第2章有理数复习教案

时间:2019-05-15 07:28:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《第2章有理数复习教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《第2章有理数复习教案》。

第一篇:第2章有理数复习教案

第一章 有理数复习

教学目标:

1:识记有理数的基本概念;

2:能够运用相关基础知识,解决简单的数学问题;

教学重难点:

有理数的基本概念

教学过程:

(一)有理数的基本概念 一负数

1、正数:大于0的数叫做正数。

2、负数:在正数前面加上负号“-”的数,比0小的数叫做负数。3、0:既不是正数也不是负数,是正数和负数的分界。二:有理数:整数和分数统称有理数。

有理数的两种分类

随堂练习

把下列各数分别填在相应的括号内.1221-,13,-2,+6,0,0.8,3,-4.2.274正数:{负数:{正整数:{正分数:{负整数:{负分数:{,„};,„};,„};,„};,„};,„}.

三:数轴:规定了原点、正方向和单位长度的直线叫做数轴。1)在数轴上表示的两个数,右边的数总比左边的数大; 2)正数都大于0,负数都小于0;正数大于一切负数; 3)所有有理数都可以用数轴上 的点表示。随堂练习填空题:

①比-3大的负整数是_______;

②已知m是整数且-4

③有理数中,最大的负整数是__,最小的正整数是__。最大的非正数是__。

④与原点的距离为三个单位的点有__个,他们分别表示的有理数是__和__。

四:相反数

绝对值相等,只有符号不同的两个数叫做互为相反数。其中一个是另一个的相反数。

数a的相反数是-a,(a是任意一个有理数);

0的相反数是0.若a、b互为相反数,则a+b=0.随堂练习

1、-5的相反数是 ;-(-8)的相反数是 ; 0的相反数是 ;a的相反数是 ;的相反数的倒数是___;

2、若a和b是互为相反数,则a+b=()A.–2a B.2b C.0 D.任意有理数

3、用-a表示的数一定是()A.负数 B.正数

C.正数或负数 D.正数或负数或0

4、一个数的相反数是最小的正整数,那么这个数是()A.–1 B.1 C.±1 D.0

5、①在一个数前面添上“-”号,它就成了一个负数()

②只要符号不同,这两个数就是相反数()

五:绝对值

数轴上表示数a的点与原点的距离叫做数a的绝对值。记做|a|。

1)数a的绝对值记作︱a︱;

若a>0,则︱a︱=;2)若a<0,则︱a︱=;若a =0,则︱a︱=;3)对任何有理数a,总有︱a︱≥0

1、-2的绝对值表示它离开原点的距离是___ 个单位,记作.2、|-8|= ;-|-5|= ;

3、绝对值等于4的数是_______。

4、绝对值等于其相反数的数一定是()A.负数 B.正数

C.负数或零 D.正数或零

“=”).5、1)绝对值小于2的整数有________。

2)绝对值等于它本身的数有___________。

3)绝对值不大于3的负整数有__________。

六:有理数大小的比较:

1)数轴比较:

在数轴上的两个数,右边的数总比左边的数大;

正数都大于0,负数都小于0;正数大于一切负数;

2)两个负数,绝对值大的反而小。

即:若a<0,b<0,且︱a︱>︱b︱, 则a < b.随堂练习。

七:小节。

八:作业P72 2-4题

1、实数a、b在数轴上对应点的位置如图2-1所示,则a________b(填“<”“>”或

第二篇:第一章 有理数复习课教案

第1章 有理数复习教案

一.学习目标

1.能正确掌握数的分类,理解有理数、数轴、相反数、绝对值、倒数五个重要概念。2.掌握有理数的加、减、乘、除、乘方的运算法则,能进行有理数的加、减、乘、除、乘方的运算和简单的混合运算;

3.养成“言必有据、做必有理、答必正确”的良好思维习惯。增进“应用数学知识解决实际问题的数学思想。

二.知识重点:

绝对值的概念和有理数的运算(包括法则、运算律、运算顺序、混合运算)是本章的重点。

三.知识难点:

绝对值的概念及有关计算,有理数的大小比较,及有理数的运算是本章的难点。四.考点:

绝对值的有关概念和计算,有理数的有关概念及混合运算是考试的重点对象。五.教学过程 一.知识梳理:

(一)、有理数的基础知识

1、三个重要的定义:

(1)正数:像1、2.5、这样大于0的数叫做正数;(2)负数:在正数前面加上“-”号,表示比0小的数叫做负数;(3)0即不是正数也不是负数。

2、有理数的分类:

(1)按定义分类:(2)按性质符号分类:

