第一篇:浅谈初中几何证明入门教学的有效策略
浅谈初中几何证明入门教学的有效策略
几何证明对初中生来说普遍认为难学,同时任课教师也认为几何证明比较难教。倘若任课教师在教学的过程中稍有不注意,就会导致学生两极分化,小部分学生学得很好;大部分学生学得很糟糕,以致于丧失学习几何的兴趣和信心。本人在七年级的几何教学中发现,学生刚学习几何,头脑中形的概念特别差,适应不了初中几何题目对抽象思维能力的要求。以下是我从学生在课堂、作业以及测试中表现出来的问题进行了分析归纳,发现学生学习几何存在以下几个问题:
1、不会读图、画图。不会由有关图形联想到相关的数量关系,挖掘隐含条件,比如对等角相等。不会画出几何图形帮助理解题意。
2、几何语言表述不清楚。几何讲究思维严密性,而学生在练习、作业时,几何语言表述比较随意,甚至颠三倒四。
3、几何逻辑推理能力差。学生对数学定义、定理、公理、判定、性质、法则等理解肤浅,全凭感性认识,思维不严谨,推理不严密,不知道由已知条件推导出什么结论,或者,每一个结论的依据是什么。
4、书写几何证明过程不清晰。面对几何证明题无从下手,不知道先写哪一步后写哪一步,哪些步骤该写,哪些步骤可以省略,最终导致关键步骤缺失。
针对学生学习几何的以上困难,我认为,教师在几何入门教学时应转变教学思路,把严密的逻辑推理和合情推理有机的结合起来,通过猜想、观察、归纳等合情推理,让学生树立对几何学习的自信心理。要加强学生画几何图形的能力,结合图形理解运用。要根据已知条件以及与其有关的定理作辅助线或者进行逆向思维,从结论出发,结合已知条件缺什么补什么。教师是学生学习过程中的引导者,至此在教学过程中我主要围绕以下几个方面去开展教学:
1、注重培养读图、画图能力
首先要求学生掌握基本图形的画法,如作一条线段等于已知线段、作一个角等于已知角、作角的平分线、作线段的垂直平分线。其次,要求学生根据文字描述画出几何图形。观察图形时,指导学生对图形进行拆分,把一个复杂的图形分成几个简单的图形来处理,从而提高识图能力。充分利用教材编排特点:量一量、摆一摆、画一画、折一折、填一填培养学生的动手动脑能力。
2、加强几何语言表达训练及定义、定理的理解
结合图形让学生掌握直线、射线、线段、角的多种表示方法,认真理解数学定义、定理、公理、判定、性质,用简单的符号表达出因果关系。几何推理证明要应用定义、定理,所以对定义、定理的理解至关重要,其次就是应用定义、定理。
3、重视几何学习的逻辑推理过程及书写
要解决几何的证明问题,就要学会逻辑推理。几何证明过程的描述,是初学几何的学生很难入门的事情。在教学时着重于方法的指导,如“执果索因”的分析方法,让学生从结果入手,逐层剥笋,寻找原因,找到源头,明白已知条件的用处,然后再由条件到结论,把过程写出来。再如“据因寻果”的分析法,让学生从已知条件出发,根据条件寻找结论,逐渐
第二篇:初中几何入门教学
初中几何入门教学
学生学习几何学得好与否,与教师对几何入门的教学有着最直接的联系。我们教师在教学的过程中倘若稍有不注意,就会导致学生的成绩两极分化,以致使学生丧失学习几何的兴趣和信心。相反,如果教师处理得当,不仅会引起学生学习数学的浓厚兴趣,还可以培养学生解决和分析问题的能力。适应不了初中几何题目对抽象思维能力的要求,但是几何证明、计算题在升学考试中又占有相当高的比重,这就需要学生真正领会与掌握。往往在不同的已知条件、图形的情况下,有截然不同的解法,也需要学生具备敏锐的观察能力和一定的逻辑推理能力。以下是我从学生在课堂、作业以及测试中表现出来的问题进行了分析归纳,发现学生学习几何存在的几个困难之处:
1.逻辑推理过程有一定的难度。学生对数学定义、定理、公理、判定、性质、法则等理解肤浅,全凭感性认识,思维不严谨,推理不严密,不会灵活运用它来解决或证明一些数学问题,以至于无法形成较好的逻辑推理能力。
2.语言表述方面的困难。几何讲究思维严密性,往往过分专业而严密的叙述要求使学生无法逾越语言表述的障碍,仿佛就像一座无法逾越的“城墙”。
