非线性方程求根的方法简介与例题

时间:2019-05-12 23:10:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《非线性方程求根的方法简介与例题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《非线性方程求根的方法简介与例题》。

第一篇:非线性方程求根的方法简介与例题

非线性方程f(x)求根主要可以采用下面三种方法,下面简单介绍下,并附例题,让解法更一目了然。1)二分法简介:

计算步骤如下:

例题:

2)不动点迭代,也叫简单迭代。

隐式化为显式,迭代法是一种逐次逼近法;

其中f(x)才能满足上述迭代格式。继续迭代。

3)牛顿迭代法,实际上也叫切线法,是通过下面的方式推导出来的。

上述题目很简单,用牛顿法迭代就可以达到目的。我们先设f(x)xcosx 由公式得xxxcosxsinx

我们用二分法的原理,我们取x得x,xxcosxsinxxcosxsinxxcosxsinx

xxcossin.

xxcos.sin..

xx,并具有四位有效数字,所以只需迭代两次就可以达到题目所需的精度要求

第二篇:高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试

2014年山东专升本暑期精讲班核心讲义

高职高专类

高等数学

经典方法及典型例题归纳

—经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自动化、交通运输、计算机科学与技术、土木工程

2013年5月17日星期五

曲天尧

编写

一、求极限的各种方法

1.约去零因子求极限

x41例1:求极限lim

x1x1【说明】x1表明x与1无限接近,但x1,所以x1这一零因子可以约去。

(x1)(x1)(x21)lim(x1)(x21)6=4 【解】limx1x1x12.分子分母同除求极限

x3x2例2:求极限lim

x3x31【说明】型且分子分母都以多项式给出的极限,可通过分子分母同除来求。11x3x21x【解】lim limx3x31x313x3【注】(1)一般分子分母同除x的最高次方;

0nn1axan1xa0

(2)limnmm1xbxbb0amm1xnbnmnmn mn3.分子(母)有理化求极限

例3:求极限lim(x3x2x21)

【说明】分子或分母有理化求极限,是通过有理化化去无理式。【解】lim(x3x2x1)lim2(x23x21)(x23x21)x3x122x

lim2x3x122x0

例4:求极限limx01tanx1sinx 3x2 【解】limx01tanx1sinxtanxsinx limx03x3x1tanx1sinx1limlimx0tanxsinx1tanxsinx1lim 33x0x024xx1tanx1sinx【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键 ...........4.应用两个重要极限求极限

sinx111和lim(1)xlim(1)nlim(1x)xe,两个重要极限是lim第一个x0xnx0xxn重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。

x1x1例5:求极限lim

xx1【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1,最后凑指数部分。X2x11xx22122x12lim1lim11e【解】lim x1xx1xxx1x121x2a例6:(1)lim12;(2)已知lim8,求a。

xxxxaxx5.用等价无穷小量代换求极限

【说明】

(1)常见等价无穷小有:

1x)~e1, 当x0 时,x~sinx~tanx~arcsinx~arctanx~ln(1cosx~12bx,1ax1~abx; 2x(2)等价无穷小量代换,只能代换极限式中的因式; ..(3)此方法在各种求极限的方法中应作为首选。.....xln(1x)

x01cosxxln(1x)xx【解】 limlim2.x01cosxx012x2sinxx例8:求极限lim

x0tan3x例7:求极限lim

21sinxxsinxxcosx112x【解】lim limlimlim322x0tan3xx0x0x06x3x3x6.用洛必达法则求极限

lncos2xln(1sin2x)例9:求极限lim 2x0x0或型的极限,可通过罗必塔法则来求。02sin2xsin2x2lncos2xln(1sin2x)cos2x1sinx 【解】limlim2x0x0x2x【说明】limsin2x213 2x02xcos2x1sinx【注】许多变动上显的积分表示的极限,常用洛必达法则求解

例10:设函数f(x)连续,且f(0)0,求极限limx0x0(xt)f(t)dtx0xf(xt)dt.【解】 由于x0f(xt)dtxtu0xf(u)(du)f(u)du,于是

0xx00xlimx0x0(xt)f(t)dtx0xf(xt)dtxlimx0xf(t)dttf(t)dtxf(u)du0x

=limx00f(t)dtxf(x)xf(x)x=limx0x0x0f(t)dt

0f(u)duxf(x)xf(u)duxf(x)=limx00f(t)dtxxf(x)=x0f(u)duf(0)1.f(0)f(0)27.用对数恒等式求limf(x)g(x)极限

