极坐标参数方程与几何证明题型方法归纳(精)

时间:2019-05-14 11:38:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《极坐标参数方程与几何证明题型方法归纳(精)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《极坐标参数方程与几何证明题型方法归纳(精)》。

第一篇:极坐标参数方程与几何证明题型方法归纳(精)

222 cos sin x y x y ρρ

ρθ

⎧=+⎪=⎨⎪=⎩ 极轴

一、极坐标与参数方程选讲

1、极坐标与直角坐标的公式转换:

2、点的极坐标含义(, M ρθ: 练习:

(1 在直角坐标系中曲线 C 的极坐标方程为 2cos 4sin ρθθ=-,写出曲线 C 的直角坐标 方程.04222=+-+y x y x(2 在平面直角坐标系 xOy 中, 点 P 的直角坐标为(1,.若以原点 O 为极点, x 轴正半 轴为极轴建立极坐标系,则点 P 的极坐标可以是.(2,2(3 k k Z π π-∈

(3在极坐标系中,已知两点 A、B 的极坐标分别为 3, 3π⎛⎫ ⎪⎝⎭, 4, 6π⎛⎫ ⎪⎝⎭ ,则△ AOB(其 中 O 为极点的面积为.提示:1 sin 2 S ab C = =3

(4在极坐标系(ρ, θ(0 ≤ θ<2π中,曲线 ρ=2sin θ 与 cos 1p θ=-的交点 的极坐标为 ______.3 4 π

提示:这两条曲线的普通方程分别为 222, 1x y y x +==-.解得 1, 1.x y =-⎧⎨=⎩

(5 已 知 直 线 l 的 参 数 方

程 为 :2, 14x t y t =⎧⎨

=+⎩(t 为 参 数 , 圆 C 的 极 坐 标 方 程 为

ρθ=,则直线 l 与圆 C 的位置关系为 相交(6已知直线的极坐标方程为(4R π θρ=

∈,它与曲线 12cos 22sin x y α α

=+⎧⎨=+⎩(α为参数相 交于两点 A 和 B ,则(7若直线 12, 23.{x t y t =-=+(t 为参数与直线 41x ky +=垂直,则常数 k =________.6-=k(8设直线 1l 的参数方程为 113x t y t =+⎧⎨

=+⎩(t 为参数 ,直线 2l 的方程为 y=3x+4则 1l 与 2l 的 距离为 _______ 【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。解析:由题直线 1l 的普通方程为 023=--y x ,故它与与 2l 的距离为 3|24|=

+。

(9 在极坐标系中, 直线 l 的方程为 ρsin θ=3, 则点(2, π/6到直线 l 的距离为.【解析】法 1:画出极坐标系易得答案 2;法 2:化成直角方程 3y = 及直角坐标 可得答 案 2.(10在平面直角坐标系 xOy 中,直线 l 的参数方程为(33 R t t y t x ∈⎩

⎨⎧-=+=参数 ,圆 C 的参数 方程为 [] 20(2 sin 2cos 2πθθθ , 参数 ∈⎩⎨

⎧+==y x ,则圆 C 的圆心坐标为.(0, 2 ,圆心 到直线 l 的距离为 22.(11在极坐标系中, P Q , 是曲线 C :4sin ρθ=上任意两点,则线段 PQ 长度的最大值 为.4【解析】最长线段 PQ 即圆 22(2 4x y +-=的直径.(12曲线 C 的参数方程是 ⎪⎪⎩ ⎪⎪⎨⎧

-=+= 1(3 1(2t t y t t x(t 为参数 ,则曲线 C 的普通方程 是.136 162 2=-y x 提示:1213 x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,平方后相减消去参数 t(13 已知曲线 132 14x t y t ⎧

