20.2.2方差教案

时间:2019-05-12 22:54:36下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《20.2.2方差教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《20.2.2方差教案》。

第一篇:20.2.2方差教案

20.2.2 方差(第一课时)学案

设计人:伍启明

教师寄语:相信自己,你是最棒的!

学习目标:

1、理解方差的意义,掌握如何刻画一组数据波动的大小。

2、掌握方差的计算公式并会初步运用方差解决实际问题。、通过实践观察,掌握衡量一组数据波动大小的方法和规律,逐步形成解决问题的基本策略和方法。

学习重点:理解方差的意义,熟练运用方差公式进行方差计算,并能运用方差衡量一组数据波动大小。

学习难点:理解方差的意义,准确记忆方差公式。学习过程:

一、前置准备:

在一次女子排球比赛中,甲、乙两队参赛选手的年龄如下: 甲队 26 25 28 28 25 28 26 28 27 28 乙队 28 27 25 28 27 26 28 27 27 26(1)计算两队参赛选手的极差?

(2)你能说出两队参赛选手年龄的波动大小吗?

二、新课学习:

1、为了直观看出甲乙两队参赛选手年龄的分布情况,请完成下列图形:

2、从图中你能看出哪些信息?

3、运用方差公式计算甲乙两队参赛选手年龄的方差 解:

4、认真观察散点图和上述计算结果思考:用一组数据的方差来刻画它的波动大小有什么规律?

5、通过例题学习,用一组数据的方差来刻画数据波动大小的解题步骤是什么?

三、巩固提高:

1、填空题:

(1)一组数据:2,1,0,x,1的平均数是0,则x=.方差S22(2)如果样本方差S.14(x12)(x22)(x32)(x42),2222那么这个样本的平均数为.样本容量为.2、选择题:

(1)样本方差的作用是()

A、估计总体的平均水平B、表示样本的平均水平

C、表示总体的波动大小 D、表示样本的波动大小,从而估计总体的波动大小(2)一个样本的方差是0,若中位数是a,那么它的平均数是()A、等于a B、不等于 a C、大于 a D、小于a 3.甲、乙两台机床生产同种零件,10天出的次品分别是()甲:0、1、0、2、2、0、3、1、2、4 乙:2、3、1、2、0、2、1、1、2、1 分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?

四、思维拓展:已知x1,x2,x3的平均数x10,方差S23,则2x1,2x2,2x3的平均数为,方差为.五、课堂小结:

(1)本节课学到了什么?

(2)本节课还有哪些疑问?

第二篇:方差和标准差

4.4

方差和标准差

〖教学目标〗

◆1、了解方差、标准差的概念.◆2、会求一组数据的方差、标准差,并会用他们表示数据的离散程度.

◆3、能用样本的方差来估计总体的方差.

◆4、通过实际情景,提出问题,并寻求解决问题的方法,培养学生应用数学的意识和能力.

〖教学重点与难点〗

◆教学重点:本节教学的重点是方差的概念和计算。.◆教学难点:方差如何表示数据的离散程度,学生不容易理解,是本节教学的难点.〖教学过程〗

一、创设情景,提出问题

甲、乙两名射击手的测试成绩统计如下表:

第一次

第二次

第三次

第四次

第五次

甲命中环数

乙命中环数

①请分别

算出甲、乙两名射击手的平均成绩;

②请根据这两名射击手的成绩在图中画出折线图;

二、合作交流,感知问题

请根据统计图,思考问题:

①、甲、乙两名射击手他们每次射击成绩与他们的平均成绩比拟,哪一个偏离程度较低?

②、射击成绩偏离平均数的程度与数据的离散程度与折线的波动情况有怎样的联系?

③、用怎样的特征数来表示数据的偏离程度?可否用各个数据与平均的差的累计数来表示数据的偏离程度?

④、是否可用各个数据与平均数的差的平方和来表示数据的偏离程度?

⑤、数据的偏离程度还与什么有关?要比拟两组样本容量不相同的数据的偏离平均数的程度,应如何比拟?

三、概括总结,得出概念

1、根据以上问题情景,在学生讨论,教师补充的根底上得出方差的概念、计算方法、及用方差来判断数据的稳定性。

2、方差的单位和数据的单位不统一,引出标准差的概念。

〔注意:在比拟两组数据特征时,应取相同的样本容量,计算过程可借助计数器〕

3、现要挑选一名射击手参加比赛,你认为挑选哪一位比拟适宜?为什么?

