题。
第五篇:连乘连除应用题
连乘连除、乘除混合运算应用题:
1、幼儿园买来3箱毛巾,每箱2条,每条5元,一共多少元?
2、学校门口摆放着2行月季花,每行6盆,如果重新摆放,每行3盆,能摆几行?
3、有2箱矿泉水,每箱有8瓶,如果把这些矿泉水分给4个班,平均每个班分几瓶?
4、同学们在门口摆了6排月季花,每排3盆,摆了9盆蝴蝶花,月季花的盆数是蝴蝶花的几倍?
5、有24瓶水平均分给4组小朋友,每组有3人,平均每人几瓶水?
6、同学们排队做操,每6人一组,可以分成6组,每9人一组,可以分成几组?
7、学校买了3盒钢笔,每盒8支,分给6位老师,每个老师分几支?
8、一些水果分给6个小朋友,每个小朋友分2个,如果分给4个小朋友,每个小朋友分几个?
9、小丽5分钟做20道题,小明3分钟做15道题,谁做的快?