大物热学小结

时间:2019-05-12 17:37:53下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《大物热学小结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《大物热学小结》。

第一篇:大物热学小结

大学物理热学部分小结

个人学习总结:大学物理和高中物理既有联系又有区别,在大致概念上是相同的,但是大学物理对概念更加深入,细致入微,本人想说说大学物理和高中物理的不同之处。

1、学习方法的不同:大学阶段的物理学习和中学阶段的物理学习存在着明显的差异,高中物理从某种程度上来说是采用的题海战术,但是大学物理更讲究自己的理解,只有深入地理解了概念、原理,才能更好的学习好大学物理。

2.研究方法的不一样:大学物理和高中物理很多知识点是重复的,换句话来说,现在的某些题目是可以用高中的方法来解的,但是大多数题目是不可以的,因为大学的物理和高数结合的比较紧密,一般来说,很多题目都要用到积分的知识来求解。

热学的知识点总结

1.温度的概念与有关定义

1)温度是表征系统热平衡时的宏观状态的物理量。

2)温标是温度的数值表示法。常用的一种温标是摄氏温标,用t表示,其单位为摄氏度(℃)。另一种是热力学温标,也叫开尔文温标,用T表示。它的国际单位制中的名称为开尔文,简称K。

热力学温标与摄氏温标之间的换算关系为:

T/K=273.15℃ + t 温度没有上限,却有下限。温度的下限是热力学温标的绝对零度。温度可以无限接近于0 K,但永远不能到达0 K。

2.理想气体的微观模型与大量气体的统计模型。速度分布的特征。

1)为了从气体动理论的观点出发,探讨理想气体的宏观现象,需要建立理想气体的微观结构模型。可假设: a气体分子的大小与气体分子之间的平均距离相比要小得多,因此可以忽略不计。可将理想气体分子看成质点。

b分子之间的相互作用力可以忽略。

c分子键的相互碰撞以及与器壁的碰撞可以看作完全弹性碰撞。

综上所述:理想气体分子可以被看作是自由的,无规则运动着的弹性质点群。

3.理想气体状态方程与应用

当质量一定的气体处于平衡态时,其三个状态参数P、V、T并不相互独立,存在一定的关系,其表达式称为气体的状态方程f(P,V,T)= 0

pVpV最终得:。此式称为理想气体的状态方程。TT标准状态:pVmRT。R=8.31J·mol-1·K-1,称为摩尔气体常量。M设一定理想气体的分子质量为m0,分子数为N,并以NA表示阿伏伽德罗常数,可得:

Nm0RTNRmRTpT

MVNAm0VVNA得:pnkT,为分子数密度,可谓玻耳玆曼常量,值为1.38×10-23J·K-1.这也是理想气体的状态方程,多用于计算气体的分子数密度,以及与它相关的其它物理量。4.理想气体的压强与公式推导的思路

dIdFidtdtdF2pm0nivixdSi2pm0nvx22nmvi0ixdtdSpm0nv21n(m0v2)332

2pnk3压强p是描述气体状态的宏观物理量。压强的微观意义是大量气体分子在单位时间内施予器壁单位面积上的平均冲量,离开了大量和平均的概念,压强就失去了意义。

5.速率分布函数的定义与应用。三个统计速率与应用。

NdNlim1)f(v),f(v)称为速率分布函数。其物理意义为:速率vv0NvNdv附近单位速率区间内的分子数与总分子数的比。或者说速率在v附近单位速率区间内的分子出现的概率。2)三个统计速率 a.平均速率

vvdN0N0vf(v)dv8kTm08RT1.60MRT Mb.方均根速率

v22vdNNv22vf(v)dv03kT1.73MRTM

c.最概然速率

与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在vp附近的单位速率区间内的分子数占气体总分子数的百分比最大。2kT2RTRTvp1.41m0MM真实气体的状态方程修正的两个因素。气体液化的规律

真实气体不能忽略分子固有体积和忽略除碰撞外的分子之间相互作用这两个因素。

6.能量均分定理与理想气体内能计算。

1)分子的平均平动动能在每一个平动自由度上分配了同样了相同的能量KT/2.称为能量均分定理,可表述为:在温度为T的平衡态下,物质分子的每个自由度都具有相同的平1动动能,其值为kT。

22)设某种理想气体的分子有i个自由度,则1mol理想气体的内能为

iiENA(kT)RT

22质量为m,摩尔质量为M的理想气体的内能为E7.热力学第一定律与应用

miRT M2系统从外界吸收热量Q,一部分用来改变内能,一部分用来对外做功,根据能量守恒定律:QEW,微分形式:dQdEdW

①Q、ΔE、W的符号规定。系统从外界吸热则Q>0(为正),放热反之。内能增加ΔE>0,内能减少反之。系统对外做功W>0,外界对系统做功反之。

②热力学第一定律表明,不从外界吸收能量而使其永不停息地做功的机器不存在,即第一类永动机不可能制成。8.平衡态与准静态过程

(1)平衡态

对于一个孤立系统而言,如果其宏观性质在经过充分长的时间后保持不不变,也就是系统的状态参量并不再随时间改变,则此时系统所处的状态称为平衡态。处于平衡态的热力学系统其内部无定向的粒子流动和能量的流动,系统的宏观性质不随时间改变,但组成系统的微观粒子处于永恒不停的运动之中,因此,平衡态实际上是热动平衡态,也是一种理想状态。绝对的平衡态是不存在的。