3.证明过程及分析条理的困难。面对几何证明题无从下手,不知道哪些步骤该写,哪些步骤可以省略,最终导致关键步骤缺失。4.解图能力的困难。针对于一些复杂的图形看成是由一些简单图形组合而来的。不会由有关图形联想到相关的数量关系,挖掘隐含条件。
5.结合实际生活的能力。几何来源于生活,在生活中几何无处不在,学生学习时不善于与周围实际生活联系起来展开丰富想象。
教师对入门教学的成败,对学生学习几何知识,起着特殊作用。因此几何入门的教学在几何教学中占有很重要的地位,值得我们教师认真去探索。针对学生学习几何的以上困难,我认为,教师在几何“入门”教学时应转变教学思路,把严密的逻辑推理和合情推理有机的结合起来,通过猜想、观察、归纳等合情推理,让学生消除对几何学习的恐惧心理。要在数学活动中来学习几何,即“做数学”。还要加强学生探究性学习,结合图形理解运用。读图、识图要遵循由简到繁的规律,先从简单的图形开始,逐步向复杂的图形过渡。作辅助线要根据已知条件以及与其有关的定理作辅助线或者进行逆向思维,从结论出发,结合已知条件缺什么补什么。教师是学生学习过程中的引导者,至此在教学过程中我认为要始终坚持做到以下几点:
一、教师本身熟透教学目标和教学重点。
如果不精通教材,对教学目的要求把握不好,那么,在教学过程出现盲目性,这样,教学效果肯定不理想,更谈不上达到什么教学目的,所以,教者应该知道每一部分内容应该教给学生什么知识。学生对这部分内容的知识应该掌握到什么程度才算是达到教学目的。如在讲同位角、内错角、同旁内角的概念时,可以从这些角产生的过程入手,根据„三线八角‟并对其具有的特殊位置关系的角加以命名。在教学中不必给出严格的定义,重在会认。
二、注意培养学生学习几何的兴趣
初中数学从研究数式到研究图形,从数式计算到逻辑推理,是一个大的飞跃。所以初学平面几何的学生会遇到各种障碍。激发学生学习几何的兴趣,是几何入门教学的一个重要环节。为此在刚开始几何教学中,我常常拿一些实物教具,如:三角板、圆规等进行线、角教学,消除学生对几何的陌生感、恐惧感,然后精心设计一些实例,说明几何知识及图形在实际生活中的应用。如:飞机螺旋桨的外端连接是什么?为什么利用勾股定理可以计算一些边长等等?。这样充分利用几何本身的趣味性和实用性,改变几何教学枯燥无味的现象,形成积极的学习态度,形成良好的学习循环,同时也培养了学生的直觉思维能力。
三、注意几何学习方法指导
正确地认识图形,是学好几何的基础,通过看、说、写、画训练,不仅加深对概念理解,同时培养学生的语言表达能力;培养学生预习的学习习惯,摘出重点,标出难点,提出疑点,理清知识的前后联系,带着问题去听课,得到事半功倍的效果;适当地组织课堂讨论,让学生就某个问题发表自己的见解,充分发挥学生的积极性和创造性。如“平角是一条直线”对吗?“直角就是90°对吗?通过讨论,使学生加深对概念的理解,明确了直线与平角,直角与度数的区别与联系;运用多媒体教学手段,让图形“动”起来,即使学生受到新奇的感官刺激,又可以更恰当、更有效地展示教学中的变化规律,让学生充分享受发展的乐趣。
四、重视几何基本概念教学,引导学生掌握好几何概念。
重视基本概念的教学,是数学科教学的总要求,但对几何教学而言,还有其特殊的意义和特定的要求,几何概念大致可分为三类。第一类是既不加定义,也不给予解释的概念,如“延长…… ”, “在……之上”等等。这类概念要求在教学过程中要注意多次重复,使学生通过潜移默化学会使用,并能正确表达和应用于画图。第二类是有所定义,但涉及内容较少的概念,如“全等三角形的对应角”“同位角”“多边形”等,这类概念在教学过程中要注意引导学生正确掌握这些概念的实质,既知道是如何从具体实例中抽象出来,又能够灵活运用。第三类是有准确的定义,涉及内容较多,而且还具有判定作用或性质作用的概念,如“直线的平行”“等腰三角形”等等,这类概念特别重要,在教学过程中既要重视这些概念的意义的讲解,又要重视用图形语言、几何符号来表示这些概念,使学生能够牢固掌握好它。
五、举一反三是学习几何的策略
推理论证是提高学生分析问题,解决问题能力的重要手段,因此,从开始就应加强推理基本训练,注意教给学生正确的分析方法。从“已知”入手,由已知条件可以推出哪些结果?从“求证”入手,若要求得到结论需要具备什么条件?从教材的基本例题,习题出发,适当地改变题目的条件和结论,从而引出一系列新的问题,激励学生自己去分析、去探索、去证明,创设一个思维境地,独立完成证明,从而提高学生的解题水平,真正入门。