例11:极限lim[1ln(1x)]

x02x2ln[1ln(1x)]x2x【解】 lim[1ln(1x)]=limex0x0=e4

2ln[1ln(1x)]x0xlime2ln(1x)x0xlime2.【注】对于1型未定式limf(x)g(x)的极限,也可用公式

limf(x)g(x)(1)=elim(f(x)1)g(x)

因为

limf(x)g(x)elimg(x)ln(f(x))elimg(x)ln(1f(x)1)elim(f(x)1)g(x)

1例12:求极限lim3x0x2cosxx1.32cosxxln3【解1】 原式limx0ex32cosxln13 limx0x21(sinx)l(n2cox)sln32coxs

lim lim2x0x0x2x11sixn1

lim2x02coxsx6e2cosxxln3【解2】 原式limx0x32cosxln13 lim2x0xln(1

limx0cosx1)cosx113lim x03x26x28.利用Taylor公式求极限

axax2,(a0).例13 求极限 lim2x0xx221xlnalna(x2),2【解】 aexxlna

axx221xlnalna(x2);

2x

aax2x2ln2a(x2).5 axax2x2ln2a(x2)2limlna.

lim22x0x0xx例14 求极限limx0【解】 limx011(cotx).xx111sinxxcosx(cotx)lim x0xxxxsinxx3x23x(x)x[1(x2)]3!2!lim 3x0x113)x(x3)1lim2!3!3x0x3.(9.数列极限转化成函数极限求解

例15:极限limnsinn1 nn2【说明】这是1形式的的数列极限,由于数列极限不能使用洛必达法则,若直接求有一定难度,若转化成函数极限,可通过7提供的方法结合罗必塔法则求解。

1【解】考虑辅助极限limxsinxxx2limex1x2xsin1xlimey011siny12yye

161所以,limnsinnnn2e

1610.n项和数列极限问题

n项和数列极限问题极限问题有两种处理方法(1)用定积分的定义把极限转化为定积分来计算;(2)利用两边夹法则求极限.111例16:极限lim22nn222n2n2n1 【说明】用定积分的定义把极限转化为定积分计算,是把f(x)看成[0,1]定积分。6 11limfnnn2fn1nff(x)dx 0n1111【解】原式=lim222nn12n111nnn 10121 dxln22211x 1111例17:极限lim2nn22n2nn1【说明】(1)该题遇上一题类似,但是不能凑成lim因而用两边夹法则求解;

11fnnn2fnn的形式,fn

(2)两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。【解】lim1112nn22n2nn1 因为 nnn2n1n121n2nn1221nn2nn12

limnnn2limn1

=1 111所以 lim2nn22n2nn111.单调有界数列的极限问题

例18:设数列xn满足0x1,xn1sinxn(n1,2,)(Ⅰ)证明limxn存在,并求该极限;

n1xn1xn2(Ⅱ)计算lim.nxn

【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在.7 【详解】

(Ⅰ)因为0x1,则0x2sinx11.可推得 0xn1sinxn1,n1,2,,则数列xn有界.于是 xn1sinxnsinxx)(因当x0时,则有xn1xn,可见数列xn单1,xnxnn调减少,故由单调减少有下界数列必有极限知极限limxn存在.设limxnl,在xn1sinxn两边令n,得 lsinl,解得l0,即limxn0.nn11x(Ⅱ)因 limn1nxn122xnsinxnxn2,由(Ⅰ)知该极限为1型,limnxn11sinx12xxsinxx21xlimsinxelimx0xx01limex0x3e

(使用了洛必达法则)

16x故 limn1nxn2xn1sinxnxn2lime6.nxn1

二、常见不定积分的求解方法的讨论

0.引言

不定积分是《高等数学》中的一个重要内容,它是定积分、广义积分、狭积分、重积分、曲线积分以及各种有关积分的函数的基础,要解决以上问题,不定积分的问题必须解决,而不定积分的基础就是常见不定积分的解法。不定积分的解法不像微分运算时有一定的法则,它要根据不同题型的特点采用不同的解法,积分运算比起微分运算来,不仅技巧性更强,而且也已证明,有许多初等函数是“积不出来”的,就是说这些函数的原函数不能用初等函数来表示,例如