系统处于平衡态时具有以下特点:①由于气体分子的热运动和频率碰撞,系统各部分的密度、温度、压强等趋于均匀。②分子沿各个方向上运动的机会均等。(2)准静态过程

热力学系统从一个平衡态到另一个平衡态的转变过程中,每瞬时系统的中间态都无限接近于平衡态,则此过程为准静态过程。

准静态过程又称平衡过程,是一种理想化的抽象,实际过程只能接近准静态过程。

理想气体的准静态过程可以用p-v图上一条曲线表示,图上任一点对应一个平衡态,任意一条曲线对应于一个准静态过程。但图上无法表示非准静态过程。

9.气体比热容

在热量传递的某个微过程中,热力学系统吸收热量dQ,温度升高了dT,则定义

CdQ,为系统在该过程中的热容。由于热容与系统的质量有关,因此把单位质量的热容dT称为比热容,记作c,其单位为J·K-1·㎏-1.设系统的质量为m,则有C=mc。

10.理想气体的定体摩尔热容量、定压摩尔热容量以及两者之间的关系。1)理想气体的定压摩尔热容

2)理想气体的定体摩尔热容

CV,m11.绝热过程的过程方程推导。在绝热过程中dQ=0,所以有ΔE+W=0,绝热过程中内能的变化与过程无关,则系统所做的功可以表示为

WQEmiR(T2T1)M2MdQi()VR mdT2根据热力学其一定律,理想气体进行绝热膨胀的微过程可表示为

mpdVCV,mdT

M两边求微分并整理得pdVVdpmRdT M因为Cp,mCV,mR,Cp,m/CV,m,所以上式可改写为对上式积分得

dpdV0 pVpVC1 12.循环过程的特点,功热之间的关系。效率的定义与计算。卡诺循环的效率的证明与应用。

1)循环过程

循环过程指系统经历了一系列状态变化以后,又回到原来状态的过程。循环过程特点:

① 系统经历一循环后内能不变。

② 准静态过程构成的循环,在p-V图上可用一闭合曲线表示。循环过程沿顺时针方向进 ③ 系统对外所做的净功为正,这样的循环称为正循环。反之为逆循环。

WQ212)热机效率:  Q1Q1Q1表示循环过程中从外界吸收的总热量。Q2表示循环过程中从外界放出的总热量。w表示系统对外做的净功,WQ1Q2。

制冷系数:在一次循环中,制冷机从低温热源吸取的热量与外界做功之比,即

eQ2Q2 WQ1Q23)卡诺循环:由两条等温线和两条绝热线所组成的过程称为卡诺循环。卡诺循环是一种理想循环。卡诺机工作在高温热源T1和低温热源T2之间。卡诺循环效率最高,1T2/T1。卡诺循环指出了理论上提高热机效率的途径。由于T1≠∞,T2≠0,因此卡诺循环的效率永远小于1.卡诺循环的制冷系数e= T2/(T1-T2)

13.可逆过程与不可逆过程

(1)可逆过程与不可逆过程

如果一个系统从某一状态经过一个过程到达另一个状态,并且一般在系统状态变化的同时对外界会产生影响,而若存在另一过程,使系统逆向重复原过程的每一状态而回到原来的状态,并同时消除了原过程对外界引起的一切影响,则原来的过程称为可逆过程。反之,如果系统不能重复原过程每一状态回复到初态,或者虽然可以复原,但不能消除原过程在外界产生的影响,这样的过程称为不可逆过程。

14.热力学第二定律:(1)经典叙述;(2)第二定律的实质;

(3)第二定律的微观意义;(4)第二定律的统计意义;

(5)热力学第二定律的数学公式;

(1)

热力学定律的两种表述

开尔文表述:不可能制成这样一种热机,它只从单一热源吸取热量,并将其完全转变为有用的功而不产生其他影响。

克劳修斯表述:不可能把热从低温物体传到高温物体而不产生其他影响。(2)热力学第二定律的实质是一切自然过程都是不可逆的。

(3)热力学第二定律的统计意义

一个孤立系统内部发生的过程,总是由包含微观状态数少的宏观状态向包含微观状态数多的宏观状态的方向进行,即由热力学几率少的宏观态向热力学几率大的宏观态进行。

(4)热力学第二定律的微观意义

一切自然过程总是沿着无序性增大的方向进行

(5)热力学第二定律的数学表达式 ΔS≥0 1)熵是组成系统的微观粒子的无序性的量度。

熵既然是为了描述过程的不可逆过程性而引入的,那么它应该与宏观态所包含的微观态数目有关,波尔兹曼关系式:S=k㏑Ω,其中Ω为热力学概率。2)波尔兹曼关系式:S=k㏑Ω

