初中数学例习题的变式与重组的教学初探-泉州六中

时间:2019-05-12 23:26:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学例习题的变式与重组的教学初探-泉州六中》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学例习题的变式与重组的教学初探-泉州六中》。

第一篇:初中数学例习题的变式与重组的教学初探-泉州六中

初中数学例习题的变式与重组的教学初探[1]

泉州六中

林江文

【摘 要】

在课堂教学改革中,通过例题、习题的变式与重组,可以锻炼学生的逻辑思维,提高课堂教学的有效性。通过编写由浅入深的题组或变式题组让学生尝试解决或合作解决并互动生成。这样既可以使数学教学满足不同学生的不同需求,又可以保持学生学习数学的兴趣,增强他们学习数学的信心。

【关键词】 变式

重组

一题多变

多题一法

课程标准指出,数学教育要面向全体学生,实现人人学有价值的数学,人人都能获得必须的数学,不同的人在数学上得到不同的发展。因此,在初中数学课堂上,通过设计例习题的变式与重组,既有利于提高课堂效率,又有利于激发学生思维,提高学生思维能力,让每个学生都能获取知识。以下是笔者在实际教学中,对例习题的变式与重组的实践探索:

一、通过一题多变设置变式题组

“一题多变”是从多角度、多方位对例题进行变化,引出一系列与本例题相关的题目,形成多向导问,使知识进一步精化的教学方法,可以培养学生的探究能力,它不仅可以沟通知识的内在联系;还可以使基本题向深度和广度发展,从而看到较复杂题的来龙去脉。案例1:如图1,分别以△ABC的边AB、AC为一边向外作正方形ABDE和正方形ACFG,连结CE、BG。求证:(1)BG=CE(2)BG⊥CE GEFDABAGEGFFBGEDFDDCC

BABCAC

E

图1 图2 图3 图4 变式

1、正方形ABDE绕点A顺时针方向旋转,使AE与AG重合时,如图2,上述两个结论是否成立?请说明理由。

变式

2、继续旋转正方形ABDE到如图3的位置,上述两个结论是否成立?请说明理由。变式

3、如图4,分别以△ABC的边AB、AC为一边向外作正方形ABDE和正方形ACFG,连结CE、BG,EG,AB=5,AC=7,求BC2EG2的值。

通过变式题组的形式,培养学生对问题的观察、分析以及探索归纳的能力,让不同层次的学生在同一时间都有思考的空间,真正实现全员参与,设置“一题多变”的题组,有助于启发引导学生分析比较其异同点,抓住问题的实质,加深对本质特征的认识,促进和增强探究能力,达到做一题通一类的目的,提高了学生分析、解答应用题的能力。

二、通过多题一法设置变式题组

建立数学模型,将结构相同或方法类似的几个题目放在一起以题组的方式出现,这样有利于引导学生思维的收拢。在教学中教师需要将多题有目的地串联起来,编成一组,引导学生进行观察分析,引导学生对多题一解进行反思,从而提高学生的化归能力,体会通性通法在解题中的作用。

题组:

1、如图5,在Rt△ABC中,∠BAC=90°,AB=AC,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点D、E与点C共线,连结BD,(1)、求证BD=CE

(2)、求∠BAE的度数 [1] 福建省教育科学“十二五”规划2014年度常规课题“初中数学例习题的重组与变式的教学实践”(2014CG1282)

EADEBABFCDC

图5

图6

图7

2、如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=2x-2经过等腰Rt△AOB的直角顶点A,交y轴于C点.(1)求点A坐标;

(2)若点P为x轴上一动点.点Q的坐标是(a,a/4),△PAQ是以点A为直角顶点的等腰三角形.求出a的值并写出点Q的坐标;

3、(2016年泉州市质检)如图,∠ABC=90°,△ADE是等腰直角三角形,AE=AD,顶点A、D分别在∠ABC的两边BA、BC上滑动(不与点B重合),△ADE的外接圆交BC与F,O为圆心。(1)、直接写出∠AFE的度数(2)、当点D在点F的右侧时 ①、求证:EFDF2AF