1sinx2xdxdxedx221ksinx(其中0k1)x;;;lnx等。dx这一方面体现了积分运算的困难,另一方面也推动了微积分本身的发展。同时,同一道题也可能有多种解法,多种结果,所以,掌握不定积分的解法比较困难,下面将不定积分的各种求解方法分类归纳,以便于更好的掌握、运用。

1.不定积分的概念

定义:在某区间I上的函数的全体原函数记为

称它是函数

f(x),若存在原函数,则称f(x)为可积函数,并将f(x)f(x)dx,为积分符号,ff(x)在区间I内的不定积分,其中(x)称为被积函数,x称为积分变量。

若F(x)为f(x)的原函数,则:

f(x)dx=F(x)+C(C为积分常数)。

在这里要特别注意,不定积分是某一函数的全体原函数,而不是一个单一的函数,它的几何意义是一簇平行曲线,也就是说:

d(f(x)dx)和 dxf(x)dx

是不相等的,前者的结果是一个函数,而后者是无穷多个函数,所以,在书写计算结果时一定不能忘记积分常数。性质:

1.微分运算与积分运算时互逆的。

注:积分和微分连在一起运算时:

d——————>完全抵消。

d ——————>抵消后差一常数。

[f(x)g(x)]dx=f(x)dx±g(x)dx。2.两函数代数和的不定积分,等于它们各自积分的代数和,即:3.在求不定积分时,非零数可提到积分符号外面,即:

kf(x)dx=kf(x)dx(k≠0)。

在这里,给出两个重要定理:

(1)导数为0的函数是常函数。

(2)若两函数的导数处处相等,则两函数相差一个常数。以便于更好的解决一些简单的不定积分问题。

上面将不定积分的概念以及性质做了简单的介绍,下面,我们开始讨论不定积分的各种求解方法。

2.直接积分法(公式法)从解题方面来看,利用不定积分的定义来计算不定积分是非常不方便的,利用不定积分的运算性质和基本积分公式从而直接求出不定积分,这种方法就是直接积分法(另称公式法)。

下面先给出基本求导公式:

1()'x(1)(kx)'k

(2)x(3)(5)

11(lnx)'

(4)(arctanx)'1x2 x11(arcsinx)'(x)'(6)logaxlna1x

(7)(9)(11)(ex)'ex

(8)(sinx)'cosx

(cosx)'sinx

(10)(tanx)'sec2x

(cotx)'csc2x。

根据以上基本求导公式,我们不难导出以下基本积分表:

10(1)xdxkdxkxC(k是常数)

(2)x11C(1)

(3)

1dxxlnxC

(4)1x2dxarctanxC

1(5)1x2xdxarcsinxC

(6)

axadxlnaC

x(7)xdxeC

(8)cosxdxsinxC

e2sinxdxcosxC

(10)secxdxtanxC

2cscxdxcotxC。(9)

(11)下面举例子加以说明:

2(3x4x1)dx 例2.1:

求解

原式=

=

23xdx4xdxdx

3x2dx4xdxdx

32xx3()4(C2)(xC3)C

1=

=32x2xxC

注意:这里三个积分常数都是任意的,故可写成一个积分常数。所以对一个不定积分,只要在最后所得的式子中写上一个积分常数即可,以后遇到这种情况不再说明。

例2.2:

求xdx 2x12dx(x21)1dx=dx2解

原式= 2x1x1

=xarctanxC

注:此处有一个技巧的方法,这里先称作“加1减1”法,相当于是将多项式拆分成多个单项式,然后利用基本积分公式计算,下面的例题中还会遇到类似的题型,遇到时具体 11 讲解。

直接积分法只能计算较简单的不定积分,或是稍做变形就可用基本积分表解决的不定积分,对于稍微复杂一点的不定积分便无从下手,所以,下面我们将一一讨论其他方法。

3.第一类换元法(凑微法)利用基本积分公式和积分性质可求得一些函数的原函数,但只是这样远不能解决问题,如

sinxcosxdx

2就无法求出,必须将它进行变形,然后就可以利用基本积分公式求出其积分。

如果不定积分

作变量代换uf(x)dx用直接积分法不易求得,但被积函数可分解为

f(x)g[(x)](x),(x),并注意到(x)dxd(x),则可将关于变量x的积分转化为关于u的积分,于是有

f(x)dxg[(x)](x)dxg(u)du.如果g(u)du可以求出,不定积分f(x)dx的计算问题就解决了,这就是第一类

(x)u,最后一个等号表示回代换元法(凑微分法)。

注:上述公式中,第一个等号表示换元u(x).下面具体举例题加以讨论

10dx.(2x1)例3.1:求110(2x1)dx(2x1)解

原式=2110d(2x1)(2x1)