SBAdQ,热力学系统从初态A变化到末态B,在任意一个可逆过程中,其熵变等T于该过程中热温比dQ/T的积分;而在任意一个不可逆过程中,其熵变大于该过程中热温比dQ/T的积分。3)孤立系统中发生的一切不可逆过程都将导致系统熵的增加;而在孤立系统中发生的一切可逆过程,系统的熵保持不变。这一结论称为熵增加原理。

第二篇:大学物理热学部分小结

大学物理热学部分小结

通信工程4班

胡素奎

0706020415

个人学习总结:大学物理的热学部分还是相对不是太难的,因为与高中的物理关联很大,很多概念都是以前接触过的,但是没有深入研究,这已经给这部分的学习带来了极大的便利。如果说要有什么不同,主要那有如下几个方面:

1、研究方法的不一样:虽然很多内容是接触过的,但是重新学习的时候明显感觉到不一样的是研究方法,随着其他知识的累积,尤其是高数的引入,给物理的学习带来的极大的便利,特别是一些公式的推理过程让我们更好的了解公式的来由,更好的便于记忆和理解。

2、准确度的不同:在学习过程中,总有些以前的东西对推翻,因为要考虑的东西越来越多,微观的宏观的等压的等温的……这些都告诉我们要全面细致地学习,应用的知识越来越多,要把知识串成串。

3、学习方法的不同:大学阶段的物理学习和中学阶段的物理学习存在着很大的不同,课少了,作业也少了,但是仍然不能放松,毕竟在中学几乎每天都在学物理,所以现在的物理学习更需要自己的主动和认真。

以下是热学的一些知识点的总结

1.温度的概念与有关定义

1)温度是表征系统热平衡时的宏观状态的物理量。2)温标是温度的数值表示法。常用的一种温标是摄氏温标,用t表示,其单位为摄氏度(℃)。另一种是热力学温标,也叫开尔文温标,用T表示。它的国际单位制中的名称为开尔文,简称K。

热力学温标与摄氏温标之间的换算关系为:

T/K=273.15℃ + t 温度没有上限,却有下限。温度的下限是热力学温标的绝对零度。温度可以无限接近于0 K,但永远不能到达0 K。

2.理想气体的微观模型与大量气体的统计模型。速度分布的特征。

1)为了从气体动理论的观点出发,探讨理想气体的宏观现象,需要建立理想气体的微观结构模型。可假设:

a气体分子的大小与气体分子之间的平均距离相比要小得多,因此可以忽略不计。可将理想气体分子看成质点。

b分子之间的相互作用力可以忽略。

c分子键的相互碰撞以及与器壁的碰撞可以看作完全弹性碰撞。

综上所述:理想气体分子可以被看作是自由的,无规则运动着的弹性质点群。

2)每个分子的运动遵从力学规律,而大量分子的热运动则遵从统计规律。统计规律告诉我们,可以听过对围观物理量求平均值的方法得到宏观物理量。气体的宏观参量(温度、压强等)是气体分子热运动的为管理的统计平均值。

3.理想气体状态方程与应用

当质量一定的气体处于平衡态时,其三个状态参数P、V、T并不相互独立,二十存在一定的关系,其表达式称为气体的状态方程f(P,V,T)= 0

最终得:标准状态:pVTpVmMpVTRT。此式称为理想气体的状态方程。

。R=8.31J·mol-1·K-1,称为摩尔气体常量。

设一定理想气体的分子质量为m0,分子数为N,并以NA表示阿伏伽德罗常数,可得:

pmRTMVNm0RTNAm0VNRVNAT

得:pnkT,为分子数密度,可谓玻耳玆曼常量,值为1.38×10-23J·K-1.这也是理想气体的状态方程,多用于计算气体的分子数密度,以及与它相关的其它物理量。

