关于圆的几何证明计算题的解题方法[范文模版]

时间:2019-05-13 00:35:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《关于圆的几何证明计算题的解题方法[范文模版]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《关于圆的几何证明计算题的解题方法[范文模版]》。

第一篇:关于圆的几何证明计算题的解题方法[范文模版]

关于圆的几何证明计算题的解题方法

经过圆心的弦是直径;

圆上任意两点间的部分叫做圆弧,简称弧;

圆上任意一条直径的两个端点分圆成两条弧,每一条弧叫做半圆;

大于半圆弧的弧叫优弧,小于半圆弧的弧叫做劣弧;

由弦及其所对的弧组成的图形叫做弓形。

(1)当两圆外离时,d>R_+r;

(2)当两圆相外切时,d=R_+r;

(3)当两圆相交时,R_-r

(4)当两圆内切时,d=R_-r(R>r);

(4)当两圆内含时,d

其中,d为圆心距,R、r分别是两圆的半径。

如何判定四点共圆,我们主要有以下几种方法:

(1)到一定点的距离相等的n个点在同一个圆上;

(2)同斜边的直角三角形的各顶点共圆;

(3)同底同侧相等角的三角形的各顶点共圆;

(4)如果一个四边形的一组对角互补,那么它的四个顶点共圆;

(5)如果四边形的一个外角等于它的内对角,那么它的四个顶点共圆;

(6)四边形ABCD的对角线相交于点P,若PA_*PC=PB_*PD,则它的四个顶点共圆;

(7)四边形ABCD的一组对边AB、DC的延长线相交于点P,若

PA_*PB=PC_*PD,则它的四个顶点共圆。

1、作直径上的圆周角

当告诉了一条直径,一般通过作直径上的圆周角,利用直径所对的圆周角是直角这一

条件来证明问题.2、作弦心距

当告诉圆心和弦,一般通过过圆心作弦的垂线,利用弦心距平分弦这一条件证明问题.3、过切点作半径

当含有切线这一条件时,一般通过把圆心和切点连起来,利用切线与半径垂直这一性

质来证明问题.4、作直径

当已知条件含有直角,往往通过过圆上一点作直径,利用直径所对的圆周角为直角这

一性质来证明问题.5、作公切线

当已知条件中含两圆相切这一条件,往往通过过这个切点作两圆的公切线,通过公切

线找到两圆之间的关系.6、作公共弦

当含有两圆相交这一条件时,一般通过作两圆的公共弦,由两圆的弦之间的关系,找

出两圆的角之间的关系.7、作两圆的连心线

若已知中告诉两圆相交或相切,一般通过作两圆的连心线,利用两相交圆的连心线垂直

平分公共弦或;两相切圆的连心线必过切点来证明问题.8、作圆的切线

若题中告诉了我们半径,往往通过过半径的外端作圆的切线,利用半径与切线垂直或利

用弦切角定理来证明问题.9、一圆过另一圆的圆心时则作半径

题中告诉两个圆相交,其中一个圆过另一个圆的圆心,往往除了通过作两圆的公共弦外,还可以通过作圆的半径,利用同圆的半径相等来证明问题.10、作辅助圆

当题中涉及到圆的切线问题(无论是计算还是证明)时,通常需要作辅助线。一般地,有以下几种添加辅助线的作法:

(1)已知一直线是圆的切线时,通常连结圆心和切点,使这条半径垂直于切线.(2)若已知直线经过圆上的某一点,需要证明某条直线是圆的切线时,往往需要作出经

过这一点的半径,证明直线垂直于这条半径,简记为“连半径,证垂直”;若直线与圆的公

共点没有确定,则需要过圆心作直线的垂线,得到垂线段,再通过证明这条垂线段的长等

于半径,来证明某条直线是圆的切线.简记为“作垂直,证半径”.