=2

1101u111duC(2x1)C 2x1u u u2x1

22221111对变量代换比较熟练后,可省去书写中间变量的换元和回代过程。

1d(x).例3.2:求2x8x25解

原式111d(x)d(x)222x43(x4)9()1131x4d()23x4()13

1x4arctanC 33 dx例3.3:求1x211111()解

 21x(1x)(1x)21x1x11d(1x)d(1x)[]

21x21x1x

1[ln1xln1x]C 2

11xlnC 21x3

dx在这里做一个小结,当遇到形如:ax2bxc的不定积分,可分为以下中情况:

ax2bxc的:

①大于0时。可将原式化为(xx1)(xx2),2a其中,x、x为xbxc0的两个解,则原不定积分为: 113 dx1d(xx1)d(xx2)(xx1)(xx2)(x2x1)[(xx1)(xx2)]

1xx1lnC

(x2x1)xx2

②等于0时。可利用完全平方公式,然后可化成(xk)2d(xk)。然后根据小于0时。形如例4,可先给分母进行配方。然后可根据基本积分公式(4)便可求基本微分公式(2)便可求解。

③解。例3.4: 求secxdx

dxcosxdxdsinx1sin2x 2cosxcosx解

原式

dsinx(1sinx)(1sinx)

1dsinxdsinx[]

2(1sinx)(1sinx)

11sinxlnC 21sinx2

该题也可利用三角函数之间的关系求解:

xsecxtanxsecdx

原式secxtanx

1d(secxtanx)secxtanx

lnsecxtanxC.虽然两种解法的结果不同,但经验证均为secx的原函数,这也就体现了不定积分的2xdx.cos例3.5:求解法以及结果的不唯一性。

1cos2x1cosxdx2dx2(dxcos2xdx)2

11dxcos2xd(2x)24xsin2xC 24例3.6:求6secxdx.6解

22xdxsecsec(secx)xdx(1tan2x)d(tanx)

24(12tanxtanx)d(tanx)

2315tanxtanxtanxC

35注:当被积函数是三角函数的乘积时,拆开奇次项去凑微分。当被积函数为三角函数的偶数次幂时,常用半角公式通过降低幂次的方法来计算;若为奇次,则拆一项去凑微,剩余的偶次用半角公式降幂后再计算。

xdx.100例3.7:求(x1)x11dx解

原式(x1)100 22x11[]dx

99100

(x1)(x1)x121[]dx

99100

(x1)(x1)121[]d(x1)9898100(x1)(x1)(x1)15 1119798(x1)(x1)(x1)99C 974999注:这里也就是类似例2所说的方法,此处是“减1加1”法。

4.第二类换元法

如果不定积分替换f(x)dx用直接积分法或第一类换元法不易求得,但作适当的变量x(t)后,所得到的关于新积分变量t的不定积分

f[(t)](t)dt

可以求得,则可解决设函数f(x)dx的计算问题,这就是所谓的第二类换元(积分)法。

x(t)是单调、可导函数,且(t)0,又设f[(t)](t)具有原F(t),则

f(x)dxf[(t)](t)dtF(t)CF[(x)]C,其中(x)是x(t)的反函数。

注:由此可见,第二类换元积分法的换元与回代过程与第一类换元积分法的正好相反。例4.1:求不定积分

22axdx(a0).解

令2xasint,则dxacostdt,t(2,2),所以

22a(1cos2t)dt 2221aa(tsin2t)C(tsintcots)C

222为将变量t还原回原来的积分变量x,由xasint作直角三角形,可知axdxacostacostdtcost22ax,代入上式,得 a

xxa22arcsinC axdxax2a22216

2a t 22ax x 注:对本题,若令xacost,同样可计算。

例4.2:求不定积分

1xa22dx(a0).2xatantdxatt(2,2),所以 解

令,则sectd,12dxatdtsectdt sec22asectxa lnsecttantC1

22lnxxaC

例4.3:求不定积分

122xadx(a0).解

令xasect,则dxasecttantdt,t(0,2),所以

1asecttantdxdtsectdt 22atantxa

lnsecttantC1

22lnxC xa

注:以上几例所使用的均为三角代换,三角代换的目的是化掉根式,其一般规律如下:若果被积函数中含有函数中含有

22ax时,可令xasint,t(2,2);如果被积22xa,可令xatant,t(2,2);如果被积函数中含有22xa;可令xasect,t(0,2).dx例4.4:求不定积分xxeex