正整数正整数正有理数整数0正分数负整数有理数有理数 0负整数正分数分数负有理数负分数负分数

3、数轴

数轴有三要素:原点、正方向、单位长度。画一条水平直线,在直线上取一点表示0

任何数与0相乘都得0。

(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac。

(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。

4、有理数的除法

有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0。

5、有理数的乘法

(1)有理数的乘法的定义:求几个相同因数a的运算叫做乘方,乘方是一种运算,是几个相同的因数的特殊乘法运算,记做“a”其中a叫做底数,表示相同的因数,n叫做指数,表示相同因数的个数,它所表示的意义是n个a相乘,不是n乘以a,乘方的结果叫做幂。

(2)正数的任何次方都是正数,负数的偶数次方是正数,负数的奇数次方是负数

6、有理数的混合运算

(1)进行有理数混合运算的关建是熟练掌握加、减、乘、除、乘方的运算法则、运算律及运算顺序。比较复杂的混合运算,一般可先根据题中的加减运算,把算式分成几段,计算时,先从每段的乘方开始,按顺序运算,有括号先算括号里的,同时要注意灵活运用运算律简化运算。

(2)进行有理数的混合运算时,应注意:一是要注意运算顺序,先算高一级的运算,再算低一级的运算;二是要注意观察,灵活运用运算律进行简便运算,以提高运算速度及运算能力。

二、典型例题

例题1:将下列数分别填入相应的集合中:

n

正数集合:{ } 整数集合:{ } 分数集合:{ } 负数集合:{ }

三.课堂练习

1.计算2(24)所得的结果是()4A、0 B、32 C、32 D、16 2.有理数中倒数等于它本身的数一定是()A、1 B、0 C、-1 D、±1 3.若x1y2,则xy=()A、– 1 B、1 C、0 D、3 4.有理数a,b如图所示位置,则正确的是()

A、a+b>0 B、ab>0 C、b-a<0 D、|a|>|b| 5.(– 5)+(– 6)=___;(– 5)–(– 6)=___;(– 5)×(– 6)=___;(– 5)÷6=___。

1114124____;32____ _。6.2____;2=____;3 2792227.12002(1)2003_________;.计算(1)(2)(4)()(1)(2)2

四.课堂小结 五.课堂作业

把下列各数填在相应的大括号内:-3,+24123342()2 9332212,0.275,2,0,-1.04,-8,-100,-,32+3 473 负整数集合:{ „};正分数集合:{ „};负分数集合:{ „}

8、(157-+)×(-36)2912-5

第三篇:七年级数学有理数复习教案范文

倒数是;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.a

初一数学知识点总结

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么a的1第一章有理数 1.有理数:(1)凡能写成qp(p,q为整数且p0)形式的数,都是有理数。正整数、0、负整数统称整数; 正分数、负分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数; 正有理数正整数正整数(2)有理数的分类:

① 有理数正分数零

② 有理数整数零负整数 负有理数负整数正分数负分数分数负分数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)相反数的和为0  a+b=0  a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:a(a0)a0(a0)或aa(a0)a(a0)a(a0);绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.7.有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对

值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即a0无意义.13.有理数乘方的法则:

(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an

或(a-b)n=-(b-a)n , 当n为正偶数时:(-a)n =an

或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; 15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.混合运算法则:先乘方,后乘除,最后加减.『例题精讲』

【例1】计算下列各题:

(1)2340.251180.12538

(2)5753229142572514

【例2】绝对值不大于10的所有整数的和等于()

A.-10 B.0 C.10 D.20 【例3】已知a,b,c的位置如图,化简:|a-b|+|b+c|+|c-a|=______________

ac0b

【例4】(1)(141)(57

(2)(8.5)31(61188)(1.25)

33)112

【例5】对于任何有理数a,下列各式中一定为负数的是()

A.3a B.a C.a1 D.a1

【例6】a,b在数轴上的位置如图所示,则a,b,a+b,a-b中,负数的个数是()

a0b

A.1个 B.2个 C.3个 D.4个

【例7】两个数的差是负数,则这两个数一定是()

A.被减数是正数,减数是负数 B.被减数是负数,减数是正

C.被减数是负数,减数也是负数 D.被减数比减数小

【例8】如果a,b均为有理数,且b<0,则a,a-b,a+b的大小关系是()

A.a<a+b<a-b B.a<a-b<a+b C.a+b<a<a-b D.a-b<a+b<a

【例9】(1)812916599121641216

(2)1221111412161 121.『当堂反馈』式子-2-(-1)+3-(+2)省略括号后的形式是()

A.2+1-3+2

B.-2+1+3-2

C.2-1+3-2

【例10】若两个有理数的和与积都是正数,则这两个有理数()

A.都是负数 B.一正一负且正数的绝对值大 C.都是正数法确定

【例11】 a.b.c为非零有理数,它们的积必为正数的是()

A.a0,b.c同号 B.b0,a.c异号 C.c0,a.b异号 D.a.b.c同号

【例12】 已知|x|=3,|y|=2,且x•y<0,则x+y的值等于()

A.5或-5 B.1或-1 C.5或1 D.-5或-1 【例14】两个有理数的商为正,则()

A.和为正 B.和为负 C.至少一个为正 D.积为正数 【例15】用“>”或“<”填空

(1)如果abc0,ac0那么b _____ 0 ;(2)如果a0,bbc0那么ac_______0.【例16】计算:(1)(4)3(2)(2)4

【例17】 计算:(2)3(3)[(4)22](3)2(2)

D.2-1-3-2

2.计算41.6742.5之值为何()

A.-1.1 B.-1.8 C.-3.2 D.-3.9

.无3.下列判断:①若ab=0,则a=0或b=0;②若a2b2,则a=b;③若ac2bc2,则

ab;④若ab,则abab是正数.其中正确的有()

A.①④ B.①②③ C.① D.②③ 4.下列计算正确的是()

A.

121231

B.32231

C.631362D.11212005314 5.下列算式中:(1)0-(-3)=-3;(2)(-2)×|-3|=-6;(3)5÷ 15×5=5;(4)23=6,正确的个数有()A.4个 B.3个 C.2个 D.1个 6.已知|x|=0.19,|y|=0.99,且

xy0,则x-y的值为()A.1.18或-1.18 B.0.8或-1.18 C.0.8或-0.8 D.1.18或-0.8 7.计算:-2-(-3)+(-8)+42= ______;(2)计算:(122637)×(-42)= ________.D

第四篇:有理数及其运算复习课教案

有理数及其运算复习课教案

本资料为woRD文档,请点击下载地址下载全文下载地址

总课时:1课时

第1课时,备课时间:第十五周 上课时间:第十六周一、复习目标:

(一、)知识目标:1:理解五个重要概念:有理数、数轴、相反数、绝对值、倒数。

2:掌握四条法则:有理数的加、减、乘、除法则。

(二、)能力目标:1:会运用三条运算律进行有理数的简便运算。

2:初步领会有理数的两种方法(有理数大小的比较方法,平方表、立方表的查法)的作用。

3:进一步体验有理数的一个规定(有理数的混合运算的顺序规定)。

(三、)德育目标:1:使学生养成“言必有据、做必有理、答必正确”的良好思维习惯。

2:增进学生的“应用数学知识解决实际问题的数学思想。

二、重、难点:重点是有理数的混合运算,并能熟练地运用它解决简单的应用题。

难点是绝对值的应用。

三、教学过程

概念的系统化

负数的概念:初一学生由于受小学算术数的影响,容易遗漏负数,因此,准备以下判断题:

若一个数的绝对值等于5,则这个数是5。

若一个数的倒数等于它的本身,则这个数是1。

若一个数的平方等于4,则这个数是2。

若一个的立方等于它的本身,则这个数是0 或1。

数“0”的性质:因为0既不是正数,也不是负数,是正数和负数的分界线。给出下面的问题:

相反数是它本身的数是__。

绝对值是它本身的数是__。

正整数次幂是它本身的数是__。

不为0 的任何有理数的0次幂是__。

0与任何有理数相乘都得__。

运算律的应用:正确运用运算律可以使有理数计算简便。

把正、负数结合在一起;

把互为相反数结合在一起;

把同分母分数结合在一起;

把能凑整、凑0 的两个数结合在一起。

最容易出错的两个重要性质:绝对值和平方,可以提出以下例题:

有理数的绝对值总是什么数?

有理数的平方总是什么数?

若(a-1)2+(b+2)2=0,则a=__,b=__。

若|a-b|+|b-3|=0,则______。

|3-π|+|4–π|的计算结果是__________。

(6)已知:|x|=3,|y|=2,且xy<0,则x+y=__________。

实数在数轴上的对应点如图,a

0

b

化简a+|a+b|-|b–a|=___________。

(8)如果|x–3|=0,那么x=___________。

四、典型示例,科学归纳.例

1、指出下列各数的相反数、倒数、绝对值,并指出哪两个数互为相反数、互为倒数、绝对值相等;把各数分别表示在数轴上,并填在相应的集合里。

五、布置作业:试卷

第五篇:有理数的乘除法运算复习教案

有理数的乘除法

一、选择

1.如果两个有理数在数轴上的对应点在原点的同侧,那么这两个有理数的积()A.一定为正 B.一定为负 C.为零 D.可能为正,也可能为负

2.若干个不等于0的有理数相乘,积的符号()A.由因数的个数决定 B.由正因数的个数决定

C.由负因数的个数决定 D.由负因数和正因数个数的差为决定 3.下列运算结果为负值的是()A.(-7)×(-6)

B.(-6)+(-4);

