第一篇:湘教版九年级下册第一章反比例函数小结与复习2
第一章、反比例函数
总序第8个教案
课 题 小结与复习
(二)第2课时 编写时间 2012年11月 日 执教时间 2012年11月 日 执教班级
教学目标:知识与技能:
1.加强对反比例函数概念与性质的理解,提高综合应用能力。
2.通过练习掌握基本知识和基本技能,体会不同的数学思想方法解决实际问题。
过程与方法:
通过练习掌握基本知识和基本技能,体会不同的数学思想方法解决实际问题。
情感态度价值观:
积极参与交流,并积极发表意见,体验与他人交流合作的重要性。
教学重点:反比例函数的概念与图象性质的应用。教学难点:反比例函数的概念与图象性质的应用。教 具:电脑、课件
教学方法:分析法、讨论法、讲授法、练习法 学 具:
教学过程及教学内容设计:
一、复习引入 1.写出一个图象位于一、三象限的反比例函数表达式_______。2.两个用电器并联在电压为220V的电路中,如果它们的电阻之比为R=2,那么通过它们的电流之比I=________。11R2I2
二、讲解例题(课件演示)
1.例1:已知点P(x1,y1)与Q(x2,y2)在反比例函数y=10x的图象上,并且x1< x2,试比较y1与y2的大小。2.例2:已知反比例函数y=
k2x和一次函数y=2x-1,其中一次函数的图象经过点(a,b)与(a+1,b+k)两点,(1)求反比例函数的解析式;
(2)如图所示(课件演示),已知点A在第一象限,且同时在上述两个函数的图像上,求点A的坐标;
(3)利用(2)的结果,在x轴上是否存在一点P,使△AOP为等腰三角形。若存在,把符合条件的P点坐标找出来;若不存在,请说明理由。
三、思考与拓展(课件演示)作业: 后记:
第二篇:反比例函数小结与复习
反比例函数小结与复习
【复习目标】:
1.巩固反比例函数的概念,会求反比例函数表达式并能画出图象. 2.熟记反比例函数图象及其性质,并能运用解决有关的实际问题. 3.熟练求解反比例函数有关的面积问题. 【学习重点】
反比例函数的定义、图像性质及其应用 【学习过程】
一、知识梳理:(课堂提问)
二、基础知识自测:
1、若函数y(m1)xm2m1是反比例函数,则m的值是.2、函数y6x的图象位于第 象限, 在每一象限内,y的值随x的增大 而 , 当x>0时,y 0,这部分图象位于第 __ 象限.3、如果反比例函数ykx的图象过点(2,-3),那么k=.4、已知y与(2x+1)成反比例,且当x=1时,y=2,那么当x=0,y的值是
5、若点A(6,y41)和B(5,y2)在反比例函数yx的图象上,y1与y2的大小关系是_______.6、直线y=-5x+b与双曲线y2x相交于 点P(-2,m),求b的值.三、达标测评
1、已知直线ykx2与反比例函数ymx的图象交于A、B两点,且点A的 纵坐标为-1,点B的横坐标为2,求这两个函数的解析式.)在反比例函数y=
8x的图象上,两点,(1)求直线AB的解析式. 是多少?
2、如图,已知点A(4,m),B(-1,n直线AB•分别与x轴,y轴相交于C、D(2)C、D两点坐标.(3)S△AOC:S△BOD
第三篇:湘教版九年级下册第一章反比例函数小结与复习1
第一章、反比例函数
总序第7个教案
课 题 小结与复习
(一)第1 课时 编写时间 2012年11月 日 执教时间 2012年11月 日 执教班级 教学目标:知识与技能:
1.使学生理解反比例函数的概念及性质。
2.会利用建立反比例函数的方法解决简单的实际问题。
过程与方法:
经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程。
情感态度价值观:
积极参与交流,并积极发表意见,体验与他人交流合作的重要性。
教学重点:能熟练地作出反比例函数的图象。
教学难点:建立反比例函数关系模型及其性质的灵活应用。教 具:电脑、课件
教学方法:分析法、讨论法、讲授法、练习法 学 具:
教学过程及教学内容设计:
一、复习引入
1.本章我们研究学习的内容主要有哪些?