dtdx解

令te(t0),则xlnt,所以,t。

dxexex

11tdtdt

211tttarctatnC

xarctaC.en

例4.5:求不定积分

xdx23x2.解

1dx22223x23x2xdx(变形).222t222tdt 令t23x(t0), x.dx3311112223dt(tdt)xC 原式32t33关于第二类换元法,就举些例子说明,具体要多做大量的习题,这样才能找到该怎么样换元的感觉,才能更好的掌握这种方法。

5.分部积分法

前面所介绍的换元积分法虽然可以解决许多积分的计算问题,但有些积分,如xxedx、xcosxdx等,利用换元法就无法求解.接下来要介绍另一种基本积分法——分部积分法.设函数uu(x)和vv(x)具有连续导数,则d(uv)vduudv移项得到udvd(uv)vdu,所以有

udvuvvdu,或

uvdxuvuvd.上面两个式子称为分部积分公式.利用分部积分公式求不定积分的关键在于如何将所给积分

f(x)dx化成udv的形式,使它更容易计算.所采用的主要方法就是凑微分法,例如,xxxxxxexdxxxdxdxxC(x1)Ceeeeee

利用分部积分法计算不定积分,选择好u,v非常关键,选择不当将会使积分的计算变得更加复杂。下面将通过例题介绍分部积分法的应用。

例5.1:求不定积分解

xcosxdx.ux,cosxdxdsinxdv,则

xcosxdxxdsinxxsinxsinxdxxsinxcosxC

有些函数的积分需要连续多次应用分部积分法。

例5.2:求不定积分

x2edx.xx2dvu解

令edx,则 x和

xxxd2xdxeedx.xe2x对后面的不定积分再用分部积分法,xxxxxdxC xdxeeee(运算熟练后,式子中不再指出u和v了),代入前式即得

2xdx(2x2)C.xexe2x注:若被积函数是幂函数(指数为正整数)与指数函数或正(余)弦函数的乘积,可设幂函数为u,而将其余部分凑微分进入微分符号,使得应用分部积分公式后,幂函数的幂次降低一次(幂指相碰幂为u)。

例5.3:求不定积分

xarctan2xdx2.xxdxdn,解

令uarctax2,则

2xarctanxdx

xarctanxxd(arctanx)22211xarctanx(1)dx

2221x21xarctaxn(xarctax)nC

2注:若被积函数是幂指函数与对数函数或反三角函数的乘积,可设对数函数或反三角函数为u,而将幂函数凑微分进入微分号,使得应用分部积分公式后,对数函数或反三角函数消失(幂对角(反三角函数),对角u).xsinxdx.e例5.4:求不定积分xsinxdxsinxde(取三角函数为u)ex解

exsinxexd(sinx)exsinxexcosxdx

exsinxcosxdex(再取三角函数为u)exsinx(excosxexdcosx)ex(sinxcosx)exsinxdx

x

解得

exesinxdx2(sinxcosx)C

注:若被积函数是指数函数与正(余)弦函数的乘积时,u,dv可随意选取,但在两次分部积分中,必须选用同类型的u,以便经过两次分部积分后产生循环式,从而解出所求积分 20(指正余,随意选).下面将分部积分法关于u,dv的选择总结成一个表,以便于更好学习,如下:

分类 I

II

III 不定积分类型 u和的选择

p(x)sinxdx

nupn(x),sinx

upn(x),cosx p(x)cosxdx

n

xp(x)edx n

upn(x),ex

p(x)lnxdx

nulnx,pn(x)uarcsinx,pn(x)p(x)arcsinxdx

np(x)arccosxdx

nuarccosx,pn(x)

uarctanx,pn(x)p(x)arctannxdx

xesinxdx xecosxdx

usinx,ex或uex,sinx ucosx,ex或uex,cosx

6.结论

上面所介绍的都是常见不定积分的求解方法,根据不同的题的特点采取上述不同的方法,好多题要经过适当变形后才能应用上述方法,有的题经过不同的变形,应用不同的方法,计算结果就会不同。因此,不定积分的计算灵活性很强,必须熟练掌握上述方法,而这就与做大量的练习是密不可分了,题做得多了,自己也就会积累更多的经验,这样解起题来才能得心应手,才能熟练自如的应用,而且,定积分、广义积分、狭积分、重积分、曲线积分以及各种有关积分的函数的各种问题也能迎刃而解。

