容斥问题知识点及实例解析

时间:2019-05-12 21:03:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《容斥问题知识点及实例解析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《容斥问题知识点及实例解析》。

第一篇:容斥问题知识点及实例解析

一、知识点 ?

1、集合与元素:把一类事物的全体放在一起就形成一个集合。每个集合总是由一些成员组成的,集合的这些成员,叫做这个集合的元素。

如:集合A={0,1,2,3,„„,9},其中0,1,2,„9为A的元素。

2、并集:由所有属于集合A或集合B的元素所组成的集合,叫做A,B的并集,记作A∪B,记号“∪”读作“并”。A∪B读作“A并B”,用图表示为图中阴影部分表示集合A,B的并集A∪B。

? 例:已知6的约数集合为A={1,2,3,6},10的约数集合为B={1,2,5,10},则A∪B={1,2,3,5,6,10}

3、交集:A、B两个集合公共的元素,也就是那些既属于A,又属于B的元素,它们组成的集合叫做A和B的交集,记作“A∩B”,读作“A交B”,如图阴影表示:

? 例:已知6的约数集合A={1,2,3,6},10的约数集合B={1,2,5,10},则A∩B={1,2}。

4、容斥原理(包含与排除原理):

(用|A|表示集合A中元素的个数,如A={1,2,3},则|A|=3)

原理一:给定两个集合A和B,要计算A∪B中元素的个数,可以分成两步进行:

第一步:先求出?A?+?B?(或者说把A,B的一切元素都“包含”进来,加在一起);

第二步:减去?A∩B?(即“排除”加了两次的元素)

总结为公式:|A∪B|=?A?+?B?-?A∩B? 原理二:给定三个集合A,B,C。要计算A∪B∪C中元素的个数,可以分三步进行:

第一步:先求?A?+?B?+?C?;

第二步:减去?A∩B?,?B∩C?,?C∩A?;

第三步:再加上?A∩B∩C?。

即有以下公式:

?A∪B∪C?=?A?+?B?+?C?-?A∩B?-?B∩C?-|C∩A|+|A∩B∩C?

二、例题分析:

例1 求不超过20的正整数中是2的倍数或3的倍数的数共有多少个。

分析:设A={20以内2的倍数},B={20以内3的倍数},显然,要求计算2或3的倍数个数,即求?A∪B?。

解1:A={2,4,6,„20},共有10个元素,即|A|=10 B={3,6,9,„18},共有6个元素,即|B|=6 A∩B={既是2的倍数又是3的倍数}={6,12,18},共有3个元素,即|A∩B|=3 所以?A∪B?=?A?+?B?-?A∩B?=10+6-3=13,即A∪B中共有13个元素。

解2:本题可直观地用图示法解答

? 如图,其中,圆A中放的是不超过20的正整数中2的倍数的全体;圆B中放的是不超过20的正整数中3的倍数的全体,其中阴影部分的数6,12,18是既是2的倍数又是3的倍数的数(即A∩B中的数)只要数一数集合A∪B中的数的个数即可。例2 某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人。问两科都在90分以上的有多少人?

解:设A={数学成绩90分以上的学生} B={语文成绩90分以上的学生} 那么,集合A∪B表示两科中至少有一科在90分以上的学生,由题意知,?A?=25,?B?=21,?A∪B?=38 现要求两科均在90分以上的学生人数,即求?A∩B?,由容斥原理得 ?A∩B?=?A?+?B?-?A∪B?=25+21-38=8 点评:解决本题首先要根据题意,设出集合A,B,并且会表示A∪B,A∩B,再利用容斥原理求解。

例3 某班同学中有39人打篮球,37人跑步,25人既打篮球又跑步,问全班参加篮球、跑步这两项体育活动的总人数是多少?

解:设A={打篮球的同学};B={跑步的同学} 则 A∩B={既打篮球又跑步的同学} A∪B={参加打篮球或跑步的同学} 应用容斥原理?A∪B?=?A?+?B?-?A∩B?=39+37-25=51(人)

例4 求在不超过100的自然数中,不是5的倍数,也不是7的倍数有多少个?

分析:这个问题与前几个例题看似不相同,不能直接运用容斥原理,要计算的是“既不是5的倍数,也不是7的倍数的数的个数。”但是,只要同学们仔细分析题意,这只需先算出“100以内的5的倍数或7的倍数的数的个数。”再从100中减去就行了。

解:设A={100以内的5的倍数} B={100以内的7的倍数} A∩B={100以内的35的倍数} A∪B={100以内的5的倍数或7的倍数} 则有?A?=20,?B?=14,?A∩B?=2 由容斥原理一有:?A∪B?=?A?+?B?-?A∩B?=20+14-2=32 因此,不是5的倍数,也不是7的倍数的数的个数是:100-32=68(个)

点评:从以上的解答可体会出一种重要的解题思想:有些问题表面上看好象很不一样,但经过细心的推敲就会发现它们之间有着紧密的联系,应当善于将一个问题转化为另一个问题。

例5 某年级的课外学科小组分为数学、语文、外语三个小组,参加数学小组的有23人,参加语文小组的有27人,参加外语小组的有18人;同时参加数学、语文两个小组的有4人,同时参加数学、外语小组的有7人,同时参加语文、外语小组的有5人;三个小组都参加的有2人。问:这个年级参加课外学科小组共有多少人?

解1:设A={数学小组的同学},B={语文小组的同学},C={外语小组的同学},A∩B={数学、语文小组的同学},A∩C={参加数学、外语小组的同学},B∩C={参加语文、外语小组的同学},A∩B∩C={三个小组都参加的同学} 由题意知:?A?=23,?B?=27,?C?=18 ?A∩B?=4,?A∩C?=7,?B∩C?=5,?A∩B∩C?=2 根据容斥原理二得:

?A∪B∪C?=?A?+?B?+?C?-?A∩B?-?A∩C|-?B∩C|+|A∩B∩C? =23+27+18-(4+5+7)+2 =54(人)

解2: 利用图示法逐个填写各区域所表示的集合的元素的个数,然后求出最后结果。? ? ? 设A、B、C分别表示参加数学、语文、外语小组的同学的集合,其图分割成七个互不相交的区域,区域Ⅶ(即A∩B∩C)表示三个小组都参加的同学的集合,由题意,应填2。区域Ⅳ表示仅参加数学与语文小组的同学的集合,其人数为4-2=2(人)。区域Ⅵ表示仅参加数学与外语小组的同学的集合,其人数为7-2=5(人)。区域Ⅴ表示仅参加语文、外语小组的同学的集合,其人数为5-2=3(人)。区域Ⅰ表示只参加数学小组的同学的集合,其人数为23-2-2-5=14(人)。同理可把区域Ⅱ、Ⅲ所表示的集合的人数逐个算出,分别填入相应的区域内,则参加课外小组的人数为:

14+20+8+2+5+3+2=54(人)

点评:解法2简单直观,不易出错。由于各个区域所表示的集合的元素个数都计算出来了,因此提供了较多的信息,易于回答各种方式的提问。

例6 学校教导处对100名同学进行调查,结果有58人喜欢看球赛,有38人喜欢看戏剧,有52人喜欢看电影。另外还知道,既喜欢看球赛又喜欢看戏剧(但不喜欢看电影)的有6人,既喜欢看电影又喜欢看戏剧(但不喜欢看球赛)的有4人,三种都喜欢的有12人。问有多少同学只喜欢看电影?有多少同学既喜欢看球赛又喜欢看电影(但不喜欢看戏剧)?(假定每人至少喜欢一项)

解法1:画三个圆圈使它们两两相交,彼此分成7部分(如图)这三个圆圈分别表示三种不同爱好的同学的集合,由于三种都喜欢的有12人,把12填在三个圆圈的公共部分内(图中阴影部分),其它6部分填上题目中所给出的不同爱好的同学的人数(注意,有的部分的人数要经过简单的计算)其中设既喜欢看电影又喜欢看球赛的人数为χ,这样,全班同学人数就是这7部分人数的和,即

16+4+6+(40-χ)+(36-χ)+12=100 解得 χ=14 只喜欢看电影的人数为 36-14=22 ? 解法2:设A={喜欢看球赛的人},B={喜欢看戏剧的人},C={喜欢看电影的人},依题目的条件有|A∪B∪C|=100,|A∩B|=6+12=18(这里加12是因为三种都喜欢的人当然喜欢其中的两种),|B∩C|=4+12=16,|A∩B∩C|=12,再设|A∩C|=12+χ由容斥原理二:|A∪B∪C |=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C| 得:100=58+38+52-(18+16+х+12)+12 解得:х=14 ∴36-14=22 所以既喜欢看电影又喜欢看球赛的人数为14,只喜欢看电影的人数为22。

点评:解法1没有用容斥原理公式,而是先分别计算出(未知部分设为х)各个部分(本题是7部分)的数目,然后把它们加起来等于总数,这种计算方法也叫“分块计数法”,它是利用图示的方法来解决有关问题,希望同学们能逐步掌握此类方法,它比直接用容斥原理公式更直观,更具体。

7、某车间有工人100人,其中有5个人只能干电工工作,有77人能干车工工作,86人能干焊工工作,既能干车工工作又能干焊工工作的有多少人?

解:工人总数100,只能干电工工作的人数是5人,除去只能干电工工作的人,这个车间还有95人。利用容斥原理,先多加既能干车工工作又能干焊工工作的这一部分,其总数为163,然后找出这一公共部分,即163-95=68 例

8、某次语文竞赛共有五道题(满分不是100分),丁一只做对了(1)、(2)、(3)三题得了16分;于山只做对了(2)、(3)、(4)三题,得了25分;王水只做对了(3)、(4)、(5)三题,得了28分,张灿只做对了(1)、(2)、(5)三题,得了21分,李明五个题都对了他得了多少分?

解:由题意得:前五名同学合在一起,将五个试题每个题目做对了三遍,他们的总分恰好是试题总分的三倍。五人得分总和是16+25+28+21=90。因此,五道题满分总和是90÷3=30。所以李明得30分。

例9,某大学有外语教师120名,其中教英语的有50名,教日语的有45名,教法语的有40名,有15名既教英语又教日语,有10名既教英语又教法语,有8名既教日语又教法语,有4名教英语、日语和法语三门课,则不教三门课的外语教师有多少名?

解:本题只有求出至少教英、日、法三门课中一种的教师人数,才能求出不教这三门课的外语教师的人数。至少教英、日、法三门课中一种教师人数可根据容斥原理求出。根据容斥原理,至少教英、日、法三门课中一种的教师人数为50+45+40-15-10-8+4=106(人)不教这三门课的外语教师的人数为120-106=14(人)。

第二篇:小五班容斥问题讲义

小五班容斥问题讲义

容斥原理1.二量重叠问题:总和=A+B-AB 容斥原理2.三量重叠问题:总和=A+B+C-AB-AC-BC+ABC 例题1.一个班有45个小学生,统计借课外书的情况是:全班学生都借有语文或数学课外书。借语文课外书的有39人,借数学课外书的有32人。语文、数学两种课外书都借的有()人。

练习1.某区100个外语教师懂英语或俄语,其中懂英语的75人,既懂英语又懂俄语的20人,那么懂俄语的教师为()人。

练习2.六一班有学生46人,其中会骑自行车的17人,会游泳的14人,既会骑车又会游泳的4人,问两样都不会的有()人。

练习3.民兵进行训练,每横排人数一样多,每竖行人数也一样多,李军站的位置从前面数是第4人,从后面数是第6人,从左面数是第3人,从右面数是第2人,一共有多少人参加训练? 练习4.王红从前面数是第6人,郝文排在最后,和王红间隔3个人,王红和黄克在同一横排上,王红从左数是第2个人,黄克从右数是第1人,他们间隔5人。三二班同学一共有多少人? 练习5.六一儿童节那天,全班45人到颐和园去玩,有33人划了船,20人爬了山,5名同学因身体不好,他们既没划船也没爬山,他们游览了长廊。问:既划了船也爬了山的同学有多少?

例题2.在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐,又爱好体育的人最少有()人,最多有()人。

例题3.在1至100的自然数中,是5的倍数或是7的倍数的数有()个。练习1.在1至10000中不能被5或7整除的数共有()个。

练习2.在1至10000之间既不是完全平方数,也不是完全立方数的整数有()个。练习3.在1到10000这10000个自然数中,即不能被8整除也不能被125整除的数有多少个? 练习4.有若干卡片,每张卡片上写着一个数,它是3的倍数或4的倍数,其中标有3的倍数的卡片占,标有4的倍数的卡片占,标有12的倍数的卡片有15张.那么,这些卡片一共有多少张?

例题4.五一小学举行小学生画展,其中18幅不是六年级的,20幅不是五年级的。现在知道五、六年级共展出22幅画,问:其它年级共展出多少幅画? 练习1.东河小学画展上展出了许多幅画,其中有16幅画不是六年级的,有15幅画不是五年级的。现知道五、六年级共有25幅画,那么其他年级的画共有多少幅? 练习2.光明小学举办学生书法展览。学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法共有多少幅?

练习3.实验小学举办学生书法展.学校的橱窗里展出每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅.一、二年级参展的作品总数比三、四年级参展作品的总数少4幅.一、二年级参展的书法作品共有多少幅?

例题5.洗好的8块手帕夹在绳子上晾干,同一个夹子夹住相邻的两块手帕的两边,这样一共要多少个夹子?(9)练习1.把图画每两张重叠在一起钉在墙上,现在有5张画要多少个图钉呢?(12)例题6.罗明、李阳和赵刚每人都有几本书,罗明和李阳共有33本,罗明和赵刚共有39本,李阳和赵刚共有34本。问:他们三人各有几本书?

练习3.甲班和乙班共88人,乙班和丙班共97人,丙班和丁班共94人。求甲班和丁班共多少人?

例题7.二年一班共42名同学,其中少先队员33人。这个班男生20人,女生中有4人不是少先队员,求男生中有多少人是少先队员。

练习1.某班有学生46人,在调查他们家中是否有电子琴和小提琴时发现,有电子琴的22人,两种琴都没有的14人,只有小提琴的与两种琴都有的人数之比是5∶3。问:只有电子琴的有多少人?

例题8.一次数学测验,甲答错了题目总数的1/4,乙答错了3道题,两人都答错的题目是题目总数的1/6。求甲、乙都答对的题目数。

练习1.一次数学速算练习,甲答错题目总数的1/9,乙答对7道题,两人都答对的题目是题目总数的1/6。问:甲答对了多少道题?

例题9.有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?

例题10.某班共有30名男生,其中20人参加足球队,12人参加蓝球队,10人参加排球队.已知没一个人同时参加3个队,且每人至少参加一个队,有6人既参加足球队又参加蓝球队,有2人既参加蓝球队又参加排球队,那么既参加足球队又参加排球队的有(4)人.

练习1.某班有42人,其中26人爱打蓝球,17人爱打排球,19人爱踢足球,9人既爱打蓝球又爱踢足球,4人既爱打排球又爱踢足球。没有一个人三种球都爱好,也没有一个人三种球都不爱好。问:既爱打蓝球又爱打排球的有几人? 练习2.100个学生只有一人没学过外语,学过英语的有39人,学过法语的有49人,学过俄语的有41人,学过英语也学过法语的有14人,学过英语也学过俄语的有13人,学过法语也学过俄语的有9人。问:三种语言都学过的有多少人? 练习3.64个小学生都订了报纸,其中订A报的28人,订B报的41人,订C报的20人,并且同时订A、B报的10人,同时订A、C报的12人,同时订B、C报的也是12人。问:三种报都订的有多少人?

练习4.在一个炎热的夏日,10个小学生去冷饮店每人都买了冷饮。其中6人要了汽水,6人要了可乐,4人要了果汁,有3人既要了汽水又要了可乐,1人既要了汽水又要了果汁,2人既要了可乐又要了果汁。问:(1)三样都要的有几人?(2)只要一样的有几人?

练习5.在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕,2个人既带了汉堡又带了芝士蛋糕。问:

(1)三种都带了的有几人?(2)只带了一种的有几人? 答案:0人,4人

练习6.六年级100名同学,每人至少爱好体育、文艺和科学三项中的一项。其中,爱好体育的55人,爱好文艺的56人,爱好科学的51人,三项都爱好的15人,只爱好体育和科学的4人,只爱好体育和文艺的17人。问:有多少人只爱好科学和文艺两项?只爱好体育的有多少人?

练习7.五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,语文、美术、自然3科兴趣小组都参加的有4人。求这个班的学生人数。

练习8.建平学校第14届秋季运动会中,参加100米短跑的共156人,比参加200米短跑的少40人,比参加50米短跑的多26人,同时参加100米和50米短跑的有74人,同时参加200米和100米的有80人,是同时参加50米和200米人数的2倍,同时参加50米、100米和200米的有30人,求这届运动会中参加50、100米和200米的共有多少人?

练习9.在游艺会上,有100名同学抽到了标签分别为1至100的奖券.按奖券标签号发放奖品的规则如下:①标签号为2的倍数,奖2支铅笔;②标签号为3的倍数,奖3支铅笔;③标签号既是2的倍数,又是3的倍数可重复领奖;④其他标签号均奖1支铅笔.那么游艺会为该项活动准备的奖品铅笔共有多少支? 例题11.分母是1001的最简真分数有()个。练习1.以105为分母的最简真分数共有多少个?

练习2.在前200个自然数中,能被2或3或5整除的有多少个?

练习3.试求:在1000以内(含1000)的自然数中,不能被3、5、8任何一个整除的数的个数。

例题12.有28人参加田径运动会,每人至少参加两项比赛。已知有8人没参加跑的项目,参加投掷项目的人数与同时参加跑和跳两项的人数都是17人。问:仅参加跑和投掷两项的有多少人?

练习1.学校数学竞赛出了A、B、C三道题,至少做对一道的有25人,其中做对A题的有10人,做对B题的有13人,做对C题的有15人。如果三道题都做对的只有一人,那么只做对两道题和只做对一道题的各有多少人?

练习2.某年级60人中有2/3的同学爱打乒乓球,3/4的同学爱踢足球,4/5的同学爱打蓝球,这三项运动都爱好的有22人。问:这个年级最多有多少人这三项运动都不爱好?

练习3.某班共有学生48人,其中27人会游泳,33人会骑自行车,40人会打乒乓球。那么,这个班至少有多少学生这三项运动都会?

练习4.康大六校五年二班学生参加语文、数学、英语三科考试,90分以上的语文有21人,数学有19人,英语有20人,语文、数学都在90分以上的有9人,数学、英语在90分以上的有7人,语文、英语都在90分以上的有8人,另有5人三科都在90分以下,这个班最多能有多少人?

练习5.图书室有100本书,借阅图书者需在图书上签名.已知这100本书中有甲、乙、丙签名的分别有33,44和55本,其中同时有甲、乙签名的图书为29本,同时有甲、丙签名的图书为25本,同时有乙、丙签名的图书为36本.问这批图书中最少有多少本没有被甲、乙、丙中的任何一人借阅过? 练习6.甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了7.5个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个? 练习7.学校举行棋类比赛,设象棋、围棋和军棋三项,每人最多参加两项。根据报名的人数,学校决定对象棋的前六名、围棋的前四名和军棋的前三名发放奖品。问:获奖人数最多为几人?最少为几人?

例题13.某小学的统计数字表明:学校共有学生1200名,其中男生650名,高年级学生300名,三好学生100名,男生中的三好学生60名,高年级学生中男生160名,高年级女生中三好学生20名,非高年级女生中不是三好学生的400名。试证明:这个统计数字一定有错误。

练习1.全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动项目没有人全会。至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀。如果全班有6个人数学不及格,问:(1)全班数学成绩优秀的有几名?(2)全班有几个人即会游泳又会滑冰?

例题14.某工厂一季度有80%的人全勤,二季度有85%的人全勤,三季度有95%的人全勤,四季度有90%的人全勤。问:全年全勤的人至多占全厂人数的百分之几?至少占百分之几?