4、理想气体的压强与公式推导的思路

dFpdIdtinim0vixdtdSdt2dFdSm02i2nivix2pm0nvxpm0np23nv3k23n(12

m0v2)压强p是描述气体状态的宏观物理量。压强的微观意义是大量气体分子在单位时间内施予器壁单位面积上的平均冲量,离开了大量和平均的概念,压强就失去了意义。

5、速率分布函数的定义与应用。三个统计速率与应用。

1)f(v)limNNvv0dNNdv,f(v)称为速率分布函数。其物理意义为:速率v附近单位速率区间内的分子数与总分子数的比。或者说速率在v附近单位速率区间内的分子出现的概率。2)三个统计速率 a.平均速率

vdNv0N0vf(v)dv8kTm08RTM1.60RTM

b.方均根速率

v2vv2dNN20v2f(v)dvRTM3kTM

1.73C.最概然速率

与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在v附近的单位速率区间内的分子数占气体总分子数的百分比最大。

pvp2kTm02RTM1.41RTM

6、真实气体的状态方程修正的两个因素。气体液化的规律

真实气体不能忽略分子固有体积和忽略除碰撞外的分子之间相互作用这两个因素。

7、能量均分定理与理想气体内能计算。

1)分子的平均平动动能在每一个平动自由度上分配了同样了相同的能量KT/2.称为能量均分定理,可表述为:在温度为T的平衡态下,物质分子的每个自由度都具有相同的平动动能,其值为

12kT。

2)设某种理想气体的分子有i个自由度,则1mol理想气体的内能为

ENA(i2kT)i2RT

i2RT质量为m,摩尔质量为M的理想气体的内能为E

mM

8、热力学第一定律与应用

系统从外界吸收热量Q,一部分用来改变内能,一部分用来对外做功,根据能量守恒定律:QEW,微分形式:dQdEdW。注意:

①Q、ΔE、W的符号规定。系统从外界吸热则Q>0(为正),放热反之。内能增加ΔE>0,内能减少反之。系统对外做功W>0,外界对系统做功反之。

②热力学第一定律表明,不从外界吸收能量而使其永不停息地做功的机器不存在,即第一类永动机不可能制成。

9、平衡态与准静态过程

(1)平衡态

对于一个孤立系统而言,如果其宏观性质在经过充分长的时间后保持不不变,也就是系统的状态参量并不再随时间改变,则此时系统所处的状态称为平衡态。处于平衡态的热力学系统其内部无定向的粒子流动和能量的流动,系统的宏观性质不随时间改变,但组成系统的微观粒子处于永恒不停的运动之中,因此,平衡态实际上是热动平衡态,也是一种理想状态。绝对的平衡态是不存在的。

系统处于平衡态时具有以下特点:①由于气体分子的热运动和频率碰撞,系统各部分的密度、温度、压强等趋于均匀。②分子沿各个方向上运动的机会均等。(2)准静态过程

热力学系统从一个平衡态到另一个平衡态的转变过程中,每瞬时系统的中间态都无限接近于平衡态,则此过程为准静态过程。

准静态过程又称平衡过程,是一种理想化的抽象,实际过程只能接近准静态过程。

理想气体的准静态过程可以用p-v图上一条曲线表示,图上任一点对应一个平衡态,任意一条曲线对应于一个准静态过程。但图上无法表示非准静态过程。

10.气体比热容

在热量传递的某个微过程中,热力学系统吸收热量dQ,温度升高了dT,则定义

CdQdT,为系统在该过程中的热容。由于热容与系统的质量有关,因此把单位质量的热容称为比热容,记作c,其单位为J·K-1·㎏-1.设系统的质量为m,则有C=mc。

11、理想气体的定体摩尔热容量、定压摩尔热容量以及两者之间的关系。1)理想气体的定体摩尔热容

2)理想气体的定压摩尔热容

12.绝热过程的过程方程推导。在绝热过程中dQ=0,所以有ΔE+W=0,绝热过程中内能的变化与过程无关,则系统所做的功可以表示为

WQEmiM2R(T2T1)CV,mMmMm((dQdT)Vi2i2R

Cp,mdQdT)p(1)R

根据热力学其一定律,理想气体进行绝热膨胀的微过程可表示为

pdVmMmMCV,mdT

两边求微分并整理得

pdVVdpRdT

dppdVV0因为Cp,mCV,mR,Cp,m/CV,m,所以上式可改写为对上式积分得 pV

C1

13循环过程的特点,功热之间的关系。效率的定义与计算。卡诺循环的效率的证明与应用。

1)循环过程

循环过程指系统经历了一系列状态变化以后,又回到原来状态的过程。循环过程特点:

① 系统经历一循环后内能不变。

② 准静态过程构成的循环,在p-V图上可用一闭合曲线表示。循环过程沿顺时针方向进 ③ 系统对外所做的净功为正,这样的循环称为正循环。反之为逆循环。2)热机效率: WQ11Q2Q1

Q1表示循环过程中从外界吸收的总热量。Q2表示循环过程中从外界放出的总热量。w表示系统对外做的净功,WQ2WQ1Q2。

制冷系数:在一次循环中,制冷机从低温热源吸取的热量与外界做功之比,即

eQ2Q1Q2

3)卡诺循环:由两条等温线和两条绝热线所组成的过程称为卡诺循环。卡诺循环是一种理想循环。卡诺机工作在高温热源T1和低温热源T2之间。卡诺循环效率最高,卡诺循环的制冷系数e= T2/(T1-T2)