曲天尧

2013年5月17日于济南

山东财经大学(燕山校区)

第三篇:固定资产折旧方法及例题(范文模版)

固定资产折旧方法及例题:

小提示:

1、年限平均法、工作量法和年数总和法计算每期折旧额时,均需要考虑预计净残值;双倍余额递减法仅在计算最后两年的折旧额时考虑预计净残值。

2、上述工式均假设固定资产未计提减值准备。已计提的,应当按照该项资产的账面价值(固定资产账面余额扣减累计折旧和累计减值准备后的金额)以及尚可使用年限重新计算确定折旧率和折旧额。

注①:平均年限法是直线法的一种

直线法还有工作量法等只要是按照一定标准平均计提折旧就是直线法 如果题目中出现用直线法算折旧,就等于是年限平均法。

第四篇:极坐标与参数方程题型和方法归纳

极坐标与参数方程题型和方法归纳

题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。方法如下:

1、已知直线的参数方程为

(为参数)以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的方程为.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)写出直线与曲线交点的一个极坐标.题型二:三个常用的参数方程及其应用

(1)圆的参数方程是:

(2)椭圆的参数方程是:

(3)过定点倾斜角为的直线的标准参数方程为:

对(3)注意:

点所对应的参数为,记直线上任意两点所对应的参数分别为,则①,②,③

2、在直角坐标系中,曲线的参数方程为

(为参数,)以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.(Ⅰ)设是曲线上的一个动点,当时,求点到直线的距离的最小值;

(Ⅱ)若曲线上的所有点均在直线的右下方,求的取值范围.3、已知曲线:(参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,点的极坐标为.

(1)将曲线的极坐标方程化为直角坐标方程,并求出点的直角坐标;

(2)设为曲线上的点,求中点到曲线上的点的距离的最小值.

4、已知直线:(为参数),曲线:(为参数).(1)设与相交于两点,求;

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.5、在平面直角坐标系中,已知曲线(为参数),在以坐标原点为极点,以轴正半轴为极轴建立的极坐标系中,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线交于两点,求弦的长.

6、面直角坐标系中,曲线C的参数方程为(α为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=.l与C交于A、B两点.(Ⅰ)求曲线C的普通方程及直线l的直角坐标方程;

(Ⅱ)设点P(0,-2),求:①

|PA|+|PB|,②,③,④

题型三:过极点射线极坐标方程的应用

出现形如:(1)射线:();(1)直线:()

7、在直角坐标系中,圆的方程为,以为极点,轴的非负半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)直线:()与圆交于点、,求线段的长.

8、在直角坐标系中,圆的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求圆的极坐标方程;

(2)直线的极坐标方程为,其中满足与交于两点,求的值.9、在直角坐标系中,直线经过点,其倾斜角为,以原点为极点,以轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系,设曲线的极坐标方程为.

(Ⅰ)若直线与曲线有公共点,求的取值范围;

(Ⅱ)设为曲线上任意一点,求的取值范围.

10、在直角坐标系中中,已知曲线经过点,其参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)若直线交于点,且,求证:为定值,并求出这个定值.

11、在平面直角坐标系中,曲线和的参数方程分别是(是参数)和(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的普通方程和曲线的极坐标方程;

(2)射线与曲线的交点为,与曲线的交点为,求的最大值.