〔这个问题没有标准答案,要根据比赛的具体情况来分析,作出结论〕

四、应用概念,稳固新知

1、某样本的方差是4,那么这个样本的标准差是。

2、一个样本1,3,2,X,5,其平均数是3,那么这个样本的标准差是。

3、甲、乙两名战士在射击训练中,打靶的次数相同,且中环的平均数X甲=X乙,如果甲的射击成绩比拟稳定,那么方差的大小关系是S2甲

S2乙

4、一个样本的方差是S=[〔X1—4〕2+〔X2—4〕2+…+〔X5—4〕2],那么这个样本的平均数是,样本的容量是。

5、八年级〔5〕班要从黎明和张军两位侯选人中选出一人去参加学科竞赛,他们在平时的5次测试中成绩如下〔单位:分〕

黎明: 652

653

654

652

654

张军:

667

662

653

640

643

如果你是班主任,在收集了上述数据后,你将利用哪些统计的知识来决定这一个名额?〔解题步骤:先求平均数,再求方差,然后判断得出结论〕

五、稳固练习,反应信息

1、课本“课内练习〞第1题和第2题。

2、课本“作业题〞第3题。

3、甲、乙两人在相同条件下各射靶

(1

次,每次射靶的成绩情况如下图.

(1

〕请填写下表:

(2)请你就以下四个不同的角度对这次测试结果进行分析:

从平均数和方差相结.合看,谁的成绩较好?

从平均数和命中

环以上的次数相结合看,谁的成绩较好?

从折线图上两人射击命中环数的走势看,谁更有潜力?

六、通过探究,找出规律

两组数据1,2,3,4,5和101,102,103,104,105。

1、求这两组数据的平均数、方差和标准差。

2、将这两组数据画成折线图,并用一条平行于横轴的直线来表示这两组数据的平均数,观察你画的两个图形,你发现了哪些有趣的结论?

3、假设两组数据为1,2,3,4,5和3,6,9,12,15。你要能发现哪些有趣的结论?

4、用你发现的结论来解决以下的问题:

数据X1,X2,X3,…Xn的平均数为a,方差为b,标准差为c。那么

数据X1+3,X2+3,X3+3…,Xn+3的平均数为,方差为,标准差为。

数据X1—3,X2—3,X3—3…Xn—3的平均数为,方差为,标准差为。

数据4X1,4X2,4X3,…4Xn的平均数为,方差为,标准差为。

数据2X1—3,2X2—3,2X3—3,…2Xn—3的平均数为,方差为,标准差为。

七、小结回忆,反思提高

1、这节课我们学习了方差、标准差的概念,方差的实质是各数据与平均数的差的平方的平均数。方差越大,说明数据的波动越大,越不稳定。

2、标准差是方差的一个派生概念,它的优点是单位和样本的数据单位保持一致,给计算和研究带来方便。

3、利用方差比拟数据波动大小的方法和步骤:先求平均数,再求方差,然后判断得出结论。

八、分层作业,延伸拓展

1、必做题:作业本底页。

2、选做题:

在某旅游景区上山的一条小路上有一些断断续续的台阶,如以下图是其中的甲、乙段台阶路的示意图〔图中的数字表示每一级台阶的高度〕.请你用所学过的统计量〔平均数、中位数、方差等〕进行分析,答复以下问题:

(1

〕两段台阶路每级台阶的高度有哪些相同点和不同点?

(2

〕哪段台阶路走起来更舒服?为什么?

(3

〕为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.

第三篇:样本方差证明

一弛,你好!

样本方差有2种表达方式:

S2

n1n(Xi)2-----(1)ni1

1n

Sn1(Xi)2-----(2)n1i12

从理论上说这2种定义都是可行的,现实生活中更经常使用方程(2),是因为方程(2)是总体方差真实值2的无偏估计量,而(1)是有偏估计量。无偏性在应用中非常重要,估计量只有无偏才能保证在样本数目足够大时无限趋近于真实值,估计才有意义。证明方程(2)的无偏性如下,思路是对估计量求期望,看是否等于总体方差:

n1E(Sn1)E[(Xi)2]n1i1

n1E{[(Xi)()]2}n1i1

nn12E{[(Xi)2(Xi)()n()2}n1i1i12

n1{E(Xi)22nE()2nE()2}n1i1

n1{E(Xi)2nE()2}n1i1

212{nn()}n1n

2

证毕。

如果有问题,可随时联系我。

祝好!