1T2/T1。卡诺循环指出了理论上提高热机效率的途径。由于T1≠∞,T2≠0,因此卡诺循环的效率永远小于1.14、可逆过程与不可逆过程

(1)可逆过程与不可逆过程

如果一个系统从某一状态经过一个过程到达另一个状态,并且一般在系统状态变化的同时对外界会产生影响,而若存在另一过程,使系统逆向重复原过程的每一状态而回到原来的状态,并同时消除了原过程对外界引起的一切影响,则原来的过程称为可逆过程。反之,如果系统不能重复原过程每一状态回复到初态,或者虽然可以复原,但不能消除原过程在外界产生的影响,这样的过程称为不可逆过程。

15、热力学第二定律:(1)经典叙述;(2)第二定律的实质;(3)第二定律的微观意义;(4)第二定律的统计意义;(5)热力学第二定律的数学公式;

(1)

热力学定律的两种表述

开尔文表述:不可能制成这样一种热机,它只从单一热源吸取热量,并将其完全转变为有用的功而不产生其他影响。

克劳修斯表述:不可能把热从低温物体传到高温物体而不产生其他影响。

(2)热力学第二定律的实质是一切自然过程都是不可逆的。

(3)热力学第二定律的统计意义

一个孤立系统内部发生的过程,总是由包含微观状态数少的宏观状态向包含微观状态数多的宏观状态的方向进行,即由热力学几率少的宏观态向热力学几率大的宏观态进行。

(4)热力学第二定律的微观意义

一切自然过程总是沿着无序性增大的方向进行

(5)热力学第二定律的数学表达式 ΔS≥0

熵与热力学概率,熵的计算方法;熵增加原理 1)熵是组成系统的微观粒子的无序性的量度。

熵既然是为了描述过程的不可逆过程性而引入的,那么它应该与宏观态所包含的微观态数目有关,波尔兹曼关系式:S=k㏑Ω,其中Ω为热力学概率。2)波尔兹曼关系式:S=k㏑Ω

SBAdQT,热力学系统从初态A变化到末态B,在任意一个可逆过程中,其熵变等于该过程中热温比dQ/T的积分;而在任意一个不可逆过程中,其熵变大于该过程中热温比dQ/T的积分。3)孤立系统中发生的一切不可逆过程都将导致系统熵的增加;而在孤立系统中发生的一切可逆过程,系统的熵保持不变。这一结论称为熵增加原理。

第三篇:初中物理 热学 知识点小结

热与能基础概念 热与能基础概念
1.温度是表示 物体冷热程度 的物理量, 常用单位 摄氏度 , 读作 摄氏度 温度反映了 分 子热运动(分子不规则运动)的剧烈程度 2.摄氏温标规定 标准大气压下冰水混合物 的温度为 0 摄氏度 标准大气压下沸水 的温 度为 100 摄氏度 3.测量温度我们通常使用 温度计 它的工作原理是 液体的热胀冷缩 使用时应该先观察 量程 , 最小分度值 ,玻璃泡充分接触(时间,空间)读数时视线与玻璃管内的液面 相平,不能 离开被测物体__ 4.医用温度计称为 体温计 ,它的测量范围是 35 摄氏度---42 摄氏度 ,人体的正常 体温为 37 摄氏度 ,由于体温计的特殊构造读数时,可以 离开被测物体 ,第二 次使用时要 甩动体温计,使液体回到玻璃泡内.5.为了衡量在 _热传递___过程中能量转移的多少,物理学引入的物理量是_热量_,单位 __焦耳__,发生热传递的条件 存在温度差 , 温度相同 时,热传递停止.6.(实验)液体必须 种类不同__, 质量相同 酒精灯要放在铝板中央加热是为了 单位 时间内吸收的热量相同 实验时应该观察: 温度计 记录数据 :液体温度 , 加热时间 7.实验证明了哪些因素与物体吸收热量有关_物体质量___,_物质种类__ ,_升高温度 特别注意,与加热时间无关)(特别注意,与加热时间无关)8.由实验,我们引入了一个新的物理量 比热容 ,它的单位________ 一杯水的比热容为 _____ __ 物理读法____焦耳每千克摄氏度____物理意义_____1 千克的水上升(或下降)1 摄氏度吸收(或放出)4.2x10^3 焦___,倒掉一半水,比热容 不变 9.可以用比热容来鉴别物质的种类,是因为比热容是 物质的一种特性 比热容的公式 10.判断 吸收热量与比热容有关(正确)比热容与吸收热量有关(错误)11.物体吸收热量的公式__Q 吸=cm(t2-t1)___,物体放出热量的公式__Q 放=cm(t1-t2)__ 12.物体内大量分子的_不停地无规则__运动叫做热运动,分子之间存在__引力_,__斥力_ 13.内能是指__分子动能和分子势能的___总和.温度升高, 内能_增加_;内能增加, 温度 不 一定 升高_,这说明内能还与_物体的体积,状态_ 有关 14.改变内能的两种方式__做功,热传递__,晒被子是通过 热传递 的方式是内能 增加 15.热机是将__内能__转化为__机械能__ 的装置,它可以分为__吸气冲程__ __压缩冲程__ _做功冲程_ _排气冲程_ 四个部分, 其中能量发生转化的是_压缩冲程_ _做功冲程_ 内能变为机械能的是 做功冲程 机械能变为内能是的 压缩冲程 阀门打开,活塞向上的是_排气冲程 阀门关闭,活塞向下的是_做功冲程_ 16.做 5 次功,需要_ 20 个冲程,飞轮转__10_ 圈