第五篇:混沌与非线性

机遇与混沌读后感

11121586朱丹浩

对于这本书我没有完全读完,我就很简略的读了一点点,还是跳着读的,所以读书报告可能写的不全面,我就写写我自己的看法吧。写这篇读书报告前我也到网上查找了一些相关的报告与一些网友的读后感,结合我自己的看法写。这本书是用直接的物理学和数学来解释机遇的不可测性,对机遇进行分析。用一种看着不是十分专业的方式对混沌进行了探讨。就像他在绪言中写的“如果科学是对真理的探讨,那么对于科学是如何做出来的,难道不应该讲真话吗?”。他用一种崭新的方式来阐述了科学。这本书其实想要看懂它是需要花点时间和精力的,需要一些关于数学和物理学的基础,看懂不是特别容易。当然这本书并不是全都是一些很枯燥的数学公式。他拥有一些风趣幽默的语言,看起来就不是那么的枯燥了。网上有人说作者的侧重点并不在于混沌方面,而是对决定性、随机性以及客观实在如何将决定性和随机性结合起来等诸方面进行探讨的。我也不知道说的对不对。目录里看到了很多看不懂的名词,可以看出作者是一个熟知很多个领域的科学家。本书的主要内容是:什么是机遇?机遇是怎么出现的?未来如何不可预测?对这些问题答案的探讨,构成了本书的主题。作者从机遇有其原因、抽彩和星象等说起,谈到了历史的演化、熵、信息乃至性的真意、智能„„本书深入浅出,是普通读者了解混沌理论的绝佳入门读物。

我对这本书的评价就是本书深入浅出,是我们了解混沌理论的绝佳入门读物。但是由于理解上可能会有一些困难,所以我们需要花一点时间。里面不少的妙趣横生的句子和比喻也是体现作者写作功力的最好表现。比如他说:“数学是一种智力瑜伽,强求、严格和禁欲。”

读了这本书我也有了一些收获和体会。我在目录中看到了“抽彩和星象”我觉得一个严肃的科学家居然讲星象,所以我就去看了一下。里面说占星术认为你出生在某个时候,你就和某个星座有了一些联系,那你今后的运气,比如这星期会不会中彩票之类的就和这个星座产生了数不清道不明的关系。而作者也并不否认这个观点,他认为你出生的时候一些星座与你产生的影响会对你将来产生一些可见的改变,这就是混沌的初值敏感性。初值的微小改变可能会将来的人生产生巨大的影响。就像你抛一个硬币,在你确定了力,方向,重力,风一些种种因素,那应该抛出来的结果都是一样的,可是又要扯到微观的量子就一定有随机性了。就比如作者里面说的今天下午是否下雨,除了其他许多因素外,还要考虑几周前进行的万有引力影响。

作者写的这本书不能说对我目前有多大影响,但是起码丰富了我的见识。谁知道这本书将来会不会对我产生什么巨大的影响呢,因为混沌的初值敏感性,谁也说不准呢!

下载非线性方程求根的方法简介与例题word格式文档
下载非线性方程求根的方法简介与例题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    非线性方程牛顿迭代法与斯特芬森迭代法的研究与比较

    非线性方程牛顿迭代法与斯特芬森迭代法的研究与比较 申林坚 (南昌航空大学 测试与光电工程学院 江西 南昌 330063) 摘要:本文针对一个具体的非线性方程3x2ex0进行研究,首先作出......

    公文改错方法及例题

    1. 公文改错题 关于办理商标注册附送证件问题的批复 《关于办理商标注册附送证件问题的请示》收悉,国务院大致同意关于办理商标变更、转让或者继展注册时不再附送原产标注......

    标准成本核算方法例题

    标准成本核算方法 1.A工厂是一个生产某种汽车零件的专业工厂,产品成本计算采用标准成本计算系统,有关资料如下: (1)成本差异账户包括:材料价格差异、材料数量差异、直接人工工资率......

    常微分方程定性与稳定性方法试卷(★)

    常微分方程定性与稳定性方法试卷 2x1dx12x2,22dt(1x1)1.(20分)讨论系统 dx 零解的稳定性。 2x2x2122222dt(1x)(1x11)d2xdxdx22mbxx0,mb0 对2.(20分)证明振动方程 2dtdtdt 任何......

    不等式的证明方法经典例题

    不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学......

    北京方程人才服务中心简介

    北京方程人才服务中心简介北京方程人才服务中心是1998年经北京市人事局批准成立,具有独立法人资格的人事服务机构。是北京人力资源服务行业协会的会员单位。主要从事人才推荐......

    实际问题与方程

    课题实际问题与方程课型新授课设计说明返璞归真,努力营造一个简洁、高效、灵动、快乐的数学课堂。1.充分展开教学过程,给予学生思考的时间和空间,关注课堂生成,因势利导,引导......

    实际问题与方程

    课题实际问题与方程课型新授课设计说明1.复习导入,引导学生发现数学问题。通过复习铺垫,使学生深入掌握行程问题中速度、时间和路程三者之间的关系,进一步巩固有关这几个数......