陈谢晟

第四篇:方差 教案设计

方差 教案设计

教学设计示例1 第一课时 素质教育目标(一)知识教学点

使学生了解方差、标准差的意义,会计算一组数据的方差与标准差.(二)能力训练点 1.培养学生的计算能力.2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力.(三)德育渗透点

1.培养学生认真、耐心、细致的学习态度和学习习惯.2.渗透数学来源于实践,又反过来作用于实践的观点.(四)美育渗透点

通过本节课的教学,渗透了数学知识的抽象美及反映在图像上的形象美,激发学生对美好事物的追求,岣哐???STRONG数学美的鉴赏力.重点难点疑点及解决办法 1.教学重点:方差概念.2.教学难点 :方差概念.3.教学疑点:学生不易理解为什么要用方差去描述一组数据

第 1 页 的波动大小,为什么不可以用各数据与其平均数的差的来和来衡量这组数据的波动大小呢?为什么对各数据与其平均数的差不取其绝对值,而将其平方呢?对这些问题教师在剖析方差定义时要讲清楚.4.解决办法:教师要讲清方差,标准差的意义,即它们都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况.教学步骤(一)明确目标

前面我们学习了平均数、众数及中位数,它们都是描述一组数据的集中趋势的量,这节课我们将进一步学习衡量样本(或一组数据)和总体的另一类特征数方差、标准差及其计算.这种开门见山式引入课题,能迅速将学生的注意力集中起来,进入新课讲解.(二)整体感知

对于一组数据来说,我们除了关心它的集中趋势以外,还关心它的波动大小.衡量这个波动大小的最常用的特征数,就是方差和标准差.(三)教学过程

1.请同学们看下面的问题:(用幻灯出示)

第 2 页 两台机床同时生产直径是40毫米的零件,为了检验产品质量,从产品中各抽出10件进行测量,记录

教师引导学生做出表格,观察表里的数据和图,提出问题:怎样能说明在使所生产的10个零件的直径符合规定方面,哪个机床做得好呢? 对于这个问题,学生会马上想到计算它们的平均数.教师可把学生分成两级分别计算这两组数据的平均数.(请两名同学到黑板计算)计算的结果说明两组数据的平均数都等于规定尺寸40毫米.这时教师引导学生思考,这能说明两个机床做的一样好吗?不能!我们再观察上图(给学生充分的时间观察,找出左右两图的区别)从图中看到,机床甲生产的零件的直径与规定尺寸偏差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸偏差较小,比较集中在40毫米线的附近.这 说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好.教师说明:从上面看到,对于一组数据,除需要了解它们的平均水平外,还常常需要了解它们的波动大小(即偏离平均数的大小).通过引例的学习,使学生理解为什么要研究数据波动的大小,为提出方差概念做好了准 备.第 3 页 2.方差概念

教师讲解,为了描述一组数据的波动大小,可以采用不止一种办法,例如,可以先求得各个数据与这组数据的平均数的差的绝对值,再取其平均数,用这个平均数来衡量这组数据的波动大小,通常,采用的是下面的做法:

设在一组数据 中,各数据与它们的平均数 的差的平方分别是,那么我们用它们的平均数,即用

来衡量这组数据的波动大小,并把它叫做这组数据的方差.一组数据方差越大,说明这组数据波动越大.教师要剖析公式中每一个元素的意义,以便学生理解和掌握.在学生理解方差概念时,可能会提出疑问:为什么要这样定义方差?(教师说明,在表示各数据与其平均数的倔离程度时,为了防止正偏差与负偏差的相互抵消)为什么对各数据与其平均数的差不取其绝对值,而要将它们平方?(教师说明,这主要是因为在很多问题里,含有绝对值的式子不便于运算,且在衡量一组数据波动大小的功能上,方差更强些)为什么要除以数据个数n?(是为了消除数据个数的影响).在学生理解了方差概念之后,再回到了引例中,通过计算机床甲、乙两组数据的方差,再根据理论说明哪个机床做得更好.教师范解