2.提问:请同学们根据下面的结构图用自己的话描述在本章所学的知识。(实际问题中的“谁先到终点”等现象→反比例函数概念→图象→性质)
二、基础练习(课件演示)
1.判断下列各式所表示的关系是哪种函数关系。(1)x=5(2)x+y-3=0(3)xy=5 y2.下列哪些点的坐标在反比例函数y=15/x的图象上()A.(2,7.5)B.(-3,5)C.(-5,-3)D.(3,5)
3.点P(3,-4)在反比例函数y=k的图象上,则k=_____。
x4.点M(7,b)在反比例函数y=21的图象上,则b=_____。
x
三、提高练习(课件演示)
1.已知y与x成正比例,z与x成反比例,则z与x的函数关系是()
A.正比例函数 B.反比例函数 C.一次函数 D.不能确定 2.已知反比例函数y=mxm3的图象在其分布的每个象限内,y随x增大而增大,则m=_______。
四、课堂小结
五、思考与拓展(课件演示)
反比例函数y=k,当自变量x的值由2增加到3时,函数值减少
x了2,则函数解析式为()
3A.y=4 B.y=8 C.y=2 D.y=4x xxx 作业: 后记:
第四篇:专题复习一次函数与反比例函数教学反思
《一次函数与反比例函数》教学反思
2016.5.18 本节教学内容《一次函数与反比例函数》是中考复习模块《函数及其图像》的一部分。函数是中考的重点,本节复习内容主要考察图像的性质及解析式的确定,中考题型有选择题、填空题、解答题以及方程与不等式的综合应用题。常见两种函数的结合考察,常常用到数形结合法。华罗庚说:数无形时少直观,形无数时难入微。形可助数,数可助形,故本节复习对学生用数学结合法分析问题、解决问题的能力做重点提升。
就本节的教学从备课到授课反思如下:
一、备课设计
本节课先对比回顾了一次函数、正比例函数及反比例函数的解析式的各种表达方式,后以简图制作,引导学生回顾复习相对的函数图像及其性质,没有文字书写而只有数形结合的文字叙述。教学中特别的在图像中注明k及b的情况。这样的设计意在引起学生数形结合法的应用意识,同时也能帮助学生更为深刻的回顾基础知识。在回顾的最后,提出了函数中的面积归纳。习题设计将问题归类求解,分为交点问题、面积问题及解析式问题,题型有选择、填空和解答。设计上强调数形结合法的应用。本节的设计不足之处是习题选择还不够精,对学生的估计不到位,解答题预留时间不足。
二、教学方法
教学中重视学生能力的培养,重视和突出数形结合法的解题思想的应用,讲解以学生思考为先,后给以方法归纳与小结。需要改进之处是要充分展开小组合作学习与交流,全班交流中,小结由老师引导学生归纳知识的点及方法技能。就解答题的教学,中考中书写是一个弱点,本节的教学中,在重视思路分析的同时还要示范,给以中考书写指导。
第五篇:二次函数小结与复习
二次函数小结与复习
(二)1、填表
2、我国是最早发明火箭的国家,制作火箭模型、模拟火箭升空是青少年喜爱的一项科技活动,已知学校航模组设计制作的火箭的升空高度h(m)与飞行的时间t(s)的关系是h=-t2+26t+1,如果火箭在点火升空到最高点时打开降落伞,那么火箭点火后多少时间降落伞打开?这时该火箭的高度是多少?
3、美国圣路易斯市有一座巨大的拱门,这座拱门高和底宽都是192m的不锈钢拱门是美国开发西部的标志性建筑,如果把拱门看作一条抛物线,你能建立恰当的平面直角坐标系并写出这条抛物线对应的函数关系吗?试试看
4、一艘装有防汛器材的船,露出水面部分的宽为4m,高为0.75m,当水面距抛物线形拱桥的拱顶5m时,桥洞内水面宽为8m,要使该船顺利通过拱桥,水面距拱顶的高度至少多高?
5、把二次函数y=x2+bx+c的图象沿y轴向下平移1个单位长度,再沿x轴向左平移5个单位,所得的抛物线的顶点坐标是(-2,0),写出原抛物线所对应的函数关系式。
6、心理学家研究发现,某年龄段的学生,30min内对概念的接受能力y与提出概念 的时间x之间满足函数关系:y=-0.1x2+2.6x+43(0《x《30),试判断何时学生接受概念的能力最强?什么时段学生接受概念的能力逐步降低?
7、如图,在矩形ABCD中,AB=16cm,BC=6cm,动点P、Q分别从A、C出发,点P以3cm/s的速度向B移动,一直到点B为止,点Q以2cm/s的速度向点D移动
(1)试写出P、Q两点的距离y(cm)与P、Q两点的移动时间x(s)之间的函数关系式;
(2)经过多长时间P、Q两点之间的距离最小(注:算术平方根的值随着被开方数的增大而增大,随着被开方数的减小而减小)?
8、某地要建造一个圆形水池,在水池中央垂直于水面安装一个装饰柱OA,O恰在水面中心,柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,形状如图①,在如图②的平面直角坐标系中,水流喷出的高度y(m)与水平距离x的关系式满足(1)求OA的高度;
(2)求喷出的水流距水平面的最大高度;如果不计其他因素,那么水池半径至少为为多少时,才能使喷出的水流不落在水池外?