第二篇:几何证明计算题

几何证明与综合应用

1、如图1,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,2、CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;

(2)求证:AE=FC+EF.2、如图2,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC的延长线于点G.(1)求证:ADE≌CDE;

(2)过点C作CHCE,交FG于点H,求证:FHGH;

(3)设AD1,DFx,试问是否存在x的值,使ECG为等腰三角形,若存在,请求出x的A

D

值;若不存在,请说明理由.E

F

B

C

H

G

23、如图3,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线

BC上,且PE=PB.(1)求证:① PE=PD ; ② PE⊥PD;(2)设AP=x, △PBE的面积为y.① 求出y关于x的函数关系式,并写出x的取值范围; ② 当x取何值时,y取得最大值,并求出这个最大值.4、如图4-1,在△ABC中,∠ACB=90°,∠CAB=30°, △ABD是等边三角形,E是AB的中点,连结CE并延长交AD于F.(1)求证:① △AEF≌△BEC;② 四边形BCFD是平行四边形;

(2)如图4-2,将四边形ACBD折叠,使D与C重合,HK为折痕,求sin∠ACH的值.F

30°

D

B E 图

3C

D D

B

H

B5、如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形. D A(1)AD与BC有何等量关系?请说明理由;(2)当ABDC时,求证:□ABCD是矩形.C B

图4-1 图4-

26、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交BCA的平分线于点E,交BCA的外角平分线于点F.

(1)探究:线段OE与OF的数量关系并加以证明;

(2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由;

(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形? A

E FM N

B DC

7、如图-1,在边长为5的正方形ABCD中,点E、F分别是BC、DC

边上的点,且AEEF,BE2.(1)求EC∶CF的值;

(2)延长EF交正方形外角平分线CP于点P(如图-2),试判断AE与EP的大小关系,并说明理

由;

(3)在图-2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证

明;若不存在,请说明理由.

P F

B E C B E C8、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BDDF,G为DF中图-1 交BC于F,连接图-2 点,连接EG,CG.(1)求证:EG=CG;

(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)

中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.

(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论

是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)

D D

图②

图③ 图①

9、在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于

点N.

(1)如图25-1,当点M在AB边上时,连接BN.①求证:△ABN≌△ADN;

②若∠ABC = 60°,AM = 4,∠ABN =,求点M到AD的距离及tan的值;

(2)如图25-2,若∠ABC = 90°,记点M运动所经过的路程为x(6≤x≤12).

试问:x为何值时,△ADN为等腰三角形.

M(图25-1)B B(图25-2)A10、已知△ABC中,ABAC,D、E是BC边上的点,将△ABD绕点A旋转,得到△ACD,连

结DE.

(1)如图1,当BAC120,DAE60时,求证:DEDE.

(2)如图2,当DEDE时,DAE与BAC有怎样的数量关系?请写出,并说明理由.

(3)如图3,在(2)的结论下,当BAC90,BD与DE满足怎样的数量关系时,△DEC

是等腰直角三角形?(直接写出结论,不必说明理由).

DD D

B DC B B E D E D E 图3 图1 图

211、正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M 点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;

(2)设BMx,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置

D 时,四边形ABCN面积最大,并求出最大面积;

(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求x的值.

N

C M第22题

12、图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,∠A=30o,∠E= 45o,∠EDF=∠ACB=90 o,DE交AC于点G,GM⊥AB于M.

(1)如图①,当DF经过点C 时,作CN⊥AB于N,求证:AM=DN.

(2)如图②,当DF∥AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理

由.

EB B①

13、(1)观察与发现:小明将三角形纸片ABC(ABAC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图①);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图②).小明认为△AEF是等腰三角形,你同意吗?请说明理由. A A

F

图① 图②

(2)实践与运用

将矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图③);再沿过点E的直线折叠,使点D落在BE上的点D处,折痕为EG(如图 ④); 再展平纸片(如图⑤).求图⑤中的大小.

E D A DA D A

DC C B B C F  F图③ 图④ 图⑤

14、如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB4,BC6,∠B60.(1)求点E到BC的距离;

(2)点P为线段EF上的一个动点,过P作PMEF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EPx.MN的形状是否发生改变?若不变,求出△PMN的周长;①当点N在线段AD上时(如图2),△P

若改变,请说明理由;

②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.A A A D D DNF F F

B C B C B C MM 图1 图2 图

3D A D(第25题)A

F F

B C B C图5(备用)图4(备用)

15、如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点

F.(1)求证:DE-BF = EF.

(2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由.

(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明).