从 知道,机床甲生产的10个零件直径比机床乙生产的10

第 4 页 个零件直径波动要大.这样做使学生深刻体会到数学来源于实践,又反过来作用实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.3.例1(用幻灯出示)已知两组数据: 甲:9.9 10.3 9.8 10.1 10.4 10 9.8 9.7 乙:10.2 10 9.5 10.3 10.5 9.6 9.8 10.1 分别计算这两组数据的方差.让学生自己动手计算,求平均数时激发学生用简化公式计算,找一名好学生到黑板计算.解:根据公式②(取),有

从 知道,乙组数据比甲组数据波动大.4.标准差概念

在有些情况下,需要用到方差的算术平方根

并把它叫做这组数据的标准差.它也是一个用来衡量一组数据的波动大小的重要的量.教师引导学生分析方差与标准差的区别与联系:

计算标准差要比计算方差多开一次平方,但它的度量单位与原数据一致,有时用它比较方便.课堂练习教材P165中(1)、(2)(四)总结、扩展

知识小结:通过这节课的学习,使我们知道了对于一组数据,第 5 页 有时只知道它的平均数还不够,还需要知道它的波动大小;而描述一组数据的波动大小的量不止一种,最常用的是方差和标准差.方差与标准差这两个概念既有联系又有区别.方法小结:求一组数据方差的方法;先求平均数,再利用③求方差,求一组数据标准差的方法:先求这组数据的方差,然后再求方差的算术平方根.布置作业

教材P173中1,2(1)(2)板书设计 14.3 方差(一)方差公式③ 引例 例1 标准差公式④ 教学设计示例2

一、教学目的

1.使学生了解方差、标准差的意义,会计算一组数据的方差与标准差.2.使学生了解样本方差、样本标准差、总体方差的意义.二、教学重点、难点

重点:方差、标准差、样本方差、样本标准差、总体方差的意义.难点:样本方差、样本标准差的计算.三、教学过程

第 6 页 复习提问

计算一组数据的平均数有哪些方法? 引入新课

在很多实际问题中,只知道一组数据的平均数是不够的,还需要知道这组数据的波动大小.如何了解数据的波动大小?这正是我们要解决的问题.新课

引例 两台机床同时生产直径是40毫米的零件.为了检验产品质量,从产品中抽出10件进行测量,结果如下(单位:毫米):

表中数据表成如下形式:

可在此处让学生用公式②分别计算这两组数据的平均数(还可提问学生a取什么值最好,这样学生能在教师的启发下得到a=40最合适).当学生算出如下平均数:

让学生思考,两组数据的平均数都等于规定尺寸40毫米时,甲、乙两机床性能是否都一样好?提出问题让学生议议后,再引导学生看图1,让学生认识到机床甲生产的零件的直径与规定尺寸编差较大,偏离40毫米线较多;机床乙生产的零件的直径与规定尺寸的偏差较小,比较集中在40毫米线的附近.这说明,在使所生产的10个零件的直径符合规定方面,机床乙比机床甲要好.这反映出,对一组数据,除需要了解它们的平均水平以外,第 7 页 还常常需要了解它们的波动大小(即偏离平均数的大小).在此处要告诉学生:描述一组数据的波动大小,可以采用不止一种办法.本课介绍方差即是一种方法.即:

来衡量这组数据的波动大小,并把它叫做这组数据的方差.要强调一组数据方差越大,说明这组数据波动越大.条件许可时,还可介绍③式可表示为:

接下来可以请两个学生计算引例中机床甲、乙两组数据的方差.从0.0260.008可以比较出,机床甲生产的10个零件直径比机床乙生产的10个零件直径波动要大.(接下来教师再给出如下例题.)例1 已知两组数据: 分别计算这两组数据的方差.讲此例后,要强调求解步骤为:

(1)求平均数;(2)求方差;(3)比较方差得出结论.此后接前面问题说,用来衡量一组数据的波动的方法还可用一组数据的标准差,即

公式④(即标准差)也是用来衡量一组数据波动大小的重要的量.在本节引例中,两组数据的标准差,可让学生算一下,得出: 说明:计算标准差要比计算方差多开一次平方,但它的度量单位与原数据一致,有时用它比较方便.第 8 页 小结