C.0×(-2)(-3)D.(-7)-(-15)4.下列运算错误的是()A.(-2)×(-3)=6 B.1(6)3 2 C.(-5)×(-2)×(-4)=-40 D.(-3)×(-2)×(-4)=-24 5.若两个有理数的和与它们的积都是正数,则这两个数()A.都是正数 B.是符号相同的非零数 C.都是负数 D.都是非负数

6.下列说法正确的是()A.负数没有倒数 B.正数的倒数比自身小 C.任何有理数都有倒数 D.-1的倒数是-1 7.关于0,下列说法不正确的是()A.0有相反数 B.0有绝对值

C.0有倒数 D.0是绝对值和相反数都相等的数 8.下列运算结果不一定为负数的是()A.异号两数相乘 B.异号两数相除

C.异号两数相加 D.奇数个负因数的乘积 9.下列运算有错误的是()A.÷(-3)=3×(-3)B.131(5)5(2)

2 C.8-(-2)=8+2 D.2-7=(+2)+(-7)10.下列运算正确的是()A.33411;B.0-2=-2;C.41;D.(-2)÷(-4)=2 4322

二、填空

1.如果两个有理数的积是正的,那么这两个因数的符号一定______.2.如果两个有理数的积是负的,那么这两个因数的符号一定_______.3.奇数个负数相乘,结果的符号是_______.4.偶数个负数相乘,结果的符号是_______.5.如果41a0,b0,那么ab_____0.6.如果5a>0,0.3b<0,0.7c<0,那么bac____0.7.-0.125的相反数的倒数是________.8.若a>0,则aaa=_____;若a<0,则

a=____.三、解答 1.计算:(1)348;(2)

213(6);(3)(-7.6)×132213.2.计算.(1)8334(4)2;(2)84(4)(2);(3)834(4)(2).3.计算(1)112113111114151617;(2)112111111213131414.4.计算

(1)(+48)÷(+6);

(2)

213352;

(4)0÷(-1000).5.计算.(1)(-1155)÷[(-11)×(+3)×(-5)];(2)375÷2332;(3)13123(5)63(5).6.计算(1)111832;

(2)

81111339.0.5;(4)

(3)4÷(-2);答案

一、ACBBA,DCCAB

二、1.相同;2互异;3负;4正的;5.>;6.>;7.8;8.1,-1

三、1.(1)-6;(2)14;(3)-3.8;(4)8 2.(1)22;(2)2;(3)-48; 3.(1)1;(2)

4.(1)8;(2);(3)-2;(4)0 5.(1)-7;(2)375;(3)4 6.(1)14;(2)-240 23235816

下载第2章有理数复习教案word格式文档
下载第2章有理数复习教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人教版七年级上册数学有理数复习教案

    有理数 罗央央 【教学内容】 有理数、数轴和绝对值 【教学目标】 1.知识与技能:通过复习,帮助学生梳理有理数的知识要点及知识间的联系。 2.过程与方法:培养学生归纳、整理知识......

    《有理数》复习课说课稿

    《有理数》复习课说课稿 在座的各位评委:大家好 今天,我说课的题目是《有理数》复习课,这节课所选用的教材为北师大版义务教育课程标准七年级上册教科书。 一、教材分析 1、教......

    第一章有理数复习学案

    第一章有理数复习学案 篇一:第一章有理数复习学案(共三课时) 第一章有理数复习 教学目标: 1:识记有理数的基本概念; 2:能够运用相关基础知识,解决简单的数学问题; 3:掌握并会运......

    七年级上第1章有理数复习教案(5篇材料)

    第一章 有理数复习教学目标: 1:识记有理数的基本概念; 2:能够运用相关基础知识,解决简单的数学问题; 3:掌握并会运用有理数的运算规则和运算律进行计算。 教学重难点: 有理数的......

    有理数减法教案

    第二章 有理数及其运算 5.有理数的减法 时间:2017.09.20 备课组:数学组 一、学习目标: 1.理解掌握有理数的减法法则.2.会进行有理数的减法运算. 二、学习重点:有理数减法法则和运算......

    1.2 有理数 教案

    1.2 有理数 教案 以下是查字典数学网为您推荐的 1.2 有理数教案,希望本篇文章对您学习有所帮助。 1.2 有理数 1.掌握有理数的概念; 2.会对有理数按一定的标准进行分类; 3......

    第一章有理数教案

    课题:1.1正数和负数(第1课时) 一、教学目标 1.让学生经历从实际问题中抽象负数概念的过程,初步知道正数和负数的意义,培养学生抽象能力. 2.会读写正数和负数. 二、教学重点和难点......

    第一章 有理数教案

    第一章 有理数教案 教学目标 1.知识与技能 ①通过生活实例,了解有理数等知识是生活的需要. ②理解并掌握数轴、相反数、绝对值、有理数等有关概念. ③通过本章的学习,掌握有理数......