A D

A D

E

FB C CG G B

图①

图②

第三篇:小升初典型的计算题及解题常用方法

专题训练一

专题一:典型的计算题及解题常用方法

在小学计算题中有好多题型方法新颖独特,在升重点中学考试和进入中学分班考试中,多有出现,有的学生因为没见过这种题型常常得分很少或得零分,其实这种题型只要

掌握一定的解题方法和规律一点都不难。下面老师跟你支支招:

一、熟记规律,常能化难为易。

① 25×4=100,②125×8=1000,③=0.25=25%,④=0.75=75%, ⑤=0.125=12.5%, ⑥=0.375=37.5%, ⑦5=0.625=62.5%, 87⑧=0.875=87.5% 834183814利用①12321=111×111,1234321=1111×1111,123454321=11111×11111 ②123123=123×1001,12341234=1234×10001 ③12345679×9=111111111等规律巧解题:

888888***252252525525525×108 ÷36

25225225252552566666***1

20102010×1999-2010×19991999 12345679×63 72×12345679

二、利用积不变、拆数和乘法分配率巧解计算题: 28.67×67+3.2×286.7+573.4×0.05

专题训练一

314×0.043+3.14×7.2-31.4×0.15 41.2×8.1+11×9.25+53.7×1.9

19931993×1993-19931992×1992-19931992

1.993×1993000+19.92×199200-199.3×19920-1992×1991

333×332332333-332×333333332

796976795363411362267123894

363411-48894124-627796976-180

专题训练一

1998111111-)+2 -)-2000×(+)+3 ***98

2135261039154122051525

12324636948125101

59999×2222+3333×3334 4444×2222+8888×8889

3003230230231++***456

三、牢记设字母代入法

专题训练一

(1+0.21+0.32)×(0.21+0.32+0.43)-(1+0.21+0.32+0.43)×(0.21+0.32)

(1+0.23+0.34)×(0.23+0.34+0.65)-(1+0.23+0.34+0.65)×(0.23+0.34)

1(1+211+3+41)×(211+3+411+5)-(1+211+3+411+5)×(211+3+4)

***1(11+21+31+41)×(21+31+41+51)-(11+21+31+41+51)×(21+31+41)

531579(135+357753579+975)×(***+975+531)-(135+357753135579+975+531)×(357753+975)

四、利用aa÷b=b巧解计算题:

5445①(6.4×480×33.3)÷(3.2×120×66.6)

②(41+51)÷(3+3)

专题训练一

五、利用裂项法巧解计算题

11111111+++ „+ +++„ + 122334991009111335572213355779911 +42+62+82+102

111111+++++2612203042

1×2+2×3+3×4+„„99×100

1×2×3+2×3×4+3×4×5+„„+9×10×11

1+311111111+5+7+9+11+13+15+17 ***

专题训练一

六、(递推法或补数法)1.*** 2.+++++„„++.******

234561+++++ 3121231234123451234561234567.4.1111111 + +++++3612244896192

七.循环小数必须化分数再计算:

920.129-1.291 +0.19756(2)2.830×0.186 2+0.3+0.52(1)0.2+29(3)0.3

八.斜着约分更简单

(1+)×(1+)(1+)ׄ„×(1+

(1-)×(1-)(1-)ׄ„×(1-1212131411)(1+)99100131411)(1-)99100 6

专题训练一

九.定义新运算,一点都不难。贵在理解透,符号是言何? 1.规定a☉b = ,则2☉(5☉3)之值为

.2.如果1※4=1234,2※3=234,7※2=78,那么4※5=

.3.[A]表示自然数A的约数的个数.例如,4有1,2,4三个约数,可以表示成[4]=3.计算: [120] =

.4.规定新运算a※b=3a-2b.若x※(4※1)=7,则x=

.5.两个整数a和b,a除以b的余数记为a☆b.例如,13☆5=3,5☆13=5,12☆4=0.根据这样定义的运算,(26☆9)☆4=

.6.规定:6※2=6+66=72,2※3=2+22+222=246, 1※4=1+11+111+1111=1234.7※5=

.7.规定:符号“△”为选择两数中较大数,“☉”为选择两数中较小数.例如:3△5=5,3☉5=3.那么,[(7☉3)△5]×[5☉(3△7)]=

.8.羊和狼在一起时,狼要吃掉羊,所以关于羊及狼,我们规定一种运算,用符号△表示羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了.小朋友总是希望羊能战胜狼,所以我们规定另一种运算,用符号☆表示为羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼.运算意思是羊与羊在一起还是羊,狼与狼在一起还是狼,由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了.对羊或狼,可用上面规定的运算作混合运算,混合运算的法则是从左到右,括号内先算.运算的结果是羊,或是狼.求下式的结果:

羊△(狼☆羊)☆羊△(狼△狼)=().

第四篇:中考数学几何证明、计算题及解析

1、如图,在梯形ABCD中,AB∥CD,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.(1)求证:DC=BC;

(2)E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,试判断△ECF的形状,并证明你的结论;

(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE的值.AB[解析](1)过A作DC的垂线AM交DC于M,则AM=BC=2.又tan∠ADC=2,所以DM

(2)等腰三角形.21.即DC=BC.2F

D

C证明:因为DEDF,EDCFBC,DCBC.所以,△DEC≌△BFC

所以,CECF,ECDBCF.所以,ECFBCFBCEECDBCEBCD90

即△ECF是等腰直角三角形.(3)设BEk,则CECF

2k,所以EF.因为BEC135,又CEF45,所以BEF90.所以BF3k 所以sinBFEk1.3k32、已知:如图,在□ABCD 中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.

(1)求证:△ADE≌△CBF;

(2)若四边形 BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

[解析](1)∵四边形ABCD是平行四边形,∴∠1=∠C,AD=CB,AB=CD .

∵点E、F分别是AB、CD的中点,∴AE=11AB,CF=CD . 2

2∴AE=CF

∴△ADE≌△CBF .

(2)当四边形BEDF是菱形时,四边形 AGBD是矩形.

∵四边形ABCD是平行四边形,∴AD∥BC .

∵AG∥BD,∴四边形 AGBD 是平行四边形.

∵四边形 BEDF 是菱形,∴DE=BE . ∵AE=BE,∴AE=BE=DE .

∴∠1=∠2,∠3=∠4.

∵∠1+∠2+∠3+∠4=180°,∴2∠2+2∠3=180°. ∴∠2+∠3=90°. 即∠ADB=90°.∴四边形AGBD是矩形

3、如图13-1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.

(1)如图13-2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;

(2)若三角尺GEF旋转到如图13-3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段

BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.

A(B(E)

图13-1 图13-

2图13-

3[解析](1)BM=FN.

证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴ ∠ABD =∠F =45°,OB = OF. 又∵∠BOM=∠FON,∴ △OBM≌△OFN . ∴ BM=FN.

(2)BM=FN仍然成立.

(3)证明:∵△GEF是等腰直角三角形,四边形ABCD是正方形,∴∠DBA=∠GFE=45°,OB=OF. ∴∠MBO=∠NFO=135°.

又∵∠MOB=∠NOF,∴ △OBM≌△OFN . ∴ BM=FN.

4、如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。

(1)若sin∠BAD,求CD的长;

5(2)若 ∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留)。

[解析](1)因为AB是⊙O的直径,OD=5

所以∠ADB=90°,AB=10

BD

AB

3BD

3,所以BD6 又sin∠BAD,所以

5105

在Rt△ABD中,sin∠BAD

AD

AB2BD22628

因为∠ADB=90°,AB⊥CD

所以DE·ABAD·BD,CEDE 所以DE1086 所以DE5

485

所以CD2DE

(2)因为AB是⊙O的直径,AB⊥CD

所以CBBD,ACAD

所以∠BAD=∠CDB,∠AOC=∠AOD 因为AO=DO,所以∠BAD=∠ADO 所以∠CDB=∠ADO

设∠ADO=4x,则∠CDB=4x

由∠ADO:∠EDO=4:1,则∠EDO=x 因为∠ADO+∠EDO+∠EDB=90° 所以4x4xx90 所以x=10°

所以∠AOD=180°-(∠OAD+∠ADO)=100° 所以∠AOC=∠AOD=100°

⌒⌒⌒⌒

S扇形OAC

100125

52360185、如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.

(1)求证:点F是BD中点;(2)求证:CG是⊙O的切线;(3)若FB=FE=2,求⊙O的半径.

[解析](1)证明:∵CH⊥AB,DB⊥AB,∴△AEH∽AFB,△ACE∽△ADF

EHAECE,∵HE=EC,∴BF=FD



BFAFFD

(2)方法一:连接CB、OC,∵AB是直径,∴∠ACB=90°∵F是BD中点,∴∠BCF=∠CBF=90°-∠CBA=∠CAB=∠ACO ∴∠OCF=90°,∴CG是⊙O的切线---------6′

方法二:可证明△OCF≌△OBF(参照方法一标准得分)(3)解:由FC=FB=FE得:∠FCE=∠FEC可证得:FA=FG,且AB=BG由切割线定理得:(2+FG)2=BG×AG=2BG2○2 在Rt△BGF中,由勾股定理得:BG2=FG2-BF2 ○

1、○2得:FG2-4FG-12=0 由○

解之得:FG1=6,FG2=-2(舍去)

∴AB=BG=42 ∴⊙O半径为226、如图,已知O为原点,点A的坐标为(4,3),⊙A的半径为2.过A作直线l平行于x轴,点P在直线l上运动.(1)当点P在⊙O上时,请你直接写出它的坐标;

(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.[解析]

解: ⑴点P的坐标是(2,3)或(6,3)

⑵作AC⊥OP,C为垂足.∵∠ACP=∠OBP=90,∠1=∠

1∴△ACP∽△OBP

ACAP

OBOP

AC 在RtOBP中,OP又AP=12-4=8,∴ 3∴

AC=241.9

4∵1.94<

2∴OP与⊙A相交.7、如图,延长⊙O的半径OA到B,使OA=AB,DE是圆的一条切线,E是切点,过点B作DE的垂线,垂足为点C.求证:∠ACB=

∠OAC.3O

A

B

[解析]

证明:连结OE、AE,并过点A作AF⊥DE于点F,(3分)

∵DE是圆的一条切线,E是切点,∴OE⊥DC,又∵BC⊥DE,∴OE∥AF∥BC.∴∠1=∠ACB,∠2=∠

3.∵OA=OE,∴∠4=∠3.∴∠4=∠2.又∵点A是OB的中点,∴点F是EC的中点.∴AE=AC.∴∠1=∠2.∴∠4=∠2=∠1.即∠ACB=

∠OAC.3

8、如图1,一架长4米的梯子AB斜靠在与地面OM垂直的墙壁ON上,梯子与地面的倾斜角α为60. ⑴求AO与BO的长;

⑵若梯子顶端A沿NO下滑,同时底端B沿OM向右滑行.①如图2,设A点下滑到C点,B点向右滑行到D点,并且AC:BD=2:3,试计算梯子顶端A沿NO下滑多少米;

②如图3,当A点下滑到A’点,B点向右滑行到B’点时,梯子AB的中点P也随之运动到P’点.若∠POP’= 15,试求AA’的长.

[解析]

⑴RtAOB中,∠O=90,∠α=60 ∴,∠OAB=30,又AB=4米,

AB2米

.2

OAABsin604.--------------(3分)

∴OB

⑵设AC2x,BD3x,在RtCOD中,OC2x,OD23x,CD4

根据勾股定理:OC2OD2CD2

∴2x

23x2

42-------------(5分)

∴13x2

12x0 ∵x0∴13x12830

∴x-------------(7分)

即梯子顶端A沿NO

.----(8分)

⑶∵点P和点P分别是RtAOB的斜边AB与RtA'OB'的斜边A'B'的中点∴PAPO,P'

A'P'O-------------(9分)∴PAOAOP,PAOAOP-------(10分)∴PAOPAOAOPAOP

∴PAOPAOPOP15

∵PAO30

∴PAO45

-----------------------(11分)

∴AOABcos45

4

分)

∴AAOAAO米.--------(13分)

第五篇:几何证明方法总结

方法总结

1、首先找出两个平面的交线,然后证明这几点都是这两个平面的公共点,〖1〗 证点共线:由公理2可知,这些点都在交线上 

2、首先选择其中两点确定一条直线,然后证明另一点在此直线上

1、先确定一个平面,再证明有关点、线在此平面内

〖2〗 证点线共面:

2、过有关的点、线分别作多个平面,再证明这些平面重合 

3、反证法

〖3〗 证线线平行:常用公理

4、线面平行的性质、面面平行的性质、两直线与同

一平面垂直

〖4〗 证线面平行:



平面相交的交线经过直线作或找平面与在平面内作或找一

1、根据面面平行的定义:两个平面没有公共点

2、面面平行的判定定理:

〖5〗 证面面平行: 

3、垂直于同一条直线的两个平面平行

4、两个平面同时平行于第三个平面

5、一个平面的两条相交直线分别平行于另一个平面的两条相交直线

理

1、用三垂线定理或逆定

2、求两直线所成的角为直角〖6〗 证线线垂直:

3、线面垂直的性质

4、面面垂直的性质

1、利用线面垂直的定义

2、用线面垂直的判定定理〖7〗 证线面垂直:

3、两平行线之一垂直平面,则另一条也垂直于这个平面

〖8〗 证面面垂直:面的平面角是直角

1、定义法:证明两个平

平面经过另一个平面的垂线

2、判定定理:证明一个

〖9〗 求斜线和平面所成的角、二面角、直线和直线所成的角:常先作出要求的角,然后组成三角形,通过解三角形求角(一作、二证、三计算)

1、找斜线和平面所成的角,关键是找斜线在平面内的射影,而找射影关键是找垂足和斜足

1、用定义法

2、找二面角的平面角

2、利用垂面法要注意以上各种角的范围 



3、利用三垂线定理





3、无棱二面角可考虑用射影面积法





4、直线和直线所成的角用公理4找出所要求的角

〖10〗求点到平面的距离、求点到直线的距离、平行平面之间的距离、直线和平

面平行时直线到平面的距离,异面直线的距离常先作出垂线段,然后解由垂线段组成的三角形,或利用体积相等的方法求垂线段的长 〖11〗利用向量判断线线、线面、面面的位置关系,利用向量求角、距离、证明

平行垂直等问题:先选定一组基底,其它向量都用这组基底表示,再利用向量的法则进行计算

〖12〗在空间直角坐标系中判断线线、线面、面面的位置关系,求角、距离:先

把点、线段、向量坐标化,然后用向量的坐标进行计算

1、如图,在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点,【1】 求证:AC⊥BC

1A1

【2】 求证:AC1∥平面CDB1

【3】 求异面直线AC1与B1C所成角的余弦值

2、如图,在直三棱柱ABC—A1B1C1中,AB=BC,D、E分别为BB1、AC1的中点。

【1】 ED为异面直线BB1与AC1的公垂线 D 【2】 设AA1=AC=2AB,求二面角A1—AD—C1 的大小.

3、如图,在直三棱柱ABC---A1B1C1中,AA1=4, AB=5,BC=3,AC=4,D,E分别CC1、AB上的中点,【1】 求证:平面B1C1E⊥平面ACC1A1 【2】 求二面角D—AB—C的大小 【3】 求点D到平面B1C1E的大小

4、如图,直三棱柱AB1C1---ABC中,BC=CC1=CA= =2,AC⊥BC,D、E分别为棱C1C、AC的中点,【1】 求二面角B—A1D—A的大小

【2】 若F为线段B1C1上的任意一点,试确定F的位置,使EF⊥平面A1BD

B1

D B

E 1

B1

B

A1

C1 D

C

A

B1

B

下载关于圆的几何证明计算题的解题方法[范文模版]word格式文档
下载关于圆的几何证明计算题的解题方法[范文模版].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    浅谈几何证明题的解题方法与技巧

    浅谈几何证明题的解题方法与技巧作者:容茂和完成时间:2011年12月【内容摘要】:针对学生解决几何证明题比较困难的情况,给学生分析研究几何证明题的解题方法与技巧,提高学生学习......

    几何证明思路与方法

    对于初中数学的教学而言,不存在太多的难点,按照南京中考数学试卷的难易比例7:2:1来看,90%都属于基本知识点的考察和运用,剩余的10%则是分配在平面几何的证明和一元二次函数的动......

    几何证明方法(初中数学)

    初中数学几何证明题技巧,归类 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。(三线合一) 4.平......

    物理计算题解题思路

    物理计算题解题思路 山西省繁峙县砂河二中 郭永相 摘要: 根据本人多年教学经验,特总结出关于物理解计算题的几种思考方式,整理如下,以便于关注此类问题的朋友借鉴讨论。 关键......

    几何证明题解题口诀

    几何证明题解题口诀 (作者:河南省唐河县刘军义) 几何做题很容易,证明过程写详细。 数学原理巧运用,前后贯通有条理! 题目信息不放过,必与结果有联系。 学科符号用恰当,统一规范又适......

    几何证明中的证明思路和方法(一份)

    几何证明中得证明思路和方法 知识点1证明中的分析 证明步骤: (1)仔细审题分清楚命题的“条件”和“结论”或“已知”和“求证”; 依据已知条件画出图形,标出字母记号,并把条件用明......

    几何证明

    龙文教育浦东分校学生个性化教案学生:钱寒松教师:周亚新时间:2010-11-27 学生评价◇特别满意◇满意◇一般◇不满意 【教材研学】 一、命题 1.概念:对事情进行判断的句子叫做命题.......

    几何证明

    1.平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在 其他直线上截得的线段_________. 推论1: 经过三角形一边的中点与另一边平行的直线必_____________......