②、若AB42,82BE413,求eo的面积S的取值范围。

设置本题组的依据的数学模型是“手拉手模型”,即由两个有公共顶点的两个等腰直角三角形,可以找到或构造两个旋转型全等的三角形,再利用全等三角形的性质去解题。通过题组的训练,培养学生的系统思维及敏锐观察力,感受学科模型建立的重要性,大大提升解题能力。

三、围绕某个知识点进行例习题的变式与重组

例习题的变式题组源于课本又不拘泥于课本,教师不断探究教材中例题的多种联系和功能,深化习题教学,发挥习题的内在潜能,使它们的解决能启发学生对问题的本质规律的探究,以此培养学生学习、探究精神,数学教育发挥其锻炼思维、开发智力的功能。案例3:华东师大版七年级下册《平移的特征》

题组:

1、如图8,在方格纸中,画出将图中的△ABC向右平移4格后的△A1B1C1,然后再画出将△A1B1C1向上平移3格后的△A2B2C2.△A2B2C2能否可以看成是△ABC经过一次平移而得到的呢?________(填“能”或“不能”),如果能,那么平移的距离和方向分别是________(方向在图中画出)

PD

Q BBB BACCAA

CA

图8

图9

图10

图11

图12

2、如图9,将△ABC沿边AB方向平移2cm,画出平移后的图形。

3、如图10,将△ABC沿BD方向平移2cm,画出平移后的图形。

4、如图11,将△ABC沿PQ方向平移2cm,画出平移后的图形。ABCC5、如图12,将△ABC沿北偏东60°方向平移2cm,画出平移后的图形。

此题组的设计从教科书的“试一试”开始,设计出一组由浅到深的变式题组,对于第1题这种有方格的图形,学生很容易入手,比较直观。学生可以独立思考,便于让每个同学都能在自己的探索过程中找到一定的成就感,从而获得进一步探索的信心和勇气。第2题学生可以借助自己手中的三角板进行探索,比较形象。对于第4题,是由书本练习3改编的。

总之,在初中数学课堂上,通过设计例习题的变式与重组,并把它作为一种教学方法,能使教师更加关注学生的学习习惯,重视学生的主体作用的发挥,对教师提出了更高的要求,有利于教师的业务能力的提升。通过设置这样的习题组,让学生通过自主的讨论、探究解决这些问题,并且在这些问题的解决过程中,获得数学学习的乐趣和数学思维的形成,而实现每一个层次的学生在课堂的同一时间段里都拥有自己自主探索或解决问题的时间与空间,实现不同的人在数学上得到不同的发展的美好愿望。参考文献:

[1] 许灵飞

变式教学在初中数学教学中的应用 《数学学习与研究》,2010.3 [2] 郑毓信

变式理论的必要发展

《中学数学月刊》 2006.1 [3] 聂必凯

数学变式教学的探索性研究

《华东师范大学》2004.6

第二篇:浅谈初中数学习题变式训练

浅谈初中数学习题变式训练

东营市利津县陈庄镇中学

闫如明

数学教学的最根本目的是培养学生能够独立思考问题、分析问题和解决问题的能力,培养学生的创新意识以及创造性的逻辑思维方式。数学教学不局限于一个狭隘的课本知识领域里,理解课本的内容知识不是教学的最终目的,更重要的是让学生在学习中如何运用课本知识,通过课本例题起到“窥一斑知全貌”“举一例能反三”的教学效果;因此调动学生学习的积极性和主动性,组织学生善于发挥自己的主观意识,学会独立自主的去探究和研究数学科学领域,是数学教师的首要任务,这就要求每位数学教师要善于去领会和研究课本例题和习题,设计出好的例题变式题。

翻阅历年的中考试卷可以发现,历年的中考试题都源于课本,都是课本习题的变式,那如何进行课本习题的变式教学?这是我们每一个数学教师必须认真思考的问题。我觉得教师所选用的习题应“源于课本”,然后对它进行变式,并紧扣考试说明,“以考为纲”,使它“高于课本”。这就要求教师们要善于利用变式教学,使数学教学“变教为诱,变学为思”。

一、变式教学在数学教学中所起的作用有如下几个方面:

1.帮助克服思维定势消极影响,培养思维的科学性。

思维定势心理学解释为是先于一定活动并指向一定活动的一种动力准备状态。它表现为在认识活动的方向选择上带有“经验型”的倾向性。其消极方面是受制于先前某种经验影响,生搬硬套、因循守旧,形成思维的惰性,对知识掌握产生一种负迁移的不良作用。例如学生在学习不等式a>b,c>d,a+c>b+d的性质后学生容易产生a>b,c>d,a-c>b-d的错误认识。在教学中讲解了正确推理a>b,c>d,a-c>b-d后,再通过语言变式把这一推理解释为“大数少减就一定大于小数多减”,学生就能真正体会推理的含义,消除负迁移形成的错误认识。因此,数学教学中如能够适当地运用变式教学,对防止此类不良定式的产生,克服思维定式的消极作用,使学生养成科学的思维习惯是十分有用的。

2.有利于培养发散和概括能力,提高思维的变通性。

变式教学在转换事物非本质特征的时候呈现了事物表象的多样性,使得我们可以动态地认识事物许多的鲜明特征,有助于拓展思维的宽度,培养思维的发散能力。但是变式教学的最终目的是为了突出事物本质的特征,舍弃问题的非本质因素,把复杂问题转换成简单问题,最后通过概括使认识达到新的高度。

3、丰富学生的感性经验,提高学生对知识理解的准确性。

理解是指个体运用已有知识经验去认识未知事物的联系关系,直至揭露其本质和规律的一种思维活动。它通过教材的直观和概括两个认识环节实现,在直观这一环节上,直观对象变式对直观效果有着重要的影响。数学教学中运用图像变式、语言变式等手段适当变更对象非本质因素,这对抓住本质要素进行准确的概括是十分重要的。如讲“角”的定义,若仅列举锐角、直角、钝角情形,学生就有可能形成角就是两条直线的交叉的错误认识。若把平角、周角展示给学生,这就能使学生准确理解到“从一点出发的两条射线组成图形”的真正含义。4.排除非本质因素影响,培养思维的深刻性。

思维的深刻性是教学中追求的目标之一,在掌握知识的应用阶段尤为明显。要不被千变万化的表象所迷惑,抓住本质的东西,变式教学是一种可以运用于教学的有效办法。通过利用练习变式训练学生的思维,使学生在多变的问题中受到磨练,举一反三,加深理解。

变式教学作为教学的方法之一,在实际工作中有重要作用,这是应该肯定的,那如何对习题进行变式教学呢?习题变式教学应遵守哪些原则呢?

二、习题变式训练应遵守以下3个原则:

1.针对性原则

习题变式教学,不同于习题课的教学,它贯穿于新授课、习题课和复习课,与新授课、习题课和复习课并存,一般情况下不单独成课。因此对于不同的授课,对习题的变式也应不同。例如:新授课的习题变式应服务于本节课的教学目的;习题课的习题变式应以本章节内容为主,适当渗透一些数学思想和数学方法。复习课的习题变式不但要渗透数学思想和数学方法还要进行纵向与横向的联系,同时变式习题要紧扣考纲。在习题变式教学时,要根据教学目标和学生的学习现状,切忌随意性和盲目性。2.可行性原则

选择课本习题进行变式,不要“变”得过于简单,过于简单的变式题,会让学生认为是简单的“重复劳动”,影响学生思维的质量;难度“变”大的变式习题易挫伤学生的学习积极性,使学生难以获得成功的喜悦,长此以往,将使学生丧失信心,因此,在选择课本习题变式时,要变的有“度”。3.参与性原则

在习题变式教学中,教师要让学生主动参与,不要总是教师“变”,学生“练”。要鼓励学生大胆的“变”,培养学生的创新意识和创新精神。

三、实施“变式”教学三步曲

1.课前预习,强化自学

例题的变式教学,预习是必不可少的重要环节,是提出疑问、独立思考、提高分析和解决问题能力的环节;让学生带着疑问学习,是要求预习的根本目的,通过对新课的全面预习,提高了学生的自觉能力和实践能力,促进课堂效益,为例题变式教学的实施起着不可忽视的作用;因此,教师必须重视学生的预习,做好预习笔记,正确引导学生课前预习,“巧立名目”,精心设疑,让不同层次的学生在“山穷水疑无路”的时候,忽然“柳暗花明又一村”,激发学生的学习兴趣。