第四篇:物联网课程小结

物联网课程小结

生活中,感觉物联网的应用无处不在!但是,自己对其并不是很了解,所以,怀着对物联网的兴趣与探索精神,我选了这门看似高端的“走进物联网”课程。希望在这门课的学习中,对一些物联网技术与应用做一些了解,扩展自己的认识层面!

在开始第一节课的时候,老师把整体的教学大纲说了一下!我顿时感觉有了无限的兴趣!课程内容大概有:老师课堂上的讲解,同学们讨论与观点碰撞,另外,有时间的话,会组织参观物联网在建筑领域中的应用(当然,由于时间和一些其他原因,这个并没有实现,稍微有些遗憾),然后就是教我们做科学调研、报告的一些方法与书面表达!当时,我就觉得,之前听说选修课都是水课这样的观念瞬间就被颠覆了,这个课能交给我们这么多,并且还能学到理论课程之外的东西,当时就觉得,这个课的档次就上去了。虽然安排在周六,但是,这样更好,免得自己在周末就散掉了!

课程内容,老师讲的很好,虽然涉及技术层面的讲的不是很深,或许讲了以我们现在的水平,还不足以接受,所以,就只讲了一些基础知识理论与在生活中的应用!其实,我记得的并不多,虽然每次上课都去了,基本没缺过课,但是,由于我个人的原因,慢慢的,发现对课堂上老师讲的内容并不是那么感兴趣,感觉老师讲的很多,虽然自己不知道,但是如果想知道的话,也不难,在网上都能自己找到,自己学习!所以,除了刚开始的几节课,之后都没有认真的听。但是,我比较喜欢的,是每次课之后的小组讨论,因为每到这个环节,自己的各种不适都没有了。当然,这也不是说我喜欢大家一起讨论,只是觉得,同学之间交流的,或许我会更有兴趣!在交流中,我就发现,有的同学确实很厉害,懂得多,且说气话来头头是道,引经据典,让我心生羡慕啊!可我呢,到我说话的时候,感觉说的都是自己准备在头脑中的,不能随口就说出一些东西,这或许是我知识不够和缺少与人交流沟通的能力吧!虽然课堂的理论教学方面,对我没多大收获,但是,在小组讨论中,都能结识一些朋友和一些语言表达上的提高!总之,这门课,也是不错的,再说就是最后课小组调研了,要文献综述,调研报告,方案设计和演讲交流,虽然,知道这是科学探索的必要流程,而且看起来也不是很难,但是,在真正落实每一步的过程中,也并不是那么简单的!

其实,这门课,并没有达到我预期的目的,但是,我收获了其他的东西!并发现,如果课程内容全是老师一味的讲,确实没什么意思!至少对我来说是的,多一些小组讨论和个人发挥的机会,也是不错的!还有,如果课堂讲解上,加入一些趣味性的东西,和一些时下热门的内容,那样的话,或许同学会更有兴趣听课的!

任东

第五篇:初中热学能量浅析

初中热学能量浅析

摘要:初中阶段温度、内能、热能和热量是相互之间既有联系,又有区别的物理量,学生往往对这些概念混淆不清,本文通过相互比较,讨论它们之间的区别和联系。在文章中,着重对温度与热量、热能与内能、温度与热能、温度与内能、热量与内能(热能)四组量之间进行了阐述。

关键词:温度、内能、热能、热量

Abstract :Temperature、inner energy、heat energy and quantity of heat are physics measure ,there are not only relation but also differences among them ,The students often confuse these concepts ,so through this text , We can compare these physics measures , discuss the relations and distinguish.In the text, we emphasis on four groups they are temperature and heat energy;heat energy and inner energy;temperature and the quality of heat.Key words:temperature、inner energy、heat energy、quantity of heat

温度、内能和热量是三个既有区别,又有联系的物理量。温度是表示物体冷热程度的物理量,从分子运动论的观点来看,物体的温度越高,分子无规则运动的速度就越大,因此可以说温度是分子热运动剧烈程度的一个标志。内能是一种形式的能,它是物体内所有分子无规则运动所具有的动能和分子势能的总和。它跟温度是不同的两个概念。但又有密切的联系,如果物体的温度升高,它的内能就增大,温度降低,内能就减小。在热传递过程中,传递能的多少叫做热量。在热传递的过程中,热量从高温物体或部分传向低温物体或部分,高温物体或部分放出了多少焦耳的热量,它的内能就减少多少焦耳;而低温物体或部分吸收了多少焦耳的热量,它们内能就增加了多少焦耳。