=-+⎪⎨⎪=+⎩(t 为参数与曲线 2cos 2sin x y θθ=⎧⎨=⎩(θ为参数的交点为 A , B , ,则 AB =

(14 若直线 :l y kx =与曲线 { 2cos :sin x C y θθ=+=(参 数 ∈θR 有唯一的公共点,则实数 k =

.二、几何证明选讲

1、与切线有关 构造直角三角形

如图, AB 是 ⊙ O 的直径, P 是 AB 延长线上的一点, 过 P 作 ⊙ O 的 切 线 , 切 点 为 C , 2=PC , 若

︒=∠30CAP ,则 ⊙ O 的直径 =AB 4.切割线定理

如图 1所示, 过 O 外一点 P 作一条直线与 O 交于 A , B 两点, 已知 PA =2, 点 P 到 O 的切线长 PT =4,则弦 AB 的长为 ________.6 弦切角定理 弦切角 ABD=角 C 如图,直角三角形 ABC 中, ︒=∠90B , 4=AB ,以 BC 为直径的圆交 AC 边于点 D , 2=AD ,则 C ∠的大小为

提示 连接 BD ,在直角三角形 ABD 中可求得 角 ABD=30°,弦切角 ABD=角 C

2、相交弦定理、垂径定理

如图 AB , CD 是半径为 a 的圆 O 的两条弦,它们相交于 AB 的中点 P , PD=23 a ,∠OAP=30°, 则 CP =______.【解析】因为点 P 是 AB 的中点,由 垂径定理 知, OP AB ⊥.在 Rt OPA ∆ 中, cos30BP AP a ===

.由 相交弦定理 知, BP AP CP DP ⋅=⋅ 2 3 CP a =⋅,所以 98CP a =.图 1 A B C 图 3

N

3、射影定理

2, CD AD DB =⨯ 2BC BD AB =⨯, 2AC AD AB =⨯ 如 图 , AB 是 半圆 O 的 直 径 , C 是 半 圆 O 上 异于 A B , 的 点 , C D A B ⊥, 垂 足 为 D , 已

知 2AD =, CB =, 则 CD =

.提示 222(2 6, 12.CB BD BA BD BD BD CD AD BD =⨯⇔=+⇔==⨯=

4、相似比

如图,在 ABC ∆中, DE //BC , EF //CD , 若 3, 2, 1BC DE DF ===,则 AB 的长为 __9 2 _________.5、圆的内接四边形对角互补 如图 3,四边形 ABCD 内接于⊙ O , BC 是直径, MN 与⊙ O 相切 , 切点为 A , MAB ∠35︒=, 则 D ∠=.125︒

6、圆心角 =2倍圆周角

如图,点 A B C、、是圆 O 上的点,且 4AB =, o 30ACB ∠=, 则圆 O 的面积等于 _________.解:连结 OA , OB ,则∠ AOB=2∠ ACB=60O ,所以△ AOB 为正三角形,圆 O 的半径 r=4AB =,于是,圆 O 的面积等于 πππ1642 2 =⨯=r 如图 , 已知△ ABC 内接于⊙ O ,点 D 在 OC 的 延长线上, AD 切⊙ O 于 A ,若 o 30ABC ∠=, 2=AC , 则 AD 的长为

.提示 连接 OA ,圆心角 AOD=2B=60°, AOC 是等边三角 形。所以 OA=AC=2,在直角三角形 OAD 中求 AD。

A

第二篇:极坐标与参数方程题型和方法归纳

极坐标与参数方程题型和方法归纳

题型一:极坐标(方程)与直角坐标(方程)的相互转化,参数方程与普通方程相互转化,极坐标方程与参数方程相互转化。方法如下:

1、已知直线的参数方程为

(为参数)以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的方程为.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)写出直线与曲线交点的一个极坐标.题型二:三个常用的参数方程及其应用

(1)圆的参数方程是:

(2)椭圆的参数方程是:

(3)过定点倾斜角为的直线的标准参数方程为:

对(3)注意:

点所对应的参数为,记直线上任意两点所对应的参数分别为,则①,②,③

2、在直角坐标系中,曲线的参数方程为

(为参数,)以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知直线的极坐标方程为.(Ⅰ)设是曲线上的一个动点,当时,求点到直线的距离的最小值;

(Ⅱ)若曲线上的所有点均在直线的右下方,求的取值范围.3、已知曲线:(参数),以坐标原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为,点的极坐标为.

(1)将曲线的极坐标方程化为直角坐标方程,并求出点的直角坐标;

(2)设为曲线上的点,求中点到曲线上的点的距离的最小值.