2.课堂初试牛刀

课堂教学是学生得以“解惑”的主渠道,是教师与学生进行沟通、传播知识的重要途径,是例题变式教学的关键;学生经历了预习,新课内容已胸有成竹,教师在教学中起好主导的作用,循循善诱,引导学生在错综复杂的数量关系,千头万绪的理论辨证中寻觅,总结科学的解题经验。

3.练习变式,借题发挥:

例题毕竟有限,要进一步提高“变”的魅力,练习题正是学生用武之地,练习变式是例题变式教学的最后环节。将练习题自由演变,一题多变,借题发挥,提升学生的思维能力和解题能力,巩固记忆,完善自我的应变能力、应试技巧。使整节课前后贯通,紧密相连,形成一个知识网络体系。

四、结束语:

变式教学是对数学中的问题进行不同角度、不同层次、不同情形、不同背景的变式,以暴露问题的本质特征,揭示不同知识点的内在联系的一种教学设计方法。通过变式教学,使一题多解,多题重组,常给人以新鲜感,能唤起学生的好奇心和求知欲,因而能产生主动参与的动力,保持其参与教学过程的兴趣和热情。若能重视对课本习题进行变式训练,不但可以抓好双基,便于搞清问题的内涵和外延,而且还可以提高数学能力。总之,在课堂教学中,通过变式教学引导学生通过多侧面、多角度、多渠道的思考问题,让学生多探讨、多争论,能有效的训练学生思维的完整性、深刻性和创造性,大大的激发学生的兴趣,从而培养学生的创新能力。我们应在理论和实践中努力的探索,勇于进取,努力使变式教学不断走向深入,走向成功。

第三篇:浅析初中数学变式教学

浅析初中数学变式教学之“习题变式”

上传: 刘永明

更新时间:2012-5-19 20:46:09 浅析初中数学变式教学之“习题变式”

【摘要】:变式,即同一事物非本质特征的一种转换。这种转换使客观事物得以不同形式展现在人们面前,成为我们客观认识事物基本条件。数学教学中的变式教学可以体现新课程的教学理念,减轻学生负担,提高教学质量。现就变式教学中的习题变式谈个人观点,供其他教师在教学中借鉴。【关键词】:习题变式 方法 思维

在新一轮课改教学中,如何减轻学生过重的学习负担已成为广大教育工作者关注的重点。要减轻学生过重负担,就必须更新教育观念,改革教学方法,努力提高课堂教学质量。数学教学有各种方法和手段,变式教学是其中的一种。尽管有时候人们不一定都认识变式教学的含义,人们却在自觉或不自觉地将它应用于教学之中。在数学教学中研究和运用变式,对教师有效地传授知识,突出本质特征,排除无关特征,让学生去伪存真,全面认识事物,提高数学教学质量有着现实的意义;把变式教学与主体性教育有机结合起来,可以充分挖掘学生的潜能,有效地培养学生的自学能力、探究能力和良好的学习习惯,进而培养学生的创新意识和创新能力,由此可见,变式教学较好地体现了新课程的教学理念,具有鲜明的时代性。笔者在本文结合教学体会谈谈对习题变式认识。

习题是训练学生的思维材料,是教者将自己的思想、方法以及分析问题和解决问题的技能技巧施达于学生的载体。要不被千变万化的表象所迷惑,抓住本质的东西,变式教学是一种有效的办法。通常可以利用习题变式训练学生的思维,使学生在多变的问题中受到磨练,举一反三,加深理解。如将练习中的条件或结论做等价性变换,变更练习的形式或内容,形成新的练习变式,可有助于学生对问题理解的逐步深化。如讲完例题“一件工作,甲单独做20小时完成,乙单独做12小时完成。那么两人合作多少小时完成?保留原题条件,可变换出下列几个逐级深化的题目让学生去思考:

变式1:一件工作,甲单独做20小时完成,乙单独做12小时完成。甲先单独做4小时,然后乙加入合作,那么两人合作还要多少小时完成?

变式2:一件工作,甲单独做20小时完成,乙单独做12小时完成。甲先单独做4小时,然后乙加入合作,那么两人合作还要多少小时完成此工作的2/3?

变式3:一件工作,甲单独做20小时完成,乙单独做12小时完成。甲先单独做4小时,然后乙加入合作,那么共要多少小时完成此工作的2/3?

变式4:一件工作,甲单独做20小时完成,甲、乙合做7.5小时完成。甲先单独做4小时,然后乙加入合作,那么两人合作还要多少小时完成?

变式5:一件工作,甲单独做20小时完成,甲、乙合做7.5小时完成。甲先单独做4小时,余下的乙单独做,那么乙还要多少小时完成?

变式6:一件工作,甲单独做20小时完成,甲、乙合做3小时完成此工作的2/5。现在甲先单独做4小时,然后乙加入合做2小时后,甲因故离开,余下的部分由乙单独完成,那么共用多少小时完成此项工作? 这一变式改变已知的几个条件中的某些条件;或改变结论中的某些部分的形式;从而拓宽、加深学生的知识层面,也体现了教学的层次性和多样性,培养了学生创新能力和探究能力。

习题变式中除了改变题目中的条件或结论外,有时将问题由特殊形式变为一般形式也是常见的。比如: 在教学直线、线段、射线时有这样一个题:

1、当直线a上标出一个点时,可得到 条射线,条线段

2、当直线a上标出二个点时,可得到 条射线,条线段;

3、当直线a上标出三个点时,可得到 条射线,条线段 变式

1、当直线a上标出十个点时,可得到 条射线,条线段; 变式

2、当直线a上标出十个点时,可得到 条射线,条线段;

通过这种变式,就把问题由特殊形式变为一般形式,学生通过探索交流得出答案,掌握了方法,从而尝试到成功的乐趣,并激发学生的学习热情。

以上是本人在习题变式上的一些体会和认识。变式教学在转换事物非本质特征的时候呈现了事物表象的多样性,使得我们可以动态地认识事物许多的鲜明特征,不为形式不同的表象所迷惑,形成理性认识,有助于扩展思维的宽度,培养思维的发散能力。教学实践证明,通过习题变式有利于克服“题海战术”的重复训练倾向,从而减轻学生的过重负担,真正把能力培养落到实处。习题变式是数学教学的方法之一,如能将它与其它教学手段方法结合运用,一定能收到更好的效果

第四篇:初中数学变式教学研究课题总结报告

初中数学变式教学研究课题结题报告

徐颖

一、本课题研究的背景与课题的提出

(一)背景

1、对当前教育形式和“变式教育”的认识 新课程标准提出:“教育应该面向全体学生,让每个孩子都成为对社会有用的人才”。所以现代教育过程中根据学生个性差异因材施教,促进学生个性发展,尊重学生个性的独创性教育显得十分重要。教育者要为每一位学生提供同样的学习机会,也要帮助每一位学生充分发展。究其核心就是要尊重学生个性差异,运用各种方法、创造各种条件引导学生主动探究和创造学习。“有效的数学学习活动不能单纯地模仿和记忆”,“学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程”。数学教学是需要在学生形成初步知识和技能后加以应用的实践训练,即解题。以其来加深和巩固已获知识,那么怎样的问题训练可以既帮助学生提高数学素质和数学能力,而又不重蹈“题海”呢?“变式教学”是很好的载体,符合时代的要求。

有效教学追求的是学生对知识的内化,能够把所学的知识积极转化为自己的知识结构的一部分,数学课堂的“变式教学”,既让学生理解数学知识(概念系统)、数学思想与数学方法,又能深刻体会数学思想的核心作用,提高数学能力。“变式教学”围绕一两道数学问题中所需反映的数学实质进行一系列的问题变化,使学生得以掌握与提高,是培养学生举一反

三、灵活转换、独立思考能力,从而减轻学生学业负担培养创新能力的有益途径之一。

2、对教学现状的考虑 从初中数学现状来看,“教师教,学生学;教师讲,学生听”仍是主导模式,基本上是“ 狂轰乱炸”的“题海”战术“淹没”了生动活泼的数学思维过程,这种“重复低效”的数学课堂教学,使相当一部分学生“丧失”了数学学习的兴趣。思维变的狭窄,对所学知识往往只注重数学表象,而忽视了数学知识的核心——数学思想。这些促使我们思考:实施怎样的数学课堂教学,既能让学生理解数学知识(概念系统)、数学思想与数学方法,又能深刻体会数学思想的核心作用,提高数学能力呢?

(二)课题的提出 针对以上背景,也为了进一步提高我校数学教师的整体教学水平,为进一步适应时代的要求,着眼学生的终身学习,着眼学生的发展,让学生积极主动地参与学习活动,在主动参与的过程中掌握学习的方法与技能,进一步提高学生数学的综合素养,自2007年3月我们小组开始承担了区教研室的教研课题《数学教学中变式训练的实践与思考的研究》这项工作以来,组内全体成员以饱满的热情、高度的社会责任感和使命感,井然有序地围绕这一研究课题展开工作。希望探索构建和谐课堂教学的策略及机制,促进学生素质的和谐发展。课题研究的意义

1、有利于推进新课程改革

当前运用科学发展观构建和谐社会已成为社会发展的主流。在这样的宏观背景下,如何重新审视我们的课堂教学,促使课堂教学和谐地生成,必然成为我们考虑的焦点。课程改革更多关注“成人”与“成才”的和谐

要求我们的教育要尊重人的主体性、平等性。我们提出的“变式教学”无疑适应这一要求,该课题的研究有助于推进新一轮的课程改革。

2、有利于学生的和谐发展

课堂教学的使命是使学生获得全面、持续、和谐的发展。但由于受功利主义的影响,部 1 分教师在教学中“见物不见人”,只注重知识的传授,而忽视了学生身心自然、和谐的发展。新课程倡导的课堂教学不仅面向学生的现在,更注重面向学生的未来。因此,我们要从关注生命的高度来关照课堂,通过“变式教学”使学生的数学学习习惯和数学能力都能进一步得以伸展,让每一次的课堂经历都成为学生生命历程的一部分。

3、有利于教育教学理论的研究:

一个真实的课堂教学过程是一个师生及多种因素间动态的相互作用的推进过程。由于参加教育活动有诸多复杂的因素,因此教育过程的发展有多种可能性的存在,教育过程的推进就是在多种可能性中做出选择,使新的状态不断生成并影响下一步发展的过程。因此,我们认为在实际教学中要关注和处理好课堂教学设计与课堂教学中的实际生成的关系。

二、课题的理论依据 “变式”在心理学认为,其含义是变换材料的出现形式在教学中是指在引导学生认知事物属性的过程中,不断变更所提供的直观材料或者事例的呈现形式,使事物的非本质属性时隐时现,而本质属性保持恒定。它遵循“目标导向、启迪思维、暴露过程、主体参与、探索创新”的教学原则,以培养具有创新意识和创新能力的人才为目标。因此本课题的支撑性理论:

其一,是巴班斯基的“最优化学习”理论,以此来指导学生进行学习方式和方法的优化,提升学习效率。

其二,个性化教育的理论,研究发现个性是表明个人对社会自主创造关系的思想与行为的总特征。个性具有自主性和独特性。个性化教育就是在教育中重视受教育者的需要、兴趣、自由和人的尊严,人的潜能和价值,促进人的个性自主、和谐发展的教育。

其三,启发性教育理论,我国古代关于教学论的著作《礼记·学记》中所指出的“君子之教,喻也。道而弗牵,强而弗抑,开而弗达。”强调引导、鼓励、激发学生积极思维,主动正确地获取知识。

第四,人的主体理论,人类进入21世纪以来以人为本的教育思想已经成为我国的基本教育理念。倡导张扬人的个性,发挥人的主体能力,这已经成为全社会的共识。第五,迁移理论,以次来指导教学过程中,如何充分利用正迁移的强化,尽量避免负迁移的干扰。