热学是中学物理的一个重要内容,学生往往对温度、内能、热能和热量等概念混淆不清。温度、内能、热能和热量是相互之间既有联系,又有区别的物理量,为了把这些概念区别开来,下面通过相互比较,探讨它们之间的区别和联系。

一.温度与热量

温度和热量是两个实质不同的物理量,它们之间是有一定的联系的。在不发生物态变化时,物体吸收了热量,它的内能增加,温度升高;物体放出了热量,它的内能减少,温度降低。从定义看,温度是指一个物体在某一时刻的冷热程度,它是一个表示热运动状态的物理量;热量是指几个物体(或物体的几部分之间)在某一段时间内进行的热传递过程中,每个物体吸收或放出热的多少,它是一个反映热运动过程的物理量。由此可以看出温度与热量有以下三方面的区别:①相关物体是一个还是几个;②相关时间是某一时刻还是某一段时间;③反映一个状态还是一个过程。

这两个概念的联系有两个方面:第一,不同物体之间或同一物体的不同部分之间,只有存在温度差,才能发生热量的传递,即存在温度差是传递热量前提条件,没有温度差就谈不上热量。第二,就一个物体而言,由热量的计算公式Q吸=cm(t-t0)、Q放=cm(t0-t)可知,当物体吸收或放出热量时,温度一般升高或降低;物体吸收或放出热量时,温度一般升高或降低。这里用“一般”二字,是考虑到以下情况:①当发生物态变化(如熔化和凝固)时,物体吸收或放出热量,但温度不变。②当物体温度升高或降低时,也可能没有吸热或放热。例如绝热膨胀时,系统对外做功,温度降低,虽温度发生了变化,但并没有热量放出。再如摩擦生热,物体温度升高,但并未从其他物体吸收热量。所有的做功情况,包括对物体做功和物体对外做功,虽然发生了温度的变化,但并没有热量的变化。可见,热传递与温度的变化之间并不存在必然的联系,这也说明了温度与热量是两个不同的物理量。

二.热能与内能

在工程技术上和某些物理书中,或者是我们平时的初中阶段讲课过程中曾把内能和热能看成一回事,说物体的内能就是热能。这种观点其实是不恰当的。从分子运动论观点看,热能的本质是物体内部所有分子无规则运动的动能之和,而内能除包括物体内部所有分子无规则运动的动能之外,还包括分子间势能的总和,以及组成分子的原子内部的能量、原子核内部的能量、物体内部空间的电磁辐射能等。所以,热能、化学能、原子能、电磁辐射能等都属于内能的范畴。但在一般热现象中,不涉及分子结构和原子核的变化,并且无电磁场相互作用,化学能、原子能以及电磁辐射能都为常数。因为人们通常研究的是能量之差,所以,这几种内能通常不考虑。因此,内能通常是指物体内部分子无规则运动的动能与分子间势能的总和。可见,热能只是内能中的一部分,把热能与内能等同起来其实是错误的。

三.温度与热能

如前所述,热能是物体内部所有分子无规则运动的动能之和,而温度的微观实质乃是物体内部大量无规则运动分子的集体表现,它标志着物体内分子无规则运动的剧烈程度。可见,温度与热能之间有着密切的关系:物体的温度越高,它内部分子无规则运动的动能越大,因而物体的热能就越大。

根据气体分子运动论,分子的平均动能为:

ε=3KT/2

式中K为玻尔兹曼常数,T为热力学温度。这一关系式揭示了宏观量热力学温度T与微观分子平均动能的平均值ε之间的联系,它表明温度是大量分子平均动能的量度。必须指出,唯一可确定物体温度的是其内部分子的平均平动动能,而不是平均动能。分子的平均动能等于分子各种运动(平动、转动、振动)动能之和的平均值,其值为:

ε=iKT/2

式中i为各种运动自由度数,包括分子的平动自由度t、转动自由度r、振动自由度s,即

i=t+r+s 对于单原子、双原子分子,平动自由度都等于3,但转动自由度和振动自由度随分子的不同而不同。

总之,尽管物体热能的变化与温度的变化是联系在一起的,但热能本身跟温度之间并没有一个精确的对应关系。

四.温度与内能

在历史上,焦耳曾通过实验证明,理想气体的内能只是温度的函数。根据分子运动论,对于理想气体,由于不考虑分子间的相互作用力,故其内能就是构成气体的所有分子无规则运动的动能(包括分子内原子的振动动能)之和。可以证明,质量为M的理想气体的内能为

U=M(t+r+2s)RT/2μ 式中M为气体的摩尔质量,R为普适气体常数。此式说明一定量理想气体的内能只是温度的函数。对于实际气体,由于分子间具有相互作用力,在一定温度下,这种相互作用与分子间的距离有关,当气体体积变化时,分子间的平均距离发生变化,从而使分子间的相互作用势能变化。可见,实际气体的内能是气体温度和体积的函数。所以,一般说来,内能不只取决于物体的温度,而且依赖于分子间相互作用的情况,即还与体积有关。尤其是在变化时,分子势能的影响更为显著。例如,晶体在熔化过程中温度不变,但其内能增加,这种变化正是分子间势能增加的结果。

这也就是说:①物体温度的变化一定会引起内能的变化。②物体温度不变,其内能可能改变(物体内能增加或减小,不一定引起温度变化)。

五.热量与内能(或热能)

温度不同的两个物体相互接触,由于分子热运动和分子间的碰撞,使能量从高温物体转移到低温物体,或者从同一物体的高温部分转移到低温部分,这样的过程叫做热传递。热传递的结果,高温物体的内能(或热能)减少,低温物体的内能(或热能)增多。这样单纯由于热传递所引起的内能(或热能)的变化,可以用热量来量度。因此,热量是物体在状态变化过程中所转移的能量,用以衡量在该过程中物体内能或热能的变化。但是热量并不就是系统的内能(或热能)。因为内能或热能是系统状态的单值函数,如果系统的状态不发生变化,它只具有一定的内能(或热能),根本谈不上传递热量。只有在状态变化过程中热量才有意义,所以热量是过程量,而不是态函数。也就是说,就某一状态的物体而言,我们可以说它含有多少内能或热能,而不能说它含有多少热量,说它含有多少热量是没有意义的。虽然热量和内能(或热能)的含义不同,但是它们之间密切相关。例如,在热传递过程中,高温物体的温度降低,放出热量,内能(或热能)减少,低温物体的温度升高,吸收热量,内能(或热能)增加。当然,这只有物体在热传递过程中不发生物态变化的前提下才是正确的。

对于初中热学,教师在讲授的过程中,一定要注意我所提到得内容,虽然教材对这些内容虽没有过多的描述,但做为初中教师适当的了解还是非常必要的。希望能够给大家带来收获。

参考文献:

①张三慧、沈慧君《大学物理学·热学》清华大学出版社,1991年2月

②张德启《中学物理教学法补充教材》石油出版社,1994年6月

③汪志诚《热力学·统计物理》高等教育出版社,1998年1月

下载大物热学小结word格式文档
下载大物热学小结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    专题:热学计算题(精选五篇)

    专题:热学计算题 1、用燃气灶烧水.燃烧0.5kg的煤气.使50kg的水从20℃升高到70℃.已知煤气的热值为4.2×10J/kg.求:(1)0.5kg煤气完全燃烧放出的热量.(2)水吸收的热量.(3)燃气灶烧水的效率.2、小......

    热学课程教学大纲

    热学 课程教学大纲 一、课程说明 课程名称:热学 所属专业:物理学专业本科学生 课程性质:大类平台课程 学分:3分 主要先修课程和后续课程: (1)先修课程:高等数学,力学。 (2)后续课程:热......

    热学能力训练

    能力训练 分子动理论热现象内能的利用 热机 分子动理论 内能测试题 一、选择题 1.下列关于分子的运动的说法中正确的是( ) A.分子的运动可以用人眼直接观察到 B.气体的分子运动......

    热学山西高考题

    20.(2003)如图所示,因定容器及可动活塞P都是绝热的,中间有一导热的固定隔板B,B的两边分别盛有 气体甲和乙。现将活塞P缓慢地向B移动一段距 离,已知气体的温度随其内能的增加而升高......

    初中物理热学

    初中物理随堂练习-20170116 满分: 班级:_________ 姓名:_________ 考号:_________ 一、单选题(共11小题) 1.下列措施中,能使蒸发变慢的是( ) A.用衣架将湿衣服展开晾晒 B.用热风干器吹......

    大学物理热学总结

    大学物理热学总结 ( 热力学基础 1、体积、压强和温度是描述气体宏观性质的三个状态参量。 ①温度:表征系统热平衡时宏观状态的物理量。摄氏温标,t表示,单位摄氏度(℃)。热力学温......

    初中物理公式(热学)(定稿)

    1. 物体吸热: 公式:Q吸=cm(t—t0) Q吸——吸收的热量——J c——比热容——J/(kg·℃) m——质量——kg t0——初始温度(初温)——℃ t——结束温度(末温)——℃(t—t0)——温度变......

    初中物理热学复习

    一、选择题 1、交警在查“酒驾”时,先请司机打开车窗,若闻到酒精气味,则要求司机必须接受酒精含量的测试。交警能闻到酒精气味是因为酒精 A.分子间有空隙 B.分子很小 C.分子在......