第一篇:n次方差的证明
n次方差公式的证明方法
n次方差公式:
anbn(ab)(an1an2ban3b2abn2bn1),nN
证法一:
anbnanan1ban1ban2b2an2b2.....abn1bn
an1(ab)an2b(ab).....bn1(ab)(ab)(a
证法二: n1an2b.....bn1)
b设等比数列an的通项公式为an,则其前n项和为:
a
nbnbb1b123n1nabbbaab(anbn)bb......nbaaaaba(ab)aa1a23n1n na(ab)bbbbb故:anbn......baaaaan (ab)an1an2ban3b2......abn2bn1
第二篇:样本方差证明
一弛,你好!
样本方差有2种表达方式:
S2
n1n(Xi)2-----(1)ni1
1n
Sn1(Xi)2-----(2)n1i12
从理论上说这2种定义都是可行的,现实生活中更经常使用方程(2),是因为方程(2)是总体方差真实值2的无偏估计量,而(1)是有偏估计量。无偏性在应用中非常重要,估计量只有无偏才能保证在样本数目足够大时无限趋近于真实值,估计才有意义。证明方程(2)的无偏性如下,思路是对估计量求期望,看是否等于总体方差:
n1E(Sn1)E[(Xi)2]n1i1
n1E{[(Xi)()]2}n1i1
nn12E{[(Xi)2(Xi)()n()2}n1i1i12
n1{E(Xi)22nE()2nE()2}n1i1
n1{E(Xi)2nE()2}n1i1
212{nn()}n1n
2
证毕。
如果有问题,可随时联系我。
祝好!
陈谢晟
第三篇:二项分布的期望与方差的证明
二项分布的期望与方差的证明
二项分布是概率统计里面常见的分布,是指相互独立事件n次试验发生x次的概率分布,比较常见的例子。种子萌发试验,有n颗种子,每颗种子萌发的概率是p,发芽了x颗的概率就服从二项分布。
如果还是迷茫,就听我说说故事,在古代,大概明末清初的时候,瑞士有个家族,叫伯努利家族,出了很多数学家,有一位叫詹姆斯·伯努利(James Bernoulli)的,比较喜欢做试验,他的试验有特点,是一系列的试验,没发生就是失败,而且每次的成功概率都是p,若果失败了就是q=(1-p),只有这两种情况,后来人们给了这除了成功就是失败的性质一个比较抽象的名称,叫相互对立事件。在这些试验中,每次得出的结果与其他次试验都不发生关系,同样人们也给了这种不发生关系的性质一个比较抽象的名称,叫相互独立事件,同时把这种试验叫做伯努利试验。在n次伯努利试验中,发生x次的概率满足二项分布。
如果令q=(1-p),那么很容易得出发生x次的概率为C{x,n}*p^x*q^(n-x),因为决定该分布的只有n、p,所以为了简单起见,人们把x服从n,p的二项分布记做x~B(n,p)。
现在的目标是计算二项分布的期望和方差,在网上寻找二项分布的期望和方差大都给一个结果,np、npq,很难找到它是怎么来的。好不容易查到,还是花钱才能看的,就那几步过程,有必要藏着盖着吗?今天我把过程写出来,让大家都了解了解,都是原创,互相学习,希望支持。
首先,不厌其烦地说一下期望与方差的关系,以便清晰思路。期望用E表示,方差用D表示,一般把自变量记做ξ,如果对于结果为ξ的概率为Pξ那么,其期望为Eξ=∑ξ*Pξ,方差为Dξ=∑(ξ-Eξ)^2*Pξ,另外还有一个常见的量叫做标准差,一般用σ表示,σξ=√Dξ,根据方差的概念,可知: Dξ=∑(ξ-Eξ)^2*Pξ
=∑(ξ^2+Eξ^2-2*ξ*Eξ)*Pξ
=∑(ξ^2*Pξ+Eξ^2*Pξ-2*Pξ*ξ*Eξ)
=∑ξ^2*Pξ+Eξ^2*∑Pξ-2*Eξ*∑Pξ*ξ 因为∑Pξ=1而且Eξ=∑ξ*Pξ 所以Dξ=∑ξ^2*Pξ-Eξ^2 而∑ξ^2*Pξ,表示E(ξ^2)所以Dξ =E(ξ^2)-Eξ^2 下面计算数学期望, Eξ=∑{ξ =0,n}ξ*C{ξ,n}*p^ξ *q^(n-ξ)
=∑{ξ =0,n}ξ*n!/ξ!/(n-ξ)!*p^ξ *q^(n-ξ)
=∑{ξ =1,n}n!/(ξ-1)!/(n-ξ)!*p^ξ *q^(n-ξ)
=n*p*∑{ξ =1,n}C{ξ-1,n-1}*p^(ξ-1)*q^(n-ξ)
=n*p*(p+q)^(n-1)=n*p
如果要计算方差,根据公式Dξ =E(ξ^2)-Eξ^2可得出结果,过程如下,Dξ =E(ξ^2)-Eξ^2