1.本课学了计算一组数据的方差的公式③.2.本课在方差的基础上又学了计算一组数据的标准差的公式④.练习:选用课本练习题.作业 :选用课本习题.四、教学注意问题

要注意通过例题讲好求方差题目的解题格式.教学设计示例3

一、教学目的

1.使学生进一步理解方差、标准差的意义.2.使学生掌握利用简化公式计算一组数据的方差的方法.3.使学生会根据同类问题两组数据的方差(或标准差)比较两组数据的波动情况.二、教学重点、难点

重点:简化计算一组数据的方差公式.难点:利用方差(或标准差)比较两组数据的波动情况.三、教学过程 复习提问

1.什么是一组数据的方差、标准差? 2.一组数据的方差和标准差应如何计算? 引入新课

第 9 页 我们看到,用公式③计算一组数据的方差比较麻烦.那么,有否较简便的计算方法呢? 新课

教师应在黑板上进行如下推导:

推导上述公式后,可让学生仿①~④四个公式的方法归纳推理出如下结论:

一般地,如果一组数据的个数是n,那么它们的方差可以用下面的公式计算:

在这时,教师要强调:当一组数据中的数较小时,用公式⑤计算方差比公式③计算少了求各数据与平均数的差一步,因此比较方便.例2 计算下面数据的方差(结果保留到小数点后第1位): 3-1 2 1-3 3 教师可让学生共同来完成此例.接下来教师按教材指出,当一组数据较大时,可按下述公式计算方差:

其中x1=x1-a,x2=x2-a,xn=xn-a,x1,x2,xn是原已知的n个数据,a是接近这组数据的平均数的一个常数.为使学生对公式⑥加深印象,可让学生用公式⑥解下例.例3 甲、乙两个小组各10名学生的英语口语测验成绩如下(单位:分):

哪个小组学生的成绩比较整齐?

第 10 页 解后,指出解题步骤有如下三步:(3)代入公式⑥计算方差并比较得解.小结

1.本课介绍了当一组数据中的数值较小时,用以计算方差的简化计算公式⑤.2.本课又学习了当一组数据中的数值较大时,用以计算方差的简化公式⑥.练习:选用课本练习题.作业 :选用课本习题.补充作业

2.甲、乙两组数据的方差之和为13,标准差之和为5,且甲的波动比乙的波动大,求它们各自的标准差.(答案:S甲=3,S乙=2.)3.在某次数学考试中,甲、乙两校各8个班,不及格的人数分别如下:

分别计算这两组数据的平均数与方差.四、教学注意问题

要注意给学生讲如下三点:

1.方差与标准差是衡量样本和总体波动大小的特征数.2.用简化计算公式求方差较为方便.3.对同类问题的两组数据,方差小的波动小、方差大的波动大

第 11 页

第 12 页

第五篇:离散型随机变量的方差教案

离散型随机变量的方差一、三维目标:

1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。

2、过程与方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),则Dξ=np(1—p)”,并会应用上述公式计算有关随机变量的方差。

3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。

二、教学重点:

三、教学难点:

四、教学过程:

(一)、复习引入:

1..数学期望

则称 Ex1p1x2p2„xnpn„为ξ的数学期望,简称期望.2.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平

3.期望的一个性质: E(ab)aEb

5、如果随机变量X服从二项分布,即X ~ B(n,p),则EX=np

(二)、讲解新课:

1、(探究1)某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少?111122 X2334101

4321102103104102

(探究2)某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的方差是多少?

s21[(x1x)2(xix)2(x2 n

nx)]

s21

[(12)2(12)2(12)2(12)2(22)2

(22)2(22)2(32)2(32)2(42)2]1

s24(12)23(22)22(32)2110101010(42)22、离散型随机变量取值的方差的定义: 设离散型随机变量X的分布为:

则(xi-EX)2描述了xi(i=1,2,„n)相对于均值EX的偏离程度,而n

DX (x2iEX)pi

i

1为这些偏离程度的加权平均,刻画了随机变量X与其均值EX的平均偏离程度。我们称DX为随机变量X的方差,其算术平方根DX叫做随机变量X的标准差.随机变量的方差与标准差都反映了随机变量偏离于均值的平均程度的平均程度,它们的值越小,则随机变量偏离于均值的平均程度越小,即越集中于均值。