六、重视几何语言的教学,引导学生掌握好几何语言
几何语言极为规范、严谨,按其叙述方法可分为文字语言和符号语言。按用途可分为描述性语言,推理语言和作图语言。对于文字语言,在教学过程中要力求生动、形象、准确,通过教者示范,使学生掌握“所有”“延长”“连接”“截取”“对应”“在……之上”等等述语的用法。符号语言是推理论证的基础,在教学过程中要注意引导学生将重要概念公理、定理,推论符号化,通过范句、范例培养学生使用符号语言规范化,并进行文字语言和符号语言互释互译的练习,循序渐进地进行教学,学生才能掌握好几何语言,并不断地提高几何语言的表达水平。
七、注意培养学生画图、看图、识图的能力
图形是几何知识的重要组成部分之一。也是学生学好几何知识要克服的难点之一,因此,在教学过程中教者不仅教会学生具体画图方法与画图技巧,使学生根据文字语言熟练画出几何图形,还要知道画图时不能用特殊几何图形来表示一般几何图形,如,不能将任意三角形画成等腰三角形或等边三角、等腰三角形不能画成等边三角形等。同时,要分清实线、虚线的用法。此外,要注重培养学生的看图、识图能力。例如,能分清如图(1)中有几个角,图(2)中有多少个三角形,等等。
总而言之,把握好几何入门教学,引起学生的浓厚学习兴趣,激发学生内在求知欲望,让学生掌握好几何的基本概念和几何语言,培养好学生的 画图、看图、识图能力和逻辑推理能力,能为学生学好几何知识创造一个良好开端。
第三篇:谈初中几何证明题的入门
谈初中几何证明题的入门
l初一了,学生开始从实验几何向论证几何过渡。在之前,虽然学过一部分,但没有格式上的特殊要求,只要能看懂图形,根据图形回答问题,也就是说初一是学生学习几何的关键期。要学好几何证明题,关键是顺利闯过几何证明题入门这一关。如果能把握好了这一步,就可以顺利地进行几何这门学科的学习。那么,怎样才能使学生过好这一关呢?
一、强心理攻势——闯畏难情绪关
初
一、初二学生的年龄,一般都在十三、十四岁左右,从心理学角度来看,正是自觉思维向逻辑思维的过度阶段。因此,几何证明的入门,也就是学生逻辑思维的起步。这种思维方式学生才接触,肯定会遇到一些困难。从自己多年的教学实践来看,有的学生在这时“跌倒了”,就丧失了信心,以至于几何越学越糟,最终成了几何“门外汉”。但有的学生,在这时遇到了一些困难,失败了,却信心十足,不断地去总结,认真思考,最后越学越有兴趣。2008学年当我接班伊始,我就注意到那个坐在教室中间的小周:虽然她平时上课能安静听讲,但是集中注意力时间很短,记忆能力也特别差,当老师提问她时,总是羞涩地低下头,默不作声。她经常偷工减料地写作业,对自己的要求也不高,所以她数学总分只有30多分。我想自己一定要努力改变这一情况,共同寻找一条适合她的教学之路。
通过与她谈心,让她意识到几何证明题是学习几何的入门,是学生逻辑思维的起步。“你和同学们同时开始学习几何,相信自己的能力,只要上课认真听讲,在学习过程中不断地总结经验,有不懂的,有疑问的及时问老师,相信自己的能力,同时也是证明自己不比别人差的一个最好的机会。”“不管在什么情况下,老师做到有问必答,也保证不会有任何批评的话。老师相信在你自己的不断总结和尝试下,在几何证明这一块上不会输于任何一个学生。”我让其明白初
一、初二正是学习几何证明的一个契机,只要能学好,代数部分也会有所提高,更何况她的前一阶段的数学成绩在个人的努力下还是有所提高,说明思维能力还是比较强的。通过谈心她表示愿意克服困难,和大家一起学习几何证明。当她有进步后,及时地给予表扬。“你做得真好,继续努力!”“虽然有点小问题,但有进步,加油!”在交上的作业中,总是给予点评,写些鼓励的语言。在不断的鼓励和帮助下,学习逐渐有了信心,学习成绩在逐步提高。
二、小梯度递进——闯层层技能关
学好几何证明,起步要稳,因此要求学生在学习几何时要扎扎实实,一步一个脚印,在掌握好几何基础知识的同时,还要培养学生的逻辑思维能力。
1、牢记几何语言
几何证明题,要使用几何语言,这对于刚学几何的学生来说,仅当又学一门“外语”,并努力尽快地掌握这门“外语”的语言使用和表达能力。
首先,从几何第一课起,就应该特别注意几何语言的规范性,要让学生理解并掌握一些规范性的几何语句。如:“延长线段AB到点C,使AC=2AB”,“过点C作CD⊥AB,垂足为点D”,“过点A作l∥CD”等,每一句通过上课的教学,课后的辅导,手把手的作图,表达几何语言;表达几何语言后作图,反复多次,让学生理解每一句话,看得懂题意。其次,要注意对几何语言的理解,几何语言表达要确切。例如:钝角的意义是“大于直角而小于平角的叫钝角”,“大于直角或小于平角的角叫钝角”,把“而”字说成了“或”字,这就是学习对几何语言理解不佳,造成的表达不确切。“一字之差”意思各异,在辅导时,注重语言的准确性,对其犯的错误反复更正,做到学习之初要严谨。
2、规范推理格式
数学中推理证明的书写格式有许多种,但最基本的是演绎法,也就是从已知条件出发,根据已经学过的数学概念、公理、定理等知识,顺着推理,由“已知”得“推知”,由“推知”得“未知”,逐步地推出求证的结论来。这种证题格式一般叫“演绎法”,课本上的定理证明,例题的证明,多数是采用这种格式。它的书写形式表达常用语言是“因为„,所以„”特别是一开始学习几何证明,首先要掌握好这种推理格式,做到规范化。如:在平行线性质的教学中,开始以填空的形式填写,图1:因为∠1=∠2(已知)
所以 a∥b()
其后把图形复杂化
图2:因为∠DAB=∠B(已知)
所以DE∥BC()
改变填空的形式
因为____________(已知)
所以DE∥BC()
通过反复、不同形式的填写,让学生掌握基本性质的表达格式,体会图形与题目存在的依存关系。同时通过从定义、性质、判定出发,由简到难,逐步深入,让学生提高对几何证明的信心。
3、积累证明思路
“几何证明难”最难莫过于没有思路。怎样积累证明思路呢?这主要靠听讲,看书时积极思考,不仅弄明白题目是“如何证明?”,还要进一步追究一下,“证明题方法是如何想出来的?”。只有经常这样独立思考,才会使自己的思路开阔灵活。随着证明题难度的增加,还要教会学生用“两头凑”的方法,即在同一个证明题的分析过程中,分析法与综合法并用,来缩短已知与未知之间的距离,在教学安排时,要给其足够的时间思考,而且重复证明思路,提高对解题思路的理解和应用能力。例如:在教授平行线和角平分线的关系时,设置了不同的例题:
如图3:已知BE平分∠ABC,∠DBE=∠DEB.求证:DE∥BC
通过讲解,要求学生仿写一遍,总结思路,形成”角平分线和等量代换可以证明平行线"的思想,之后,又共同完成与上面例题相仿的变式练习:
如图4:已知△ABC中,AD平分∠BAC,AE=DE.求证: DE∥BC.经过学生之间的互学互教进一步掌握方法和解题格式,再通过变式训练达到本课的教学要求。
通过反复操练解题思路,在注重解题格式的要求下,每个学生在每一堂课上积累一个解题思想,学到一点新知识,都有所收获增强对学习几何的信心。
4、培养书写证明过程中的逻辑思维能力
有的学生写出的证明过程,条理清楚,逻辑性强,但有的学生写出的证明过程逻辑混乱,没有条理性,表达不清楚,这种情况,就是在平时的教学中,没有注意培养学生的逻辑思维能力。
首先,一开始学习几何,一定要在书写证明过程中逐步培养学生的逻辑思维能力。强调由哪个条件才能得出什么结论,不要根据初三数学对几何证明的要求,忽略中间的条件的描
述。例如在三角形全等的几何证明中,如图,AC∥DE,AC=DE,BD=FC.说明△ABC≌△EFD.解:因为AC∥DE(已知)
所以∠ACB=∠EDF(两直线平行,内错角相等)(第一段)
因为BD=FC(已知)
所以BD+DC=FC+DC(等式性质)
即BC=FD(第二段)
在△ABC和△EFD中
AC=DE(已知)
∠ACB=∠EDF(已证)
BC=FD(已证)
所以△ABC≌△EFD(S.A.S)(第三段)
在描述中不要漏了条件的大括号,判定依据等,检验在写的过程中是否符合所写的几何命题的格式等注意思维的严密性。