4、已知直线:(为参数),曲线:(为参数).(1)设与相交于两点,求;

(2)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.5、在平面直角坐标系中,已知曲线(为参数),在以坐标原点为极点,以轴正半轴为极轴建立的极坐标系中,直线的极坐标方程为.

(1)求曲线的普通方程和直线的直角坐标方程;

(2)过点且与直线平行的直线交于两点,求弦的长.

6、面直角坐标系中,曲线C的参数方程为(α为参数).以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ+)=.l与C交于A、B两点.(Ⅰ)求曲线C的普通方程及直线l的直角坐标方程;

(Ⅱ)设点P(0,-2),求:①

|PA|+|PB|,②,③,④

题型三:过极点射线极坐标方程的应用

出现形如:(1)射线:();(1)直线:()

7、在直角坐标系中,圆的方程为,以为极点,轴的非负半轴为极轴建立极坐标系.

(1)求圆的极坐标方程;

(2)直线:()与圆交于点、,求线段的长.

8、在直角坐标系中,圆的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求圆的极坐标方程;

(2)直线的极坐标方程为,其中满足与交于两点,求的值.9、在直角坐标系中,直线经过点,其倾斜角为,以原点为极点,以轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系,设曲线的极坐标方程为.

(Ⅰ)若直线与曲线有公共点,求的取值范围;

(Ⅱ)设为曲线上任意一点,求的取值范围.

10、在直角坐标系中中,已知曲线经过点,其参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)若直线交于点,且,求证:为定值,并求出这个定值.

11、在平面直角坐标系中,曲线和的参数方程分别是(是参数)和(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的普通方程和曲线的极坐标方程;

(2)射线与曲线的交点为,与曲线的交点为,求的最大值.

第三篇:几何证明选讲、极坐标与参数方程(知识点+题型+真题)

几何证明选讲、极坐标与参数方程

一、极坐标与参数方程

题型一:极坐标与直角坐标互化

题型二:极坐标方程转化为直角坐标方程

题型三:参数方程转化为普通方程(消去参数)

练习:

x3t21.曲线的参数方程为(t是参数),则曲线是()yt1

A.直线B.双曲线的一支C.圆D.射线

2.已知极坐标系中点A(2,3),则点A的普通直角坐标是()

4A.(-1,-1)B.(1,1)C.(-1,1)D.(1,-1)

3.圆sin的半径是()

A.2B.2C.1D.

4.直线:3x-4y-9=0与圆:1 2x2cos,(θ为参数)的位置关系是()

y2sin

A.相切B.相离C.直线过圆心D.相交但直线不过圆心

5.已知直线l1:x13t(t为参数)与直线l2:2x4y5相交于点B的坐标是y24t

6.在极坐标系中,点A2,

到直线sin2的距离是4

x2cos(为参数,且R)的曲

y1cos2

7、若P是极坐标方程为

3R的直线与参数方程为

线的交点,则P点的直角坐标为.二、几何证明选讲

1、相似三角形性质

2、射影定理

3、切割线定理

4、相交弦定理

直角三角形的射影定理

射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

割线定理:从园外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。

练习:

1.半径为5cm的圆内一条弦AB,其长为8cm,则圆心到弦的距离为()A.1cmB.2cmC.3cmD.4cm 2.如图,已知DE∥BC,△ADE的面积是2cm,梯形DBCE的面积为6cm,则

DE:BC的值是()

21C.1D.

323.如图所示,圆O上一点C在直径AB上的射影为D,A.2B.

CD4,BD8,则圆O的半径等于()

A.3B.4C.5D.6

4.如图,AB是半圆O直径,BAC30,C

A

O

第10题图

BC

为半圆的切线,且BCO到AC的距离 OD()

A.3B.4C.5D.6

5.在RtABC中,ACB90,CDAB于点D,CD2,BD4,则AC=()

A

32D. 23

6.如图,△ABC中,DE∥BC,DF∥AC,AE:AC=3:5,DE=6,则BF=_______

7.如图,已知⊙O的割线PAB交⊙O于A,B两点,割线PCD经 过圆心,若PA=6,,AB=7,,PO=12.则⊙O 的半径为_______________

真题演练: 2007年文科

第14题.(坐标系与参数方程选做题)在极坐标系中,直线l的方程为

sin3,则点(2,)到直线l的距离为.

6第15题.(几何证明选讲选做题)如图4所示,圆O的直径AB=6,C

为圆周上一

点,BC3过C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=. 2008年文科

第14题.(坐标系与参数方程选做题)已知曲线C1,C2的极坐标方程分别为

cos3,4cos(0,0),则曲线C1 C2交点的极坐标为

第15题.(几何证明选讲选做题)已知PA是圆O的切点,切点为A,PA=2.AC是圆O的直径,PC与圆O交于B点,PB=1,则圆O的半径R 2009年文科

第14题.(坐标系与参数方程选做题)若直线

x12t

(

y23tt为参数)与直线

4xky1垂直,则常数k=________.

第15题.(几何证明选讲选做题)如图3,点A,B,C是圆O上的点,且AB4,ACB30o,则圆O的面积等于.

2010年文科

第14题.(几何证明选讲选做题)如图3,在直角梯形ABCD中,DC∥AB,CB⊥AB,AB=AD=a,CD=

a,点E,F分别为线段AB,AD的中点,则EF=. 第15题.(坐标系与参数方程选做题)在极坐标系(ρ,)(0<2)中,曲线

cossin1与sincos1的交点的极坐标为.

2011年文科

第14题.(坐标系与参数方程选做题)已知两曲线参数方程分别

为

x

(0≤<)和

ysin

52x4t(tR),它们的交点坐标为. yt

第15题.(几何证明选讲选做题)如图4,在梯形ABCD中,AB∥CD,AB=4,CD=2,E、F分别为AD、BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为.

2012年文科

第14题.(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C

2的参数方程分别为

x1x(t是参数)C2:(是参数,0)

和C2:,它们的交点坐标为.

2yy

第15题.(几何证明选讲选做题)如图3所示,直线PB与圆O想切于点B,D是弦AC上的点,PBADBA,若AD

则,mAC,n

AB

2013年文科

第14题.(坐标系与参数方程选做题)已知曲线C的极坐标方程为2cos.以极点为原点,极轴为x轴的正半轴建立直角坐标系,则曲线C的参数方程为.

第15题.(几何证明选讲选做题)如图3,在矩形ABCD

中,ABBC3,BEAC,垂足为E,则ED.

图3

小节训练卷(27)参考答案

1.A∴选A 2.C

x3t2

将2式乘以3后减去1式得3yx5,即x3y50,此方程表示的是直线,yt1

2,

3,xcos1,ysin1,∴选C 4

∴选B

3.B

CDADBD,AD1,AC

4.D将sin两边平方得sin,xyy,整理得x2(y)25.C过圆心O作OD⊥AB,则OD为所求。DB=4,OB=5, ∴OD=3∴选C 6.B点(2,121,∴选D 4

,cos1的普通直角)的普通直角坐标为(0,2)

坐标方程是x=1,则(0,2)关于x=1对称的点为(2,2),化为

极坐标是),∴选B

DE2SADE21DE1

8,,,∴选D

BC2SABC84BC2

7.D SADE2,SABC

8.D圆:

x2cos22

化成普通直角坐标方程是xy4,圆心是(0,0),半径r=2,圆心到直线3x-4y-9=0

y2sin的距离为d

95

r,所以直线和圆相交。∴选D 5

9.C CDADBD,AD2,直径AB10,r5∴选C

10.A

BAC30,BCAB,BCACABACCOS3012

OA6,又ODAC,ADOABC,

ODOA

,OD3,∴选A BCAC

x13t

(t为参数)化为普通直角坐标方程为4x3y10,联立方程2x4y5 11.l1:

y24t

5

5x

解得2,∴答案为(,0)

2y0

12.极坐标点A2,

,直线sin2的直角坐标方程是 的直角坐标是(1,1)

4

y2,所以点到直线的距离是3

13.由题知ADEABC,∴DE:BC=AE:AC=3:5,又DE=6, ∴BC=10 又CF=BE=6, ∴BF=4

14.由割线定理知PAPBPCPD,6(67)(12r)(12r)∴r=8

第四篇:2014一模(理带答案)极坐标参数方程几何证明

极坐标参数方程

1.(2014海淀一模)4.已知直线l的参数方程为

=

A.xy20B.xy20C.xy0D.xy20

2.(2014西城一模)3.在极坐标系中,过点(2,)且与极轴平行的直线方程是()

(A)ρ2(B)θx1t,(t为参数),则直线l的普通方程为y1tπ2 2(C)ρcosθ2(D)sin=2

3.(2014东城一模)

(5)在极坐标系中,点)到直线cossin10的距离等于

(A)4

(B

(C)(D)2 22

4.(2014石景山一模)11.已知圆C的极坐标方程为=2,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,则圆C的直角坐标方程为_______________,若直线l:kxy30与圆C相切,则实数k的值为_____________.x

2+y2=4;k 5.(2014大兴一模)(3)在极坐标系中,点(1,0)到直线

A.π(R)的距离是 41B

.C.1

D.22

6.(2014丰台一模)2.在极坐标系中,点A(1,)到直线cos2的距离是

(A)1(B)2(C)3(D)4

几何证明

1.(2014海淀一模)11.如图,AB切圆O

于B,ABAC1,则AO的长为_______.2

2.(2014东城一模)(10)如图,AB是圆O的直径,延长AB至C,CD是圆O的切线,使AB2BC,且BC2,切点为D,连接AD,则CD;

DAB.30

3.(2014石景山一模)4.已知Rt△ABC中,C90o,AB5,BC4,A

以BC为直径的圆交AB于D,则BD的长为()A.4

12C. 9 516D. B.AB

C 55

4.(2014丰台一模)(11)如图,已知圆的两条弦AB与CD相交

于点F,E是AB延长线上一点,且DF=CF

AF:FB:BE=4:2:1.若CE与圆相切,则线段CE的长

.2

AE

第五篇:第三章 参数方程、极坐标教案 直线和圆的极坐标方程 教案

第三章 参数方程、极坐标教案 直线和圆的极坐标方程教案

教学目标

1.理解建立直线和圆的极坐标方程的关键是将已知条件表示成ρ与θ之间的关系式.2.初步掌握求曲线的极坐标方程的应用方法和步骤.

3.了解在极坐标系内,一个方程只能与一条曲线对应,但一条曲线即可与多个方程对应. 教学重点与难点

建立直线和圆的极坐标方程. 教学过程

师:前面我们学习了极坐标系的有关概念,了解到极坐标系是不同于直角坐标系的另一种坐标系,那么在极坐标系下可以解决点的轨迹问题吗?

问题:求过定圆内一定点,且与定圆相切的圆的圆心的轨迹方程.

师:探求轨迹方程的前提是在坐标系下,请你据题设先合理地建立一个坐标系.(巡视后,选定两个做示意图,(如图3-8,图3-9),画在黑板上.)

解 设定圆半径为R,A(m,0),轨迹上任一点P(x,y)(或P(ρ,θ)).(1)在直角坐标系下:|ρA|=R-|Oρ|,(两边再平方,学生都感到等式的右边太繁了.)师:在直角坐标系下,求点P的轨迹方程的化简过程很麻烦.我们看在极坐标系下会如何呢?(2)在极坐标系下:在△AOP中

|AP|2=|OA|2+|OP|2-2|OA|·|OP|·cosθ,即(R-ρ)2=m2+ρ2-2mρ·cosθ. 化简整理,得

2mρ·cosθ-2Rρ=m2-R2,师:对比两种解法可知,有些轨迹问题在极坐标系下解起来反而简

坐标方程有什么不同呢?这就是今天这节课的讨论内容.

一、曲线的极坐标方程的概念

师:在直角坐标系中,曲线用含有变量x和y的方程f(x,y)=0表示.那么在极坐标系中,曲线用含有变量ρ和θ的方程f(ρ,θ)=0来表示,也就是说方程f(ρ,θ)=0应称为极坐标方程,如上面问题中的:ρ=

(投影)定义:一般地,在直角坐标系中,如果曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:

1.曲线上的点的坐标都是这个方程的解;

2.以这个方程的解为坐标的点都是曲线上的点.