=∑{ξ =0,n}ξ^2*C{ξ,n}*p^ξ *q^(n-ξ)- n*p*∑{ξ =0,n}ξ*C{ξ,n}*p^ξ *q^(n-ξ)
=n*p*∑{ξ =1,n}ξ*(n-1)!/(ξ-1)!/(n-ξ)!*p^(ξ-1)*q^(n-ξ)- n*p*∑{ξ =1,n}ξ*C{ξ,n}*p^ξ *q^(n-ξ)
=n*p*∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*ξ*(C{ξ-1,n-1}-C{ξ,n}+C{ξ,n}*q)
=n*p*∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*ξ*[C{ξ,n}*q-(C{ξ,n}-C{ξ-1,n-1})]
=n*p*[∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*ξ*C{ξ,n}*q-∑{ξ =1,n-1}p^(ξ-1)*q^(n-ξ)*ξ*C{ξ,n-1}]
=n*p*[∑{ξ =1,n}p^(ξ-1)*q^(n-ξ)*n!/(ξ-1)!/(n-ξ)!*q-∑{ξ =1,n-1}p^(ξ-1)*q^(n-ξ)*(n-1)!/(ξ-1)!/(n-1-ξ)!]
=n*p*[∑{ξ =1,n}n*q*C{ξ-1,n-1}*p^(ξ-1)*q^(n-ξ)- ∑{ξ =1,n-1}(n-1)*q*C{ξ-1,n-2}*p^(ξ-1)*q^(n-ξ-1)]
=n*p*[n*q*(p+q)^(n-1)-(n-1)*q*(p+q)^(n-2)]
=n*p*[n*q-(n-1)*q]
=n*p*q
以上就是二项分布的期望与方差的证明,过程比较简单,就是一个思路,要想更深入的领悟,就须要自己亲自地证明一遍了,也许你的方法将会更简单……
第四篇:方差 教案设计
方差 教案设计
教学设计示例1 第一课时 素质教育目标(一)知识教学点
使学生了解方差、标准差的意义,会计算一组数据的方差与标准差.(二)能力训练点 1.培养学生的计算能力.2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力.(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯.2.渗透数学来源于实践,又反过来作用于实践的观点.(四)美育渗透点
通过本节课的教学,渗透了数学知识的抽象美及反映在图像上的形象美,激发学生对美好事物的追求,岣哐???STRONG数学美的鉴赏力.重点难点疑点及解决办法 1.教学重点:方差概念.2.教学难点 :方差概念.3.教学疑点:学生不易理解为什么要用方差去描述一组数据
第 1 页 的波动大小,为什么不可以用各数据与其平均数的差的来和来衡量这组数据的波动大小呢?为什么对各数据与其平均数的差不取其绝对值,而将其平方呢?对这些问题教师在剖析方差定义时要讲清楚.4.解决办法:教师要讲清方差,标准差的意义,即它们都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况.教学步骤(一)明确目标
前面我们学习了平均数、众数及中位数,它们都是描述一组数据的集中趋势的量,这节课我们将进一步学习衡量样本(或一组数据)和总体的另一类特征数方差、标准差及其计算.这种开门见山式引入课题,能迅速将学生的注意力集中起来,进入新课讲解.(二)整体感知
对于一组数据来说,我们除了关心它的集中趋势以外,还关心它的波动大小.衡量这个波动大小的最常用的特征数,就是方差和标准差.(三)教学过程
1.请同学们看下面的问题:(用幻灯出示)
第 2 页 两台机床同时生产直径是40毫米的零件,为了检验产品质量,从产品中各抽出10件进行测量,记录
教师引导学生做出表格,观察表里的数据和图,提出问题:怎样能说明在使所生产的10个零件的直径符合规定方面,哪个机床做得好呢? 对于这个问题,学生会马上想到计算它们的平均数.教师可把学生分成两级分别计算这两组数据的平均数.(请两名同学到黑板计算)计算的结果说明两组数据的平均数都等于规定尺寸40毫米.这时教师引导学生思考,这能说明两个机床做的一样好吗?不能!我们再观察上图(给学生充分的时间观察,找出左右两图的区别)从图中看到,机床甲生产的零件的直径与规定尺寸偏差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸偏差较小,比较集中在40毫米线的附近.这 说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).通过引例的学习,使学生理解为什么要研究数据波动的大小,为提出方差概念做好了准 备.第 3 页 2.方差概念