练习1.五(6)班有54人参加秋游活动其中35人喜欢玩“捉特务”,45人喜欢玩“老鹰捉小鸡”,40人喜欢踢足球,50人喜欢跳牛皮筋,你是否可以肯定这个班至少有多少学生对这四项活动都喜欢。

第三篇:公务员考试——容斥原理问题

知识框架

数学运算问题一共分为十四个模块,其中一块是容斥原理问题。

在公务员考试中,根据集合的个数,容斥原理问题一般只有两集合容斥关系和三集合容斥关系两种类型,两集合容斥关系一般只要采用公式法就可轻松解决,三集合容斥关系又可分为标准型、图示标数型、整体重复型三类,对应解题方法分别是公式法、文氏图法、方程法。无论集合中的元素怎么变化,同学只要牢牢把握这两类型,就能轻松搞定容斥原理问题。核心点拨

1、题型简介

容斥原理是在不考虑重叠的情况下,先将所有对象的数目相加,然后再减去重复的部分,从而使得计算的结果既无遗漏又无重复。掌握容斥原理问题,可以帮助同学们解决多集合元素个数的问题。

2、核心知识

(1)两个集合容斥关系

(2)三个集合容斥关系 A、标准型公式

B、图示标数型(文氏图法)

画图法核心步骤: 1 画圈图; 数字(先填最外一层,再填最内一层,然后填中间层); ③做计算。C、整体重复型

A、B、C分别代表三个集合(比如“分别满足三个条件的元素数量”); W代表元素总量(比如“至少满足三个条件之一的元素的总量”); x代表元素数量1(比如“满足一个条件的元素数量”); y代表元素数量2(比如“满足两个条件的元素数量”); z代表元素数量3(比如“满足三个条件的元素数量”)。

3、核心知识使用详解

(1)容斥原理问题要清楚容斥原理公式中各项的实际含义,与题中的数据准确对应。(2)容斥原理问题的关键在于把文字转化为文氏图,在图中应准备反应题中集合之间的关系。(3)容斥问题的难度在于题中集合可能较多,某些集合之间的关系可能不确定,这需要仔细的分析,抓住不确定的。

夯实基础 1.两个集合容斥关系

例1:(2007年中央第50题)小明和小强参加同一次考试,如果小明答对的题目占题目总数的,小强答对了27道题,他们两人都答对的题目占题目总数的,那么两人都没有答对的题目共有()。

A.3道 B.4道 C.5道 D.6道 【答案】 D 【解析】 [题钥]

由于不知道这次考试题目的总数,所以可先设题目总数即元素总量为。

“小明答对的题目占题目总数的”,相当于集合A为。

“小强答对了27道题”,相当于集合B为27。

“他们两人都答对的题目占题目总数的”,相当于集合。

“两人都没有答对的题目”,相当于求集合。

[解析]

根据题意,确定元素总量W:;

确定集合A:;

确定集合B:27;

确定集合:;

代入两集合公式:

==

因为和均为题数,须均为正整数,所以必须为12的倍数,而且由选项知:3≤≤6

当W=12时,=-16,不合题意;

当W=24时,=-5,不合题意;

当W=36时,=6,符合题意。

所以,两人都没答对的题目为6道。

因此,选B。2.三个集合容斥关系

例2:(浙江行测真题)某专业有学生50人,现开设甲、乙、丙三门选修课。有40人选修甲课程,36选修乙课程,30人选修丙课程,兼选甲、乙两门课的有28人,兼选甲、丙两门课的有26人,兼选乙、丙门课程的有24人,甲、乙、丙三门课程均选的有20人,问三课均未选的有多少人?()A.1人 B.2人 C.3人 D.4人 【答案】 B 【解析】 [题钥]

“某专业有学生50人”,相当于元素总量W为50。

“有40人选修甲课程”,相当于集合A为40。

“36选修乙课程”,相当于集合B为36。

“30人选修丙课程”,相当于集合C为30。

“兼选甲、乙两门课的有28人”,相当于集合=28。

“兼选甲、丙两门课的有26人”,相当于集合=26。

“兼选乙、丙门课程的有24人”,相当于集合=24。

“甲、乙、丙三门课程均选的有20人”,相当于集合=20。

“问三课均未选的有多少人?”相当于求集合。

[解析]

根据题意,确定元素总量W:50

确定集合A:40 确定集合B:36

确定集合C:30

确定集合:28

确定集合:26

确定集合:24

确定集合:20

代入三集合标准型公式:

=50-(40+36+30-28-24-26+20)

=2

因此,选B。例3:(国家行测真题)

某高校对一些学生进行问卷调查。在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试参加的有46人,不参加其中任何一种考试的有15人。问接受调查的学生共有多少人?()A.120 B.144 C.177 D.192 【答案】 A 【解析】 [题钥]

观察题目,属于三个集合容斥关系中的标数型问题,可采用文氏图法求解。[解析]

本题属于标数型问题,可采用文氏图法求解,如下图所示。

图中,黑色部分是准备参加两种考试的学生,灰色部分是准备参加三种考试的学生。计算总人数时,黑色部分重复计算了一次,灰色部分重复计算了两次,所以接受调查的学生共有:

63+89+47-24×2-46+15=120人。

因此,选A。例4:(浙江2004-20)某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动小组。现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?()A.15人 B.16人 C.17人 D.18人 【答案】 A 【解析】 [题钥]

“某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动小组”,相当于元素总量W为35。

“参加英语小组的有17人”,相当于集合A为17。

“参加语文小组的有30人”,相当于集合B为30。

“参加数学小组的有13人”,相当于集合C为13。“如果有5个学生三个小组全参加了”,相当于元素数量3为5。

“问有多少个学生只参加了一个小组?”,此类题目属于整体重复型问题,可采用方程法求解。

[解析]

根据题意,设:

参加一个小组的人数为x,即元素数量1为x;

参加两个小姐的人数为y,即元素数量2为y;

确定元素总量W:38

确定集合A:17

确定集合B:30

确定集合C:13

确定元素数量3:5

代入公式,列方程:

因此,选A。

进阶训练

1.两个集合容斥关系

例5:某校学生参加数学竞赛的有120名男生,80名女生,参加英语竞赛的有120名女生,80名男生。已知该校总共有260名学生参加竞赛,其中75名男生两科竞赛都参加了,那么参加数学竞赛而没有参加英语竞赛的女生人数是多少人?()A.15 B.20 C.25 D.30 【答案】 A 【解析】 [题钥]

假设260名学生当中有m名男生、n名女生,同时参加了教学和英语竞赛的女生人数为x。

对于男生:

“m名男生”,相当于元素总量为m。

“参加数学竞赛的有120名男生”,相当于集合为120。

“参加英语竞赛的”,“80名男生”,相当于集合为80。

“其中75名男生两科竞赛都参加了”,相当于集合为75。

对于女生:

“n名女生”,相当于元素总量为n。

“参加数学竞赛的”、“80名女生”,相当于集合为80。

“参加英语竞赛的有120名女生”,相当于集合为120。

同时参加了教学和英语竞赛的女生人数,相当于集合为x。

“已知该校总共有260名学生参加竞赛”,可知260名学生都参加了竞赛,没有“数学竞赛和英语竞赛都没参加”的情况。相当于集合、集合为0。

[解析]

根据题意,设:

260名学生当中有m名男生、n名女生; 同时参加了教学和英语竞赛的女生人数为x。

对于男生:

确定元素总量:m

确定集合:120

确定集合:80

确定集合:75

确定集合:0

对于女生:

确定元素总量:n

确定集合:80

确定集合:120

确定集合:x

确定集合:0

男女生总数,即m+n=260。

代入两集合公式,列方程:

则有

即同时参加了教学和英语竞赛的女生人数为65。

由于参加数学竞赛的女生有80名,则参加数学竞赛而没有参加英语竞赛的女生人数:

80-65=15名。

因此,选A。2.三个集合容斥关系

例6:(广州2007-33)如右图所示,每个圆纸片的面积都是36,圆纸片A与B、B与C、C与A的重叠部分面积分别为7、6、9,三个圆纸片覆盖的总面积为88,则图中阴影部分的面积为?()

A.66 B.68 C.70 D.72 【答案】 C 【解析】 [题钥]

“三个圆纸片覆盖的总面积为88”,相当于元素总量W为88,集合为0。“每个圆纸片的面积都是36”,相当于集合A、集合B、集合C都为36。

“圆纸片A与B、B与C、C与A的重叠部分面积分别为7、6、9”,相当于集合为6,集合为9。

为7,集合要求“阴影部分的面积”,可先求出集合。

[解析]

根据题意,确定元素总量W:88

确定集合A:36

确定集合B:36

确定集合C:36

确定集合:7

确定集合:6

确定集合:9

确定集合:0

代入公式:

=(88-0)-(36+36+36-7-6-9)

=2

“由中间向外围”进行数据标记,进行简单加减运算,如下图过程所示:

据图可知,阴影部分的面积为:22+25+23=70。

因此,选C。例7:(江苏2009A类-19)某调查公司就甲、乙、丙三部电影的收看情况向125人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,其中有24人三部电影全看过,20人一部也没有看过,则只看过其中两部电影的人数是()。A.69 B.65 C.57 D.46 【答案】 D 【解析】 [题钥]

“某调查公司就甲、乙、丙三部电影的收看情况向125人进行调查”、“20人一部也没有看过”,相当于元素总量W为125-20=105。

“有80人看过甲片”,相当于集合A为89。

“有47人看过乙片”,相当于集合B为47。

“有63人看过丙片”,相当于集合C为63。

“其中有24人三部电影全看过”,相当于元素数量3为24。

求解“只看过其中两部电影的人数”,此类题目属于整体重复型问题,可采用方程法求解。

[解析] 根据题意,设:

只看过其中一部电影的人数为x,即元素数量1为x;

看过其中两部电影的人数为y,即元素数量2为y;

确定元素总量W:125-20=105

确定集合A:89

确定集合B:47

确定集合C:63

确定元素数量3:24

代入公式,列方程:

因此,选D。

例8:建华中学共有1600名学生,其中喜欢乒乓球的有1180人,喜欢羽毛球的有1360人,喜欢篮球的有1250人,喜欢羽毛球的有1040人,问以上四项球类运动都喜欢的至少有几人? A.20 B.30 C.40 D.50 【答案】 B 【解析】 [题钥]

观察题目,发现采用公式法,文氏图法都是比较麻烦的。那么逆向考虑,看下各项活动都不喜欢的人有多少人,当这各项活动都不喜欢的人互不重叠的时候,可满足四项活动都喜欢的人最少。

[解析]

根据题意,可知:

不喜欢乒乓球的有:1600-1180=420人; 不喜欢羽毛球的有:1600-1360=240人;

不喜欢篮球的有:1600-1250=350人;

不喜欢足球的有:1600-1040=560人;

若这些人互不重叠则可满足四项运动都喜欢的人最少,为:

1600-(420+240+350+560)=30人。

第四篇:小学奥数教案——容斥问题

教案

容斥问题

一 本讲学习目标

理解并掌握容斥问题。

二 重点难点考点分析

容斥问题涉及到一个重要原理——包含和排除原理。也叫容斥原理。即当两个计数部分有重复包含时,为了不重复的计数,应从它们的和中排除重复部分。

三 概念解析

容斥原理:对几个事物,如果采用两种不同的分类标准,按性质1和性质2分类,那么具有性质1或性质2的事物个数等于性质1加上性质2减去它们的共同性质。

四 例题讲解

一班有48人,班主任在班会上问:“谁做完了语文作业?请举手”有37人举手,又问:“谁做完了数学作业?请举手”有42人举手,最后问:“谁语文、数学作业都没做完?请举手”结果没有人举手。求这个班语文、数学作业都做完的人数是多少个?

四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订阅《小学生优秀作文》的有45人,每人至少订阅一种读物,订阅《数学大世界》的有多少人?

某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的人有23人,两题都答对的有15人。问多少个同学两题都答的不对?

某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么参加语文、数学两科竞赛的有多少人?

在1到100的全部自然数中,既不是5的倍数,也不是6的倍数的数有多少个?

光明小学举办学生书法展览。学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品一共有10幅,其他年级参展的书法作品共有多少幅?

学校文艺组每人至少会演奏一种乐器,已知会拉手提琴的有24人,会弹电子琴的有17人,其中两样都会的有8人。这个文艺组一共有多少人?

一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种都订阅的有25人。两种报纸都没有订阅的有多少人?

一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。问这个俱乐部里两种棋都会下的有多少人?

100个人参加测试,要求回答五道试题,并且规定凡答对3题或3题以上的为测试合格。测试结果是:答对第一题的有81人,答对第二题的有91人,答对第三题的有85人,答对第四题的79人,答对第五题的有74人,那么至少有多少人合格。

五 课堂练习

在1到130的全部自然数中,既不是6的倍数,也不是5的倍数的数有多少个?

实验小学举办学生书法展,学校的橱窗里展出了每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展的书法作品共有20幅。

一、二年级参展的作品总数比三、四年级参展的作品总数少4幅。

一、二年级参展的书法作品共有多少幅?

六 课后作业

(一)儿童节那天,学校的画廊里展出了每个年级学生的图画作品,其中有25幅不是三年级的,有19幅不是四年级的,三、四年级参展的图画共有8幅,其他年级参展的画共有多少幅?

五年级有22名学生参加语文、数学考试,每个至少有一门功课取得优秀成绩,其中语文成绩优秀的有65人,数学成绩优秀的有87人。语文、数学都优秀的有多少人?

七 励志或学科小故事——阿契塔

阿契塔(Archytas)希腊数学家。公元前约420年生于意大利塔伦通(现塔兰托);公元前约350年卒。阿契塔是毕达哥拉斯学派的成员,居住在塔伦通,那里是当时保留到最后的一个纺织毕达哥拉斯学派的活动中心。阿契塔象公元前四世纪的许多希腊学者那样,致力于说服希腊各城邦联合起来反对日

效力增长的外来势力。可是,同所有其他希腊学者一样,他也失败了。希腊人坚持彼此之间的自相残杀,直到被马其顿所征服。

阿契塔的洒趣在于希腊的三大问题之一——立方倍积,即给定一个立方体,仅用圆规和直尺作另一个立方体,使这个立方体的体积是给定的立方体的两倍。后来发现,在所指定的条件下,这个问题是不可解,但是在经过一番努力之后,阿契塔发现了与比例中项(即在两个外项之间插入的一些线或数值)有关的一些定理,他使用比立方倍积问题所给条件的严格要求要自由一引起的工具,通过精巧的三维构体这个问题。他是试图把纯粹的技艺应用于力学的第一个希腊数学家,当时他按照自己的方式创立了关于声音和音理论。他仿照算术级数(1,2,3,4„„)和几何级数(1,2,4,8,„„),提出了调和级数(1,0.5,0.33,0.25,„„)的概念,他主张音调取决于空气的振动速度。他是正确的,但是他完全没有波动的概念。他相信音调高的声音在空气、物体中传播的速度比音调低的声音快,这当然是错误的。据信他还是滑轮的发明者。

第五篇:容斥原理五年级试题

容斥原理五年级试题一

1、在1到500的全部自然数中,不是7的倍数,也不是9的倍数的数共有多少个?

2、六年级一班有45名同学,每人都参加暑假体育培训班,其中足球班报25人,篮球班报20人,游泳班报30人,足球、篮球都报者有10人,足球、篮球都报者有12人。问三项都报的有多少人?

3、某校六年级二班有49人参加了数学、英语、语文学习小组,其中数学有30人参加,英语有20人参加,语文小组有10人参加,老师告诉同学既参加数学又参加语文小组的有3人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参加的只有1人,求既参加英语又参加数学小组的人数。

4、某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没有得满分者3人。问这个班最多多少人?最少多少人?

5、向50名同学调查春游去颐和园还是去动物园的态度,赞成去颐和园的人数是全体的35,其余不赞成;赞成去动物园的比赞成去颐和园的学生多3人,其余不赞成,另外对去两处都不赞成的学生数比对去两处都赞成的学生数的13多1人,同时去颐和园和去动物园都赞成和都不赞成的学生各有多少人?

6、分母是1001的最简真分数共有多少人?

7、李老师出了两道数学题,全班40人中,第一有30人做对,第二题有12人未做对,两题都做对的有20人。

(1)第2题对第1题不对有几个人?

(2)两题都不对的有几人?

8、每边长为10厘米的正方形纸片,正中间挖一个正方形的洞,成为宽1厘米的方框,把五个这样的方框放在桌面上,成为如的图案。问桌面上放这些方框盖住部分的面积是多少平方厘米?

9、一次数学竞赛都是填空题,小明答错的恰是题目总数的14,小亮答错5题,两人都答错的题目的总数的16,已知小明,小亮都答对题目超过了试题总数的一半,则他们都答对了多少道题?

10、在1到1998的自然数中,能被2整除,但不能被3或7整除的数有多少个?

容斥原理五年级试题二

1、全班有46名同学,仅会打乒乓球的有18人,会打乒乓球以及会打羽毛球的有7人,不会打乒乓球又不会打羽毛球的有6人,问,仅会打羽毛球的有多少人?

2、电视台向100人调查昨天收看电视情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。问:两个频道都没有看过的有多少人?

3、一次数学小测验只有两道题,结果全班有10人全对,第一题有25人做对,第二题有18人做错,那么两题都做错的有多少人?

4、在小于100的自然数中既不能被3整除,又不能被2整除的数有多少个?

5、某班45名同学参加了体育测试,其中百米得优者20人,跳远得优者18人,又知百米、跳远均得优者7人,跳高、百米均得优者6人,跳高、跳远均得优者8人,跳高得优者22人,全班只有1名同学各项都没有达到优,求三项都是优的人数。

6、某班四年级时,五年级时和六年级时分别评出10名三好学生,又知四、五年级连续三好生4人,五、六年级连续三好生3人,四年级六年级两年评上三好生的有5人,四、五、六三年没有评过三好生的有20人,问这个班最多有多少名同学?最少有多少名同学?

7、六一儿童节那天,全班45人到颐和园去玩,有33人划了船,20人爬了山。5名同学因身体不好,他们既没有划船也没有爬山,他们游览了长廊。问:既划了船也爬了山的同学有多少人?

8、六(3)班有32人参加数学竞赛,27人参加英语竞赛,22人参加语文竞赛,其中参加英语、数学两科的有12人,参加英语和语文两科的有14人,参加数学和语文两科的有10人,这个班至少有多少人?

9、分母是273的最剪真分数共有多少个?

10、博文学校参加数学竞赛有120名男生,80名女生,参加语文竞赛的有120名女生,80名男生,已知该校总共有260名学生参加竞赛,其中75名男生两科竞赛都参加了,那么只参加数学竞赛而没有参加语文竞赛的女生有多少人?

下载容斥问题知识点及实例解析word格式文档
下载容斥问题知识点及实例解析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    国考:公式法解容斥问题(二集合)

    国考:公式法解容斥问题(二集合) 河北公务员考试的《行测职业能力测验》包括五大部分内容:言语理解与表达、数量关系、判断推理、常识判断和资料分析,主要考察考生是否具有从事公......

    中公教育命中2014国考容斥问题考点

    1 工厂组织职工参加周末公益劳动,有80%的职工报名参加,其中报名参加周六活动的人数与报名参加周日活动的人数比为2:1,两天的活动都报名参加的人数为只报名参加周日活动的人数......

    2018年国家公务员考试行测答题技巧:容斥问题详解5篇范文

    2018年国家公务员考试行测答题技巧:容斥问题详解 容斥问题是好多公务员考试的必考考点,这类问题听起来很难,但是真正掌握起来并不难,只要掌握清楚常考的考点及其做题的方法就很......

    2018福建漳州公务员考试行测备考:三者容斥问题解题技巧

    2018福建漳州公务员考试行测备考:三者容斥问题解题技巧 公务员考试的过程中,容斥问题是行测数量关系中比较常考的一道题。这类题型总是令很多考生头疼不已,因为容斥问题看起来......

    民法实例解析

    课程名称:民法实例解析论文题目:浅析一物二卖问题案例一 河南缔华房地产开发有限公司与郑州照相机厂破产管理人拍卖合同纠纷上诉案 (2009)豫法民二终字第57号 案件事实:照相机......

    竞聘演讲实例解析

    尊敬的领导,亲爱的同志们:大家好!最近,我反复思考:要不要参加竞争处长的演讲呢?竞争者,“并逐曰竞,对辩曰争”。就是说,竞争当是同一起跑线上的赛跑,是更高层次上的夺标。我自1995年......

    兼职陷阱实例解析

    大学生求职陷阱实例解析 陷阱名称:试用陷阱 有些企业在招聘时,并不明确告知试用期,试用期的工资往往很低,企业承诺转正后工资会大幅度上涨。 但是,试用期即将结束时,企业便以各种......

    儿童问题行为实例解析与对策集

    读《——教育不能只为争第一》后感 对于非常在意“第一”,如果没争到第一就会生气或者哭闹,并产生恐慌和不安的孩子,大人调整价值观同样很重要 有一些孩子非常在意“第一”,如果......