那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.

师:前面的学习知道,坐标(ρ,θ)只与一个点M对应,但反过来,点M的极坐标都不止一个.推而广之,曲线上的点的极坐标有无穷多个.这无穷多个极坐标都能适合方程f(ρ,θ)=吗?如曲线ρ=θ上有一点(π,π),它的另一种形式(-π,0)就不适合ρ=θ方程,这就是说点(π,π)适合方程,但点(π,π)的另一种表示方法(-π,0)就不适合.而(-π,0)不适合方程,它表示的点却在曲线ρ=θ上.因而在定义曲线的极坐标方程时,会与曲线的直角坐标方程有所不同.

(先让学生参照曲线的直角坐标方程的定义叙述曲线的极坐标方程的定义,再修正,最后打出投影:曲线的极坐标方程的定义)曲线的极坐标方程定义:

如果极坐标系中的曲线C和方程f(ρ,0)=0之间建立了如下关系:

1.曲线C上任一点的无穷多个极坐标中至少有一个适合方程f(ρ,θ)=0;

2.坐标满足f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程. 师:下面我们学习最简单的曲线:直线和圆的极坐标方程.

求直线和圆的极坐标方程的方法和步骤应与求直线和圆的直角坐标方程的方法和步骤类似,关键是将已知条件表示成ρ和θ之间的关系式.

解 设M(ρ,θ)为射线上任意一点,因为∠xOM=θ,师:过极点的射线的极坐标方程的形式你能归纳一下吗?

生:是.

师:一条曲线可与多个方程对应.这是极坐标方程的一个特点.你能猜想一下过极点的直线的极坐标方程是什么形式吗?

学生讨论后,得出:θ=θ0(θ0是倾斜角,ρ∈R)是过极点的直线的极坐标方程.师:把你认为在极坐标系下,有特殊位置的直线都画出来.

例2 求适合下列条件的极坐标方程:(1)过点A(3,π)并和极轴垂直的直线;

解(1)设M(ρ,θ)是直线上一点(如图3-15),即ρcosθ=-3为所示.

解(2)设M(ρ,θ)是直线上一点,过M作MN⊥Ox于N,则|MN|是点B到Ox的距离,师:不过极点也不垂直极轴、不平行极轴的直线的极坐标方程如何确立呢?

例3 求极坐标平面内任意位置上的一条直线l的极坐标方程(如图3-17,图3-18).

让学生根据以上两个图形讨论确定l的元素是什么?

结论直线l的倾斜角α,极点到直线l的距离|ON|可确定直线l的位置.

解设直线l与极轴的夹角为α,极点O到直线l的距离为p(极点O到直线l的距离是唯一的定值,故α、p都是常数).

直线l上任一点M(ρ,θ),则在Rt△MNO中|OM|·sin∠OMN=|ON|,即ρsin(α-θ)=p为直线l的极坐标方程.(如图3-19,图3-20)

师:直线的极坐标方程的一般式:ρsin(α-θ)=p,其中α是直线的倾斜角,p是极点到l的距离,当α、p取什么值时,直线的位置是特殊情形呢?

当α=π时,ρsinθ=p,直线平行极轴; 当p=0时,θ=α,是过极点的直线.

师:以上我们研究了极坐标系内的直线的极坐标方程.在极坐标系中的圆的方程如何确立呢?如图3-21:

圆上任一点M(r,θ),即指θ∈R时圆上任一点到极点的距离总是r,于是ρ=r是以极点为圆心r为半径的一个圆的极坐标方程.

师:和在直角坐标系中,把x=a和y=b看作是二元方程一样,θ=θ0及ρ=r也应看作是二元方程.在方程θ=θ0中,ρ不出现,说明ρ可取任何非负实数值;同样,在方程ρ=r中,θ不出现,说明θ可取任何实数值.

例4 求圆心是A(a,0),半径是a的圆的极坐标方程.(让学生画图,教师巡视参与意见)解设⊙A交极轴于B,则|OB|=2a,圆上任意一点M(ρ,θ),则据直径上的圆周角是直角可知:OM⊥MB,于是在Rt△OBM中,|OM|=|OB|cosθ,即ρ=2acosθ就是所求圆的极坐标方程.如图3-22.