(三)、基础训练

求DX和DX解:EX00.110.220.430.240.1

2DX(02)20.1(12)20.2(22)20.4(32)20.2(42)20.11.2

= 40 000;

DX.21.09

5(四)、方差的应用

用击中环数的期望与方差分析比较两名射手的射击水平。解:EX19,EX29DX10.4,DX20.8

表明甲、乙射击的平均水平没有差别,在多次射击中平均得分差别不会很大,但甲通常发挥比较稳定,多数得分在9环,而乙得分比较分散,近似平均分布在8-10环。

问题1:如果你是教练,你会派谁参加比赛呢?

问题2:如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛?

问题3:如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?

解:根据月工资的分布列,利用计算器可算得

EX1 = 1200×0.4 + 1 400×0.3 + 1600×0.2 + 1800×0.1= 1400 ,DX1 =(1200-1400)2 ×0.4 +(1400-1400)2×0.3+(1600-1400)2×0.2+(1800-1400)2×0.1EX2=1 000×0.4 +1 400×0.3 + 1 800×0.2 + 2200×0.1 = 1400 ,DX2 =(1000-1400)2×0.4+(1 400-1400)×0.3 +(1800-1400)2×0.2 +(2200-1400)2×0.l

= 160000.因为EX1 =EX2, DX1

(五)、几个常用公式:

(1)若X服从两点分布,则DX=p(1-p)。(2)若X~B(n,p),则DX=np(1-p)(3)D(ax+b)= a2DX;(六)、练习:

1、已知318,且D13,则D

2、已知随机变量X的分布列

求DX和 DX3、若随机变量X满足P(X=c)=1,其中c为常数,求DX。

(七)、小结:

1、离散型随机变量取值的方差、标准差及意义

2、记住几个常见公式:

(1)若X服从两点分布,则DX=p(1-p)。(2)若X~B(n,p),则DX=np(1-p)(3)D(ax+b)= a2DX;(八)、作业:P691、4

下载20.2.2方差教案word格式文档
下载20.2.2方差教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    方差初中数学教案

    素质教育目标 (一)知识教学点 使学生了解方差、标准差的意义,会计算一组数据的方差与标准差. (二)能力训练点 1.培养学生的计算能力. 2.培养学生观察问题、分析问题的能力,培养学生......

    方差教学反思

    方差教学反思 素质教育目标 (一)知识教学点 使学生了解方差、标准差的意义,会计算一组数据的方差与标准差. (二)能力训练点 1.培养学生的计算能力. 2.培养学生观察问题、分析问题的......

    澳大利亚方差投资介绍

    一、澳大利亚房产投资介绍澳大利亚是全球最适合人类居住的国家之一,自然和人文环境优越。澳大利亚面积为 780万平方公里,相当于中国面积的80%,东海岸与中国时差2小时。澳大利亚......

    如何理解方差和标准差的意义(大全)

    如何理解方差和标准差的意义? 随机变量X的方差为:D(X)E(X-E(X))2 ,方差的平方根D(X)称为标准差,它描述随机变量取值与其数学期望值的离散程度,描述随机变量稳定与波动,集中与分......

    n次方差的证明

    n次方差公式的证明方法 n次方差公式: anbn(ab)(an1an2ban3b2abn2bn1),nN 证法一: anbnanan1ban1ban2b2an2b2.....abn1bn an1(ab)an2b(ab).....bn1(ab)(ab)(a 证法二: n1an2b.......

    二项分布的期望与方差的证明

    二项分布的期望与方差的证明 二项分布是概率统计里面常见的分布,是指相互独立事件n次试验发生x次的概率分布,比较常见的例子。种子萌发试验,有n颗种子,每颗种子萌发的概率是p,发......

    方差数学教学设计(共5则)

    知识与技能1、了解方差的定义和计算公式。2. 理解方差概念的产生和形成的过程。3. 会用方差计算公式来比较两组数据的波动大小。过程与方法经历探索方差的应用过程,体会数据......

    二项分布的期望和方差的详细证明

    二项分布的期望的方差的证明山西大学附属中学韩永权离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个......