其次,在书写证明过程时,要逐步培养学生书写证明过程中的整体逻辑性,即通过分析,这个证明过程可分几大段来写,每一段之间的逻辑关系是什么?哪些段应先写,哪些段应后写。例如在上面的几何证明过程中,分成三大段,强调应先写第一段和第二段,第一段和第二段可以互换,第三段与第一段和第二段之间不能互换,提醒注意段与段之间的逻辑性,在搞清楚了这些之后,然后再分段书写证明过程,前面已证明的结论,在后面的证明过程中直接应用应把条件在写一次,体现其逻辑性。这样写出来的证明过程才条理清楚,逻辑性强。
三、善于总结经验——把好思维总结关
随着几何课程的进展,几何证明题的内容和难度都会不断地增加。因此,学习了一段之后,要回顾一下,看看已学了哪些知识点?自己在审题,推理、思路分析,证明过程等的书写方面掌握了没有,熟练的程度如何?如果在某些方面掌握得还不很好,就要在该方面多作一些练习,多想多问,使自己达到即熟练,又会“巧用”的程度。
例如在经过一个星期的几何证明学习后,每个星期出好一份与前一阶段讲课内容一致的练习题,通过学生的答题了解学生的掌握情况,在试卷分析的时候着重对思维能力较强的,学生错的较多的问题进行讲解,同时通过小组之间的合作,互相说出解题思路和错误的原因,不断的地找出自己在解题过程中的问题,总结前一阶段学习中的几何证明推理和思维上存在的问题,使下一阶段的学习更优化。
总之,如果以上过程都一步一个脚印地走好了,那么你就会很轻松地进入几何证明学习的大门,在几何证明的王国里遨游。我始终坚持帮助学生闯过畏难心理,坚信每一个孩子都是拥有巨大的潜能,永不放弃一个学生。我反复把握关键点,反复指导学生,让他们体会学习数学的乐趣,获得成功的喜悦。我相信只要时刻关注学
第四篇:初中几何证明练习题
初中几何证明练习题
1.如图,在△ABC中,BF⊥AC,CG⊥AD,F、G是垂足,D、E分别是BC、FG的中点,求证:DE⊥FG
2.如图,AE∥BC,D是BC的中点,ED交AC于Q,ED的延长线交AB的延长线于P,求证:PD·QE=PE·QD
求证:PAC~PDB
3.如图,已知点P是圆O的直径AB上任一点,APCBPD,其中C,D为圆上的点,O B
P
4.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG 求证:S△ABCS△AEG
5.已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
6.设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q. 求证:AP=AQ.
7、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:
设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.
求证:AP=AQ.
8.设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD
9.如图,⊙O中弦AC,BD交于F,过F点作EF∥AB,交DC延 切线EG,G为切点,求证:EF=EG
10.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接BE,CG 求证:
(1)BE=CG(2)BE⊥CG
11.如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.
求证:四边形A2B2C2D2是正方形.
A
2CB2
A
1DD
C
12.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE
M、N、P、Q分别是EG、GB、BC、CE的中点 求证:四边形MNPQ是正方形
第五篇:初中几何证明口诀
初中几何证明口诀
三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。图中有角平分线,可向两边作垂线。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