教师讲解,为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:
设在一组数据 中,各数据与它们的平均数 的差的平方分别是,那么我们用它们的平均数,即用
来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据方差越大,说明这组数据波动越大.教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解方差概念时,可能会提出疑问:为什么要这样定义方差?(教师说明,在表示各数据与其平均数的倔离程度时,为了防止正偏差与负偏差的相互抵消)为什么对各数据与其平均数的差不取其绝对值,而要将它们平方?(教师说明,这主要是因为在很多问题里,含有绝对值的式子不便于运算,且在衡量一组数据波动大小的功能上,方差更强些)为什么要除以数据个数n?(是为了消除数据个数的影响).在学生理解了方差概念之后,再回到了引例中,通过计算机床甲、乙两组数据的方差,再根据理论说明哪个机床做得更好.教师范解
从 知道,机床甲生产的10个零件直径比机床乙生产的10
第 4 页 个零件直径波动要大.这样做使学生深刻体会到数学来源于实践,又反过来作用实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.3.例1(用幻灯出示)已知两组数据: 甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7 乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1 分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名好学生到黑板计算.解:根据公式②(取),有
从 知道,乙组数据比甲组数据波动大.4.标准差概念
在有些情况下,需要用到方差的算术平方根
并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.教师引导学生分析方差与标准差的区别与联系:
计算标准差要比计算方差多开一次平方,但它的度量单位与原数据一致,有时用它比较方便.课堂练习教材P165中(1)、(2)(四)总结、扩展
知识小结:通过这节课的学习,使我们知道了对于一组数据,第 5 页 有时只知道它的平均数还不够,还需要知道它的波动大小;而描述一组数据的波动大小的量不止一种,最常用的是方差和标准差.方差与标准差这两个概念既有联系又有区别.方法小结:求一组数据方差的方法;先求平均数,再利用③求方差,求一组数据标准差的方法:先求这组数据的方差,然后再求方差的算术平方根.布置作业
教材P173中1,2(1)(2)板书设计 14.3 方差(一)方差公式③ 引例 例1 标准差公式④ 教学设计示例2
一、教学目的
1.使学生了解方差、标准差的意义,会计算一组数据的方差与标准差.2.使学生了解样本方差、样本标准差、总体方差的意义.二、教学重点、难点
重点:方差、标准差、样本方差、样本标准差、总体方差的意义.难点:样本方差、样本标准差的计算.三、教学过程
第 6 页 复习提问
计算一组数据的平均数有哪些方法? 引入新课
在很多实际问题中,只知道一组数据的平均数是不够的,还需要知道这组数据的波动大小.如何了解数据的波动大小?这正是我们要解决的问题.新课
引例 两台机床同时生产直径是40毫米的零件.为了检验产品质量,从产品中抽出10件进行测量,结果如下(单位:毫米):
表中数据表成如下形式:
可在此处让学生用公式②分别计算这两组数据的平均数(还可提问学生a取什么值最好,这样学生能在教师的启发下得到a=40最合适).当学生算出如下平均数:
让学生思考,两组数据的平均数都等于规定尺寸40毫米时,甲、乙两机床性能是否都一样好?提出问题让学生议议后,再引导学生看图1,让学生认识到机床甲生产的零件的直径与规定尺寸编差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸的偏差较小,比较集中在40毫米线的附近.这说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好.这反映出,对一组数据,除需要了解它们的平均水平以外,第 7 页 还常常需要了解它们的波动大小(即偏离平均数的大小).在此处要告诉学生:描述一组数据的波动大小,可以采用不止一种办法.本课介绍方差即是一种方法.即:
来衡量这组数据的波动大小,并把它叫做这组数据的方差.要强调一组数据方差越大,说明这组数据波动越大.条件许可时,还可介绍③式可表示为:
接下来可以请两个学生计算引例中机床甲、乙两组数据的方差.从0.0260.008可以比较出,机床甲生产的10个零件直径比机床乙生产的10个零件直径波动要大.(接下来教师再给出如下例题.)例1 已知两组数据: 分别计算这两组数据的方差.讲此例后,要强调求解步骤为:
(1)求平均数;(2)求方差;(3)比较方差得出结论.此后接前面问题说,用来衡量一组数据的波动的方法还可用一组数据的标准差,即
公式④(即标准差)也是用来衡量一组数据波动大小的重要的量.在本节引例中,两组数据的标准差,可让学生算一下,得出: 说明:计算标准差要比计算方差多开一次平方,但它的度量单位与原数据一致,有时用它比较方便.第 8 页 小结
1.本课学了计算一组数据的方差的公式③.2.本课在方差的基础上又学了计算一组数据的标准差的公式④.练习:选用课本练习题.作业 :选用课本习题.四、教学注意问题
要注意通过例题讲好求方差题目的解题格式.教学设计示例3
一、教学目的
1.使学生进一步理解方差、标准差的意义.2.使学生掌握利用简化公式计算一组数据的方差的方法.3.使学生会根据同类问题两组数据的方差(或标准差)比较两组数据的波动情况.二、教学重点、难点
重点:简化计算一组数据的方差公式.难点:利用方差(或标准差)比较两组数据的波动情况.三、教学过程 复习提问
1.什么是一组数据的方差、标准差? 2.一组数据的方差和标准差应如何计算? 引入新课
第 9 页 我们看到,用公式③计算一组数据的方差比较麻烦.那么,有否较简便的计算方法呢? 新课
教师应在黑板上进行如下推导:
推导上述公式后,可让学生仿①~④四个公式的方法归纳推理出如下结论:
一般地,如果一组数据的个数是n,那么它们的方差可以用下面的公式计算:
在这时,教师要强调:当一组数据中的数较小时,用公式⑤计算方差比公式③计算少了求各数据与平均数的差一步,因此比较方便.例2 计算下面数据的方差(结果保留到小数点后第1位): 3-1 2 1-3 3 教师可让学生共同来完成此例.接下来教师按教材指出,当一组数据较大时,可按下述公式计算方差:
其中x1=x1-a,x2=x2-a,xn=xn-a,x1,x2,xn是原已知的n个数据,a是接近这组数据的平均数的一个常数.为使学生对公式⑥加深印象,可让学生用公式⑥解下例.例3 甲、乙两个小组各10名学生的英语口语测验成绩如下(单位:分):
哪个小组学生的成绩比较整齐?
第 10 页 解后,指出解题步骤有如下三步:(3)代入公式⑥计算方差并比较得解.小结
1.本课介绍了当一组数据中的数值较小时,用以计算方差的简化计算公式⑤.2.本课又学习了当一组数据中的数值较大时,用以计算方差的简化公式⑥.练习:选用课本练习题.作业 :选用课本习题.补充作业
2.甲、乙两组数据的方差之和为13,标准差之和为5,且甲的波动比乙的波动大,求它们各自的标准差.(答案:S甲=3,S乙=2.)3.在某次数学考试中,甲、乙两校各8个班,不及格的人数分别如下:
分别计算这两组数据的平均数与方差.四、教学注意问题
要注意给学生讲如下三点:
1.方差与标准差是衡量样本和总体波动大小的特征数.2.用简化计算公式求方差较为方便.3.对同类问题的两组数据,方差小的波动小、方差大的波动大
第 11 页
第 12 页
第五篇:计量经济学随机项方差无偏估计量的证明
ˆi,是完全可以计因为,样本残差可以看作是总体随机项的估计量,而样本残差iyiy
算的,因此,可以用样本残差的方差来估计总体随机项的方差。
我们目的是得到的无偏估计量,因此,我们需要确定样本残差平方和的自由度fe,使得
i2
2(3.4.3)E
fe
由于0,所以,上式等价于
i2
2(3.4.4)E
fe
可以证明fen2,其中n是样本容量。下面给出证明: