概率论发展史(5篇)

时间:2019-05-12 23:14:30下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《概率论发展史》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《概率论发展史》。

第一篇:概率论发展史

17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论.

早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验.

促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了.

不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论.荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.

18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括.

继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础.

1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

通过贝努利和棣谟佛的努力,使数学方法有效地应用于概率研究之中,这就把概率论的特殊发展同数学的一般发展联系起来,使概率论一开始就成为数学的一个分支.

概率论问世不久,就在应用方面发挥了重要的作用.牛痘在欧洲大规模接种之后,曾因副作用引起争议.这时贝努利的侄子丹尼尔·贝努利(Daniel Bernoulli)根据大量的统计资料,作出了种牛痘能延长人类平均寿命三年的结论,消除了一些人的恐惧和怀疑;欧拉(Euler)将概率论应用于人口统计和保险,写出了《关于死亡率和人口增长率问题的研究》,《关于孤儿保险》等文章;泊松(Poisson)又将概率应用于射击的各种问题的研究,提出了《打靶概率研究报告》.总之,概率论在18世纪确立后,就充分地反映了其广泛的实践意义.

19世纪概率论朝着建立完整的理论体系和更广泛的应用方向发展.其中为之作出较大贡献的有:法国数学家拉普拉斯(Laplace),德国数学家高斯(Gauss),英国物理学家、数学家麦克斯韦(Maxwell),美国数学家、物理学家吉布斯(Gibbs)等.概率论的广泛应用,使它于18和19两个世纪成为热门学科,几乎所有的科学领域,包括神学等社会科学都企图借助于概率论去解决问题,这在一定程度上造成了“滥用”的情况,因此到19世纪后半期时,人们不得不重新对概率进行检查,为它奠定牢固的逻辑基础,使它成为一门强有力的学科.

1917年苏联科学家伯恩斯坦首先给出了概率论的公理体系.1933年柯尔莫哥洛夫又以更完整的形式提出了概率论的公理结构,从此,更现代意义上的完整的概率论臻于完成.

相对于其它许多数学分支而言,数理统计是一个比较年轻的数学分支.多数人认为它的形成是在20世纪40年代克拉美(H.Carmer)的著作《统计学的数学方法》问世之时,它使得1945年以前的25年间英、美统计学家在统计学方面的工作与法、俄数学家在概率论方面的工作结合起来,从而形成数理统计这门学科.它是以对随机现象观测所取得的资料为出发点,以概率论为基础来研究随机现象的一门学科,它有很多分支,但其基本内容为采集样本和统计推断两大部分.发展到今天的现代数理统计学,又经历了各种历史变迁.

统计的早期开端大约是在公元前1世纪初的人口普查计算中,这是统计性质的工作,但还不能算作是现代意义下的统计学.到了18世纪,统计才开始向一门独立的学科发展,用于描述表征一个状态的条件的一些特征,这是由于受到概率论的影响.

高斯从描述天文观测的误差而引进正态分布,并使用最小二乘法作为估计方法,是近代数理统计学发展初期的重大事件,18世纪到19世纪初期的这些贡献,对社会发展有很大的影响.例如,用正态分布描述观测数据后来被广泛地用到生物学中,其应用是如此普遍,以至在19世纪相当长的时期内,包括高尔顿(Galton)在内的一些学者,认为这个分布可用于描述几乎是一切常见的数据.直到现在,有关正态分布的统计方法,仍占据着常用统计方法中很重要的一部分.最小二乘法方面的工作,在20世纪初以来,又经过了一些学者的发展,如今成了数理统计学中的主要方法.

从高斯到20世纪初这一段时间,统计学理论发展不快,但仍有若干工作对后世产生了很大的影响.其中,如贝叶斯(Bayes)在1763年发表的《论有关机遇问题的求解》,提出了进行统计推断的方XX方面的一种见解,在这个时期中逐步发展成统计学中的贝叶斯学派(如今,这个学派的影响愈来愈大).现在我们所理解的统计推断程序,最早的是贝叶斯方法,高斯和拉普拉斯应用贝叶斯定理讨论了参数的估计法,那时使用的符号和术语,至今仍然沿用.再如前面提到的高尔顿在回归方面的先驱性工作,也是这个时期中的主要发展,他在遗传研究中为了弄清父子两辈特征的相关关系,揭示了统计方法在生物学研究中的应用,他引进回归直线、相关系数的概念,创始了回归分析.

数理统计学发展史上极重要的一个时期是从19世纪到二次大战结束.现在,多数人倾向于把现代数理统计学的起点和达到成熟定为这个时期的始末.这确是数理统计学蓬勃发展的一个时期,许多重要的基本观点、方法,统计学中主要的分支学科,都是在这个时期建立和发展起来的.以费歇尔(R.A.Fisher)和皮尔逊(K.Pearson)为首的英国统计学派,在这个时期起了主导作用,特别是费歇尔.

继高尔顿之后,皮尔逊进一步发展了回归与相关的理论,成功地创建了生物统计学,并得到了“总体”的概念,1891年之后,皮尔逊潜心研究区分物种时用的数据的分布理论,提出了“概率”和“相关”的概念.接着,又提出标准差、正态曲线、平均变差、均方根误差等一系列数理统计基本术语.皮尔逊致力于大样本理论的研究,他发现不少生物方面的数据有显著的偏态,不适合用正态分布去刻画,为此他提出了后来以他的名字命名的分布族,为估计这个分布族中的参数,他提出了“矩法”.为考察实际数据与这族分布的拟合分布优劣问题,他引进了著名“χ2检验法”,并在理论上研究了其性质.这个检验法是假设检验最早、最典型的方法,他在理论分布完全给定的情况下求出了检验统计量的极限分布.1901年,他创办了《生物统计学》,使数理统计有了自己的阵地,这是20世纪初叶数学的重大收获之一.

1908年皮尔逊的学生戈赛特(Gosset)发现了Z的精确分布,创始了“精确样本理论”.他署名“Student”在《生物统计学》上发表文章,改进了皮尔逊的方法.他的发现不仅不再依靠近似计算,而且能用所谓小样本进行统计推断,并使统计学的对象由集团现象转变为随机现象.现“Student分布”已成为数理统计学中的常用工具,“Student氏”也是一个常见的术语.

英国实验遗传学家兼统计学家费歇尔,是将数理统计作为一门数学学科的奠基者,他开创的试验设计法,凭借随机化的手段成功地把概率模型带进了实验领域,并建立了方差分析法来分析这种模型.费歇尔的试验设计,既把实践带入理论的视野内,又促进了实践的进展,从而大量地节省了人力、物力,试验设计这个主题,后来为众多数学家所发展.费歇尔还引进了显著性检验的概念,成为假设检验理论的先驱.他考察了估计的精度与样本所具有的信息之间的关系而得到信息量概念,他对测量数据中的信息,压缩数据而不损失信息,以及对一个模型的参数估计等贡献了完善的理论概念,他把一致性、有效性和充分性作为参数估计量应具备的基本性质.同时还在1912年提出了极大似然法,这是应用上最广的一种估计法.他在20年代的工作,奠定了参数估计的理论基础.关于χ2检验,费歇尔1924 年解决了理论分布包含有限个参数情况,基于此方法的列表检验,在应用上有重要意义.费歇尔在一般的统计思想方面也作出过重要的贡献,他提出的“信任推断法”,在统计学界引起了相当大的兴趣和争论,费歇尔给出了许多现代统计学的基础概念,思考方法十分直观,他造就了一个学派,在纯粹数学和应用数学方面都建树卓越.

这个时期作出重要贡献的统计学家中,还应提到奈曼(J.Neyman)和皮尔逊(E.Pearson).他们在从1928年开始的一系列重要工作中,发展了假设检验的系列理论.奈曼-皮尔逊假设检验理论提出和精确化了一些重要概念.该理论对后世也产生了巨大影响,它是现今统计教科书中不可缺少的一个组成部分,奈曼还创立了系统的置信区间估计理论,早在奈曼工作之前,区间估计就已是一种常用形式,奈曼从1934年开始的一系列工作,把区间估计理论置于柯尔莫哥洛夫概率论公理体系的基础之上,因而奠定了严格的理论基础,而且他还把求区间估计的问题表达为一种数学上的最优解问题,这个理论与奈曼-皮尔逊假设检验理论,对于数理统计形成为一门严格的数学分支起了重大作用.

以费歇尔为代表人物的英国成为数理统计研究的中心时,美国在二战中发展亦快,有三个统计研究组在投弹问题上进行了9项研究,其中最有成效的哥伦比亚大学研究小组在理论和实践上都有重大建树,而最为著名的是首先系统地研究了“序贯分析”,它被称为“30年代最有威力”的统计思想.“序贯分析”系统理论的创始人是著名统计学家沃德(Wald).他是原籍罗马尼亚的英国统计学家,他于1934年系统发展了早在20年代就受到注意的序贯分析法.沃德在统计方法中引进的“停止规则”的数学描述,是序贯分析的概念基础,并已证明是现代概率论与数理统计学中最富于成果的概念之一.

从二战后到现在,是统计学发展的第三个时期,这是一个在前一段发展的基础上,随着生产和科技的普遍进步,而使这个学科得到飞速发展的一个时期,同时,也出现了不少有待解决的大问题.这一时期的发展可总结如下:

一是在应用上愈来愈广泛,统计学的发展一开始就是应实际的要求,并与实际密切结合的.在二战前,已在生物、农业、医学、社会、经济等方面有不少应用,在工业和科技方面也有一些应用,而后一方面在战后得到了特别引人注目的进展.例如,归纳“统计质量管理”名目下的众多的统计方法,在大规模工业生产中的应用得到了很大的成功,目前已被认为是不可缺少的.统计学应用的广泛性,也可以从下述情况得到印证:统计学已成为高等学校中许多专业必修的内容;统计学专业的毕业生的人数,以及从事统计学的应用、教学和研究工作的人数的大幅度的增长;有关统计学的著作和期刊杂志的数量的显著增长.

二是统计学理论也取得重大进展.理论上的成就,综合起来大致有两个主要方面:一个方面与沃德提出的“统计决策理论”,另一方面就是大样本理论.

沃德是20世纪对统计学面貌的改观有重大影响的少数几个统计学家之一.1950年,他发表了题为《统计决策函数》的著作,正式提出了“统计决策理论”.沃德本来的想法,是要把统计学的各分支都统一在“人与大自然的博奕”这个模式下,以便作出统一处理.不过,往后的发展表明,他最初的设想并未取得很大的成功,但却有着两方面的重要影响:一是沃德把统计推断的后果与经济上的得失联系起来,这使统计方法更直接用到经济性决策的领域;二是沃德理论中所引进的许多概念和问题的新提法,丰富了以往的统计理论.

贝叶斯统计学派的基本思想,源出于英国学者贝叶斯的一项工作,发表于他去世后的1763年后世的学者把它发展为一整套关于统计推断的系统理论.信奉这种理论的统计学者,就组成了贝叶斯学派.这个理论在两个方面与传统理论(即基于概率的频率解释的那个理论)有根本的区别:一是否定概率的频率的解释,这涉及到与此有关的大量统计概念,而提倡给概率以“主观上的相信程度”这样的解释;二是“先验分布”的使用,先验分布被理解为在抽样前对推断对象的知识的概括.按照贝叶斯学派的观点,样本的作用在于且仅在于对先验分布作修改,而过渡到“后验分布”――其中综合了先验分布中的信息与样本中包含的信息.近几十年来其信奉者愈来愈多,二者之间的争论,是战后时期统计学的一个重要特点.在这种争论中,提出了不少问题促使人们进行研究,其中有的是很根本性的.贝叶斯学派与沃德统计决策理论的联系在于:这二者的结合,产生“贝叶斯决策理论”,它构成了统计决策理论在实际应用上的主要内容.

三是电子计算机的应用对统计学的影响.这主要在以下几个方面.首先,一些需要大量计算的统计方法,过去因计算工具不行而无法使用,有了计算机,这一切都不成问题.在战后,统计学应用愈来愈广泛,这在相当程度上要归公功于计算机,特别是对高维数据的情况.

计算机的使用对统计学另一方面的影响是:按传统数理统计学理论,一个统计方法效果如何,甚至一个统计方法如何付诸实施,都有赖于决定某些统计量的分布,而这常常是极困难的.有了计算机,就提供了一个新的途径:模拟.为了把一个统计方法与其它方法比较,可以选择若干组在应用上有代表性的条件,在这些条件下,通过模拟去比较两个方法的性能如何,然后作出综合分析,这避开了理论上难以解决的难题,有极大的实用意义.

第二篇:概率论教案

西南大学本科课程备课教案 2015 —2016 学年第 1 学期

(理论课程类)

课 程 名 称 概率论

授课专业年级班级 统计专业 2014 级 教 教

师 师

姓 职

名 称

凌成秀 讲师

I

数学与统计学院

课程性质

专业必修

□专业选修

□公共必修

□通识教育选修

概率论是统计专业本科生的一门建立在微积分、基本代数知识基础上的重要

课程简介

专业课程,是继续学习、研究统计学及其应用的一门重要课程。该课程旨在 如何刻画随机现象的统计规律性,包括随机事件及其概率,随机变量及其分 布,随机变量的数字特征、特征函数、极限定理等。本课程总学时 5*18=90 节。

教材

孙荣恒《应用概率论》第二版,2005,科学出版社

(总学时)

教学方式 讲授式、启发式、研究型、收集网络小论文探究式

使用教具 黑板、粉笔

[1] 《概率论基础》第三版,李贤平著,高等教育出版社,2010.[2] 《概率论与数理统计》第四版,盛骤,谢式千,潘承毅 著,高等教育出 版社,2010.[3] 《概率论与数理统计习题全解指南》第四版,盛骤,谢式千,潘承毅 著,高等教育额出版社,2010.[4] Probability Essentials(Second edition), Jean Jacod and Philip Protter, Springer,2004.[5]《概率论与数理统计教程》第二版,茆诗松 程依明、濮晓龙,高等教育出 版社,2000.参考书目及文献(或互联网网址)

考核方式 闭卷笔试

II

随机事件及其概率

第一章 随机事件及其概率

概率论与数理统计是从数量化的角度来研究现实世界中一类不确定现象(随机现 象)规律性的一门应用数学学科,20 世纪以来,广泛应用于工程技术、经济及 医学技术等各个领域.本章介绍的随机事件与概率是概率论中最基本、最重要的 概念之一.第一、二节 随机事件及其关系与运算

教学内容: 随机事件是本课程的最基础的概念,主要涉及到包括确定性现象、随机现象、样本空间、样本点、随机事件等定义;以及事件的包含、相等、互不 相容(互斥)、互为对立等关系;事件的和、积、差、逆等运算的定义;事件的 运算律、文氏图等;事件序列的极限。会用简单事件通过其关系与运算将复杂事 件表示出来。重点难点:

随机事件的定义;互不相容、互为对立、互逆事件的判别;用简单事件通过其运 算将复杂事件表示出来;事件的恒等式证明;事件序列的极限关系 教学目标:

会判断给出的现象是否为随机现象;会写随机试验的样本空间;会判别随机事件 的类型;熟悉事件关系与运算的定义;熟悉事件的运算律、会作文氏图;能判别 事件的互不相容、互为对立、互逆等关系;能用事件的运算关系将复杂事件表示 出来;掌握事件的不等式、恒等式证明 教学过程:

1、确定性现象与随机现象。确定性现象:在一定的条件下必然发生某种结果的现象。例如:(1)重物在高处必然下落;(2)在标准大气压下纯水加热到 100 摄氏度时必然会沸腾;

(3)异性电荷必相互吸引。随机现象(偶然性现象):在一定的条件下,有多种可能结果发生,事前人们不 能预言将有哪个结果会出现的现象,但大量重复观察时具有某种规律性。如:(1)从一大批产品中任取一个产品,它可能是合格品,也可能是不合格品;(2)一门炮向一目标射击,每次射击的弹落点一般是不同的,事前无法预料。2、随机试验与样本空间。

试验:我们把对自然现象的一次观察或一次科学试验统称为试验。随机试验:一个试验若满足条件

(1)在相同的条件下可以重复进行;

(2)每次试验的结果不止一个,并能事先明确试验的所有可能结果;

1随机事件及其概率

(3)试验前不知道哪一个结果会出现。

则称这样的试验为随机试验,用 表示。

样本空间:随机试验所有可能出现的基本结果的集合称为样本空间。用 表 示。

样本点:随机试验的每一个可能出现的基本结果称为样本点,常用 表示。

3、随机事件

随机事件:由随机试验的某些样本点做成的集合称为随机事件,简称事件。用大写英文字母、、、…表示。在随机试验中随机事件可能发生,也 可能不发生。称某个事件发生当且仅当它所包含的某个样本点出现。1)基本事件:只包含一个样本点的事件,记为{w}。

2)不可能事件:一个样本点都不包含的集合,记为。不可能事件在试验中 一定不会发生。

3)必然事件:包含所有样本点的集合,记为。必然事件在试验中一定会发 生。

一般事件(复合事件):由不止一个样本点做成的事件。例 1 以下哪些试验是随机试验?

(1)抛掷一枚硬币,观察出现的是正面在上还是反面在上;(2)记录某电话机在一天内接到的呼叫次数;

(3)从一大批元件中任意取出一个,测试它的寿命;(4)观察一桶汽油遇到明火时的情形;

(5)记录一门炮向某一目标射击的弹着点位置;

解:(1)(2)(3)(5)是随机试验,(4)不是随机试验 例 2:写出下列随机试验的样本空间。

(1)抛掷一颗骰子,观察出现的点数;(2)抛掷二次硬币,观察出现的结果;

(3)记录某汽车站在 5 分钟内到达的乘客数;(4)从一批灯泡中任取一只,测试其寿命;(5)记录一门炮向其目标射击的弹落点;(6)观察一次地震的震源; 解:(1)1  1,2,3,4,5,6

 ;

(2)  (正,正),(正,反),(反,正),(反,反) ;(3)  01 2 3...;

,(4) 0

4  x x  ,其中 x 表示灯泡的寿命;(5)

 ,

(x,y x y ,其中 x、y 分别表示弹着

         5  ),点的横坐标、纵坐标;

2  

(6)

 (,,) , 0 ,其中 x、y、z 分别表 5 x y z   x  ,  y  z 

 2

示震源的经度、纬度、离地面的深度。

例 3 抛掷一个骰子,观察出现的点数。用 A 表示“出现的点数为奇数”,B 表示“出现的点数大于 4”,C 表示“出现的点数为 3”,D 表示“出现的点 数大于 6”,E 表示“出现的点数不为负数”,(1)写出实验的样本空间;(2)用样本点表示事件 A、B、C、D、E;(3)指出事件 A、B、C、D、E 何 为基本事件,何为必然事件,何为不可能事件。解:

(1)  1,2,3,4,5,6;(2)A  1,3,5,B   5,6 ,C   3 ,D  ,E  1,2,3,4,5,6(3)C 为基本事件,E 为必然事件,D 为不可能事件 讨论题:请给出现实生活中随机现象的一个例子。

4、事件的关系与运算

因为事件是样本空间的一个集合, 故事件之间的关系与运算可按集合之间 的关系和运算来处理.1)事件之间的关系与简单运算

设 A、B 为试验 E 的二事件,(1)子事件(事件的包含):若 A 中的每一个样本点都包含在 B 中,则记为,也称事件 A 是事件 B 的子事件,或事件 B 包含了事件 A。此时事件 A 发生必然导致事件 B 发生。显然,对任意事件 A,有(2)事件的相等:若 等价的,记为。

且,则称事件 A 与事件 B 是相等的,或称

(3)事件的和(并):用 A  B 表示属于 A 或属于 的样本点的集合,称之 为 与 的和(并)事件。事件

表示事件 与事件 B 至少有一个发生。

(4)事件的积(交):用 A  B(或 AB)表示同时属于 A 与 B 的样本点的 集合,称为 A 与 的积(交)事件。事件 AB 表示事件 A 与事件 B 同时发生 的事件。

(5)事件的互不相容(互斥):若 AB  ,则称为事件 A 与事件 B 互不相 容。即 A 与 B 不能同时发生。

当 与 B 互不相容时,记为。

(6)事件的差:用 A  B 表示包含在 A 中而不包含在 B 中的样本点的全体,称为事件 与事件 的差。事件 A  B 表示 A 发生而 B 不发生的事件。

第三篇:概率论课外作业(范文)

大数定律与中心极限定理在实际中的应用

大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算术平均值法则"的基本理论,在现实生活中,经常可见这一类型的数学模型。例如:在分析天平上秤重量为a的物品,若以x1,x2,x3,...,xn表示n次重复称

1n量的结果,经验告诉我们,当n充分大时,它们的算术平均值xi与

ni1a的偏差就越小。

中心极限定理比大数定律更为详细具体,它以严格的数学形式阐明了在大样本条件下,不论总体分布如何,样本均值总是服从或是近似的服从正态分布。正是这个结论使得正态分布在数理统计和误差分析中占用特殊的地位,是正态分布得以广泛应用的理论基础。概率论中用来阐明大量随机现象平均结果的稳定性的一系列定理,称为大数定律。

切比雪夫不等式:设随机变量X具有有限数学期望和方差2,2则对于任意正数,如下不等式成立 P2。

切比雪夫不等式的应用:在随机变量X的分布未知的情况下,只利用X的期望和方差,即可对X的概率分布进行估值。

例1 已知正常男性成人血液中,每毫升白细胞数的平均值是7300,均方差是700,利用切比雪夫不等式估计每毫升血液含白细胞数在5200~9400之间的概率。

(X)= 解 设X表示每毫升血液中含白细胞个数,则E(X)=7300,D(X)=700 则P{ 5200X9400}=P{ X73002100}=1-P{ X7300>2100}

70021 而P X73002100221009所以P 5200X9400

概率论中有关论证独立随机变量的和的极限分布是正态分布的一系列定理称为中心极限定理。

独立同分布的中心极限定理:设随机变量X1,X2,...,Xn相互独立,服从同一分布,且有有限的数学期望和方差2,则随机变量

89YXi1ninn的分布函数Fn(x)满足如下极限式

nXt2ix1limFn(x)limPi1xe2dt 2n定理的应用:对于独立的随机变量序列{Xn },不管Xi(i=1,2,⋯,n)服从什么分布,只要它们是同分布,且有有限的数学期望和方差,那么,当n充分大时,这些随机变量之和Xi近似地服从正态分

i1n布N(n,n2)。

二项分布的极限分布是正态分布即如果X~B(n,p)则

tnnpb12Pabedt(b)(a)anp(1p)22例2 现有一大批种子,其中良种占1/6,今在其中任选60O0粒,试分别用切比雪夫不等式估计和用中心极限定理计算在这些种子中

良种所占的比例与1/6之差小于l%的概率是多少? 解

设取出的种子中的良种粒数为X,则 X~B(6000,)于是

E(X)np600011000616155D(X)np(1p)60001000

666(1)要估计的规律为PX11PX100060,相当60006100于在切比雪夫不等式中取=60,于是

X11D(X)PPX100060126000610060由题意得1D(X)511100010.23150.7685 26063600即用切比雪夫不等式估计此概率不小于0.7685(2)由中心极限定理,对于二项分布(6000,)可用正态分布N(1000,51000)近似,于是所求概率为 616X1(10601000)(9401000)P0.01P940X106010005/610005/660006从本例看出.用切比雪夫不等式只能得出来要求的概率不小于0.7685.而用中心极限定理可得出要求的概率近似等于0.9625.从而知道由切比雪夫不等式得到的下界是十分粗糙的.但由于它的要求比较低,只要知道X的期望和方差,因而在理论上有许多运用.

当Xi独立同分布(可以是任何分布),计算P(aX1X2...Xnb)的概率时,利用中心极限定理往往能得到相当精确的近似概率,在实际问题上广泛运用.

例3某单位有200台电话分机,每台有5%的时间要使用外线通话,假定每台分机是否使用外线是相互独立的,问该单位总机要安装多少条外线,才能以90%以上的概率保证分机用外线时不等待?

设有X部分机同时使用外线,则有X~B(n,P),其中n=200,P=0.05,np=10,np(1p)3.08 设有N条外线.由题意有P{XN}0.9 有

PXNPXnpnp(1p)NnpNnpN10()()3.08np(1p)np(1p)N101.28 3.08查表得(1.28)=0.90,故N应满足条件即N13.94,取N=14,即至少要安装14条外线.

参考文献:

[1]庄楚强.吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,2002.

[2]黄清龙.阮宏顺.概率论与数理统计[M].北京:北京大学出版社,2005.

[3]贾兆丽.概率方法在数学证明中的应用[J].安徽工业大学学报,2002,19(1):75—76.

[4]周少强.大数定律与中心极限定理之问的关系[J].高等数学研究,2001(1):15—17.

[5]刘建忠.中心极限定理的一个推广及其应用[J].华东师范大学学报(自然科学版).2001,18(03):8-12.

[6]杨桂元.中心极限定理及其在统计分析中的应用[J].统计与信息论坛,2000(03):13—15.

[7]钟镇权.关于大数定律与中心极限定理的若干注记[J].玉林师范学院学报.2001(03):8一10.

[8]周概容.概率论与数理统计[M].北京:高等教育出版社,1984.

第四篇:概率论简答题

概率论简答题

1. 互不相容事件与等可能事件、对立事件及其相互独立事件有什么区别

2. 概率为1的事件的积概率是1么?

3. 直接计算古典概型有哪些计算方法?并举简单例子说明

4. 古典概型有哪些基本问题?举例说明。

5. 几何概型有什么特点又如何计算。

6. 如何正确计算条件概率和应用乘法公式。

7. 如何应用全概率公式和贝叶斯公式。

8. 如何理解“独立事件”

9. 如何证明几个事件相互独立

10.比赛双方实力相当,问9场比赛中赢5场和5场比赛中赢3场,哪一个可能性大?

11.引入随机变量的分布函数有什么作用?如何确定与判断?

12.离散型随机变量的概率分布或连续型随机变量的概率密度函数如何确定及判断?

13.离散型随机变量有哪些常见分布?其概率分布是什么?其分布函数是什么?

14.随机变量X服从参数λ的泊松分布,当k取何值时概率最大?

15.连续型随机变量有哪些常见分布?其密度函数是什么?其分布函数是什么?

16.求连续型随机变量有哪些常见方法?举例说明

17.二元函数为联合概率密度函数应如何判断?

18.离散型随机变量应(X,Y)的联合分布列与边缘分布列有什么关系?如何计算?举例说明。

19.连续型随机变量(X,Y)的联合密度函数与边缘密度函数有什么关系?如何计算?举例说明。

20.如何判断随机变量的独立性?(包括离散与连续)

21.如何计算离散型随机变量常见分布的期望与方差

22.如何计算连续型型随机变量常见分布的期望与方差

23.对于一些复杂的随机变量,求他们的期望和方差用什么简易方法,并举例。

24.准确定义协方差、相关系数?

25.两个随机变量独立和不相关有何关系?举例说明。

26.什么是中心极限定理?如何应用?举例说明

第五篇:概率论复习

概率论复习要点

第一章

1、随机事件的关系与运算,概率的性质(差并对立事件概率的计算公式),条件概率公式公式,事件的独立性。

2、古典概型的计算:例P28T9,11,12,203、全概率公式和贝叶斯公式的应用:例P48-49 T14,15,16,18,20

第二章

1、分布函数的定义及性质:例P74 T7,13,2、连续型随机变量的密度函数的性质: 例P74 T11,12,14, P143 T6,83、随机变量及随机变量函数的数学期望和方差的性质及计算:例P83 T10,13, P88 T3,54、切比雪夫不等式及其应用

5、常用离散型随机变量的概率分布列、常用连续型随机变量的概率密度及数学期望和方差

如P114表2.5.1,P115T11,12,196、随机变量函数的分布:P123 T7,8,1

1第三章

1、二维随机变量的分布函数定义及性质,边际分布函数的求解p145 例3.2.12、离散型二维随机变量的联合分布列和边际分布列的求解,及离散型二维随机变量函数分布列的求解:P136 例3.1.2,P143 T2,3;P155 例3.3.1;P163T13、连续型二维随机变量的联合密度函数的性质,边际密度函数的求解,随机变量独立性的判断:P147 例3.2.3,P152例3.2.8;P153T5,6,134、二维随机变量函数的数学期望和方差的计算,协方差的性质及计算,相关系数的定义及性质:P183T21,24,25

D(X+Y)=DX+DY+2COV(X,Y), D(X-Y)=DX+DY-2COV(X,Y)

5、独立和不相关之间的关系

第四章

1、特征函数的定义及性质P2012、常用分布的特征函数的计算P202 例4.1.23、证明随机变量序列是否服从大数定律:P216 T1,2,34、中心极限定理的应用:P237 T1,2,8,9,10

下载概率论发展史(5篇)word格式文档
下载概率论发展史(5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    概率论试题

     2006-2007学年《概率与数理统计》 一、填空题: 1、设随机事件A的概率P(A)=0.5,随机事件B的概率P(B)=0.6,条件概率P(B|A)=0.8,则P(A+B)=_____. 2、设随机变量X在[0,6]服从均匀分......

    材料发展史

    材料的历史同人类社会发展史同样悠久。历史上,材料被视为人类社会进化的里程碑。历史学家曾把材料及其器具作为划分时代的标志:石器时代、青铜器时代、铁器时代、高分子材料时......

    概率论与数理统计

    概率论与数理统计,运筹学,计算数学,统计学,还有新增的应用数学,每个学校情况不太一样,每个导师研究的方向也不太一样。看你报的哪个学校了~~ 赞同数学的方向还是比较多的,比如金融,......

    学习概率论心得体会

    学习概率论心得体会 在大二刚开学我接触到了概率论与数理统计这门课程,虽然在高中时已经接触到了许多跟概率相关的东西,比如随机事件、古典概型以及一系列的计算方法但是在接......

    2008A概率论考卷

    西安电子科技大学考试时间120分钟试题A1.考试形式:闭卷;2。考试日期:20年 月日3.本试卷共四大题,满分100分。班级学号姓名任课教师一、单选题(每小题3分,共15分)1、若用事件A表示“......

    概率论总结论文

    概率论与数理统计在生活中的应用 摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本......

    概率论与数理统计

    《概率论与数理统计》公共基础课教学实践 1012502-31 汤建波 概率与数理统计在现实的牛产和生活中有着广泛的应用,因此,《概率论与数理统计》作为公共课是很多专业所必修的......

    概率论辅导范围

    概率统计复习范围及要求 第一章: 1、事件与概率的性质和运算; 2、概率的计算(包括古典概型和几何概型):条件概率、乘法公式、加法公式、全概公式、贝叶斯公式;(古典概型、几何概型......