第一篇:初中高中数学竞赛常用公式表达式总结
乘法与因式分解 a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)
三角不等式 |a+b|≤|a|+|b|
|a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b
(在三角形中,必然有两边之和大于第三边,即为三角不等式。
三角不等式1 三角不等式还有以下推论:两条相交线段AB、CD,必有AC+BD小于AB+CD。
|a|-|b|≤|a±b|≤|a|+|b|(定理),也称为三角不等式。
加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b)将三角函数的性质融入不等式.如:当X在(0,90*)时,有sinx |a|-|b| = |a+b| = |a|+|b| 左边等式成立的条件:ab≤0且|a|≥|b| 右边等式成立的条件:ab≥0 三角不等式2 |a|-|b| = |a-b| = |a|+|b| 左边等式成立的条件:ab≥0且|a|≥|b| 右边等式成立的条件:ab≤0 和差化积 sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2] |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/ 2a-b-√(b2-4ac)/ 2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)半角公式 sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA)) sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) sin(α/2)=±[(1-cosα)/2]^(1/2)(正负由α/2所在象限决定) cos(α/2)=±[(1+cosα)/2]^(1/2)(正负由α/2所在象限决定) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα=±[(1-cosα)/(1+cosα)]^(1/2) 推导:tan(α/2)=sin(α/2)/cos(α/2)=[2sin(α/4)cos(α/4] /[2cos(α/4)^2-1]=sinα/(1+cosα)=(1-cosα)/sinα 和差化积 2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB 某些数列前 n 项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n +1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角 圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注: D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4πr^ 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a 是圆心角的弧度数 r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中 ,S' 是直截面面积,L 是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 高中数学所有公式大总结 前言:高中数学知识点总结,好成绩并不难,努力+方法就能成功。 基本初等函数Ⅰ 函数应用 空间几何体 点、直线和平面的位置关系 空间向量与立体几何 直线与方程 圆与方程 圆锥曲线与方程 算法初步 统计 概率 离散型随机变量的分布列 三角函数 三角函数的图象与性质 三角恒等变换 解三角形 平面向量 数列 不等式 常用逻辑用语 导数及其应用 复数 计数原理 坐标系与参数方程 高中数学数列公式及结论总结 一、高中数列基本公式: 1、一般数列的通项an与前n项和Sn的关系:an= 2、等差数列的通项公式:an=a1+(n-1)dan=ak+(n-k)d(其中a1为首项、ak为已知的第k项)当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 3、等差数列的前n项和公式:Sn=Sn=Sn= 当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。 4、等比数列的通项公式: an= a1 qn-1an= ak qn-k (其中a1为首项、ak为已知的第k项,an≠0) 5、等比数列的前n项和公式:当q=1时,Sn=n a1(是关于n的正比例式); 当q≠1时,Sn=Sn= 三、高中数学中有关等差、等比数列的结论 1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4mS3m、……仍为等比数列。 5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。 6、两个等比数列{an}与{bn}的积、商、倒数组成的数列 {an bn}、、仍为等比数列。 7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3(为什么?) 11、{an}为等差数列,则(c>0)是等比数列。 12、{bn}(bn>0)是等比数列,则{logcbn}(c>0且c 1)是等差数列。 13.在等差数列 中: (1)若项数为,则 (2)若数为 则,14.在等比数列 中: (1)若项数为,则 (2)若数为 则, 直线 1、沙尔公式:ABxBxA2、数轴上两点间距离公式:ABxBxA3、直角坐标平面内的两点间距离公式:P1P2 4、若点P分有向线段P1P2成定比λ,则λ=(x1x2)2(y1y2)2P1P PP2 xx1yy1=; x2xy2y5、若点P1P2成定比λ,则:λ=1(x1,y1),P2(x2,y2),P(x,y),点P分有向线段P x=x1x2yy2y=111 x1x2x3y1y2y3。33若A(x1,y1),B(x2,y2),C(x3,y3),则△ABC的重心G的坐标是 6、求直线斜率的定义式为k=tg,两点式为k= 7、直线方程的几种形式: 点斜式:yy0k(xx0),斜截式:ykxb y2y1。x2x1 yy1xx1,y2y1x2x1 xy截距式:1 ab 一般式:AxByC0 经过两条直线l1:A1xB1yC10和l2:A2xB2yC20的交点的直线系方程是:A1xB1yC1(A2xB2yC2)0 kk18、直线l1:yk1xb1,l2:yk2xb2,则从直线l1到直线l2的角θ满足:tg2 1k1k2两点式: 直线l1与l2的夹角θ满足:tgk2k1 1k1k2 直线l1:A1xB1yC10,l2:A2xB2yC20,则从直线l1到直线l2的角θ满足:tgABA2B1A1B2A2B1;直线l1与l2的夹角θ满足:tg12 A1A2B1B2A1A2B1B2 Ax0By0C AB229、点P(x0,y0)到直线l:AxByC0的距离:d 10、两条平行直线l1:AxByC10,l2:AxByC20距离是dC1C2 22AB11、直线:l1:A1xB1yC10与l2:A2xB2yC20垂直的充要条件是A1A2B1B20. 数列 1、等差数列的通项公式是ana1(n1)d,前n项和公式是:Snn(a1an)1=na1n(n1)d。22.等差数列 {an} anan1d(d为常数)2anan1an1(n2,nN*)ananbSnAn2Bn。 na1(q1)nn 12、等比数列的通项公式是ana1q,前n项和公式是:Sna1(1q)(q1)1q 2n-13.等比数列 {an}anan-1an1(n2,nN)ana1q; * 4、当m+n=p+q=2t(m、n、p、q∈N)时,对等差数列{an}有:amanapaq2at;对等比数列{an} 有:amanapaqat。 5、等差数列中, am=an+(n-m)d, daman;等比数列中,an=amqn-m;q=nmn {anbn}等也是等比数列。 7、设Sn表示数列前n项和;等差数列中有:Sn,S2nSn,S3nS2n,也是等差数列;在等比数列中,2an;am6、若{an}、{bn}是等差数列,则{kanbbn}(k、b、a是非零常数)是等差数列;若{an}、{bn}是等比数列,则{kankan}、Sn,S2nSn,S3nS2n,是等比数列。 8、等差(或等比)数列的“间隔相等的连续等长片断和序列”(如a1+a2+a3,a4+a5+a6,a7+a8+a9…)仍是等差(或等比)数列; 9、等差数列中:a1ana2an1a3an2; 等比数列中:a1ana2an1a3an2 10、对等差数列{an},当项数为2n时,S偶S奇nd;项数为2n-1时,S奇S偶a中项(n∈N*)。 11、由Sn求an,an={S1(n1) *SnSn1(n2,nN) 一般已知条件中含an与Sn的关系的数列题均可考虑用上述公式; 12、首项为正(或为负)的递减(或递增)的等差数列前n项和的最大(或最小)问题,转化为解不等式an0an0解决; 或a0a0n1n1 注意验证a1是否包含在后面an 的公式中,若不符合要单独列出。 13、熟记等差、等比数列的定义,通项公式,前n项和公式,在用等比数列前n项和公式时,勿忘分类讨论思想; 14、若一阶线性递归数列an=kan-1+b(k≠0,k≠1),则总可以将其改写变形成如下形 式:anbk(an1b)(n≥2),于是可依据等比数列的定义求出其通项公式; k1k115、当等比数列an的公比q满足q<1时,limSn=S= na1。一般地,如果无穷数列an的前n项和的极限n1qlimSn存在,就把这个极限称为这个数列的各项和(或所有项的和),用S表示,即S=limSn。n第二篇:高中数学所有公式大总结
第三篇:高中数学数列公式及结论总结
第四篇:高中数学-公式-直线
第五篇:高中数学-公式-数列