师:在极坐标系下,目前我们理解下面几种情形下的圆的极坐标方程即可. 让学生自己得出极坐标方程.

图3-23:ρ=2rcosθ; 图3-24:ρ=-2rcosθ; 图3-25:ρ=2rsinθ; 图3-26:ρ=-2rsinθ.

师:建立直线和圆的极坐标方程的步骤与建立直线和圆的直角坐标方程的步骤一样,你能小结一下吗?(投影)分4个步骤:

(1)用(ρ,θ)表示曲线上任意一点M的坐标;(2)写出适合条件ρ的点M的集合P={M|p(M)};(3)用坐标表示条件ρ(M),列出方程f(ρ,θ)=0;(4)化方程f(ρ,θ)=0为最简形式.

练习:分别作出下列极坐标方程表示的曲线

(2)ρcosθ=sin2θ(cosθ=0或ρ=2sinθ);

设计说明

直线和圆的极坐标方程一节的教学重点是如何根据条件列出等式.至于在极坐标系中由于点的极坐标的多值性,而带来的曲线的极坐标方程与直角坐标系中的方程有不同的性质,这一点只需学生了解即可.另外,由于删除了3种圆锥曲线的统一的极坐标方程,实际上就降低了对极坐标一节学习的难度.所以用一课时来学习曲线的极坐标方程只能是在前面学习曲线的直角坐标方程的基础上初步掌握建立极坐标方程的方法.为此本节课围绕着这一主题进行了充分的课堂活动,达到了教学目的.

下载极坐标参数方程与几何证明题型方法归纳(精)word格式文档
下载极坐标参数方程与几何证明题型方法归纳(精).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高三三轮冲刺专题练习选修4极坐标与参数方程含解析

    极坐标与参数方程一.选择题(共16小题)1.化极坐标方程ρ2cosθ﹣ρ=0为直角坐标方程为(  )A.x2+y2=0或y=1B.x=1C.x2+y2=0或x=1D.y=12.在极坐标方程中,曲线C的方程是ρ=4sinθ,过点(4,)作曲线C......

    高考复习专题人教版数学限时训练—参数方程几何证明

    坐标系及参数方程(基础训练7)1.若直线的参数方程为x12ty23t2(t为参数),则直线的斜率为__3x2y7__-3/2__ x2sin2.将参数方程(为参数)化为普通方程为__yx2,(2x3)___2ysin3.点M的直角......

    几何证明思路与方法

    对于初中数学的教学而言,不存在太多的难点,按照南京中考数学试卷的难易比例7:2:1来看,90%都属于基本知识点的考察和运用,剩余的10%则是分配在平面几何的证明和一元二次函数的动......

    几何证明方法总结

    方法总结1、首先找出两个平面的交线,然后证明这几点都是这两个平面的公共点,〖1〗 证点共线:由公理2可知,这些点都在交线上 2、首先选择其中两点确定一条直线,然后证明另一点在此......

    坐标系与参数方程(知识总结)

    坐标系与参数方程专题坐标系与参数方程 【要点知识】 一、坐标系 1.平面直角坐标系中的伸缩变换 xx(0)设点P(x,y)是平面直角坐标系xOy中的任意一点,在变换:的作用yy(0)下,点P(......

    2007年全国各地高考数学试题及解答分类大全(18几何证明选讲、坐标系与参数方程)

    2007年高考中的“几何证明选讲、坐标系与参数方程”试题汇编大全一、选择题:二、填空题:1.( 2007广东文) (坐标系与参数方程选做题)在极坐标系中,直线l的方程为ρsinθ=3,则点(2,......

    几何证明方法(初中数学)

    初中数学几何证明题技巧,归类 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。(三线合一) 4.平......

    广东高考文科数学真题模拟09:坐标系与参数方程和几何证明选讲

    广东高考文科数学真题模拟汇编09:坐标系与参数方程和几何证明选讲坐标系与参数方程部分:1.(2009广州一模文数)(坐标系与参数方程选做题)在极坐标系中,直线sin截得的弦长为__.1.432......