三、研究目标

以“变式教学”为研究平台,全面贯切新课程标准的教育理念。以培养学生的创新精神和探究问题、解决问题的能力为目的。让学生充分展示个性和潜力,激发学生潜能多元化发展,让全体学生都能最终成为对全社会有用的人。

研究要解决的具体问题是如何利用学校现有的各种资源,发挥学生主体作用,充分尊重学生的主观能动性,通过创设数学变式,引导学生主动参与教学活动,在获取知识的同时,激发他们强烈的求知欲和创造欲,从而得到提高数学课堂教育效益的目的,增加数学实践的本领的同时而获得可持续发展能力——创新能力和自我发展能力。在严格控制学生活动总量,减轻学习负担的前提下,使全体学生数学素质获得更为全面的发展,数学基本知识、基本能力有所提高。

四、研究内容

本课题研究的基本内容有:

1、研究学生:着重研究平时的学习行为和效果,发现不足和缺憾,然后着力通过数学变式来培养学生创新能力来加以克服,观察克服的程度,再加以改进,总结经验,试图发现一种科学的教学体系来提高初中数学课堂教学效益。

2、研究教法:给出不同条件时如何引导学生联系旧知解决新问题,培养学生能以不变应万变,把握数学知识的核心部分,提高思考问题、解决问题能力。

3、研究教学:不同的课型该用哪种模式体现“变式教学”的精神。

五、实施研究原则 本课题研究所遵循的原则是:主体性、发展性、系统性、创新性、开放性、优化性、民主平等性、问题探究等原则。

五、实施研究原则

本课题研究所遵循的原则是:主体性、发展性、系统性、创新性、开放性、优化性、民主平等性、问题探究等原则

1、主体性原则:在实施课题研究过程中,始终坚持学生是学习的主体,发展的主体,学生的学习和发展要在他们自己的学习实践中实现。

2、发展性原则:现代心理学告诉我们:学生在其发展过程中,其心理、生理、知识、能力、经验都处于发展中,尚不成熟。这种发展包括两个方面,一是认知水平的发展。二是人格的发展。也就是说,学生在发展过程中既要学会学习,也要学会做人。二者相得益彰,和谐统一。

3、系统性原则。系统性原则指在课题研究时,要以整体的观点来分析、解决问题,要切实把握好具体每个环节,处理好整体与部分、部分与部分、系统与环境的关系。

4、创新原则:教师在课堂教学中要锐意进取,勇于开拓。敢于冲破传统思维和教学模式的樊篱。用新异的教学方式处理问题,解决问题,达到培养学生创新思维和创新能力的目的。教师在教学实践中应该注意以下三点;一是选择多种结论的问题,否则学生思维容易限于绝地。二是开导思维的流畅性、变通性、和精确性,尤其要在变通性上下工夫。三是要鼓励学生大胆运用假设,对一个问题的合理假设越多,其创新能力就越大。

5、开放性原则:变式教学过程是个开放的教学空间;一是学生在课堂上的心态是开放的;二是教学内容不拘泥于教材,也不局限于教师的知识视野;三是教师要重视对学生进行训练;四是教学方法不能满足于课本、权威教案等。

6、优化性原则。优化性原则指的是在研究中,要以最小的投入换取最大的产出。即尽可能地减少各种教育资源的投入,提高教学效益。

7、民主平等性原则:强调教育过程要形成有利于创新的民主氛围,强调平等,如,师生关系,教学环境、生生关系等。

8、问题探究原则:在课堂中教师要以教材为凭借,问题为线索,引导学生不断探索新知。“变式教学”强调变换条件,不断地提出-新问题,让学生在解决问题的过程中巩固旧知,获得新智、训练思维。在探究问题的过程中强调学生自主学习,合作探究,强调发挥团队精神。

六、研究方法

由于本课题是探讨一种教学方法对课堂效益提高的影响,根据这一实际情况,考虑到研究对象的特殊性,在形式上,我将采取尝试法、实验法、比较分析法、文献资料法等多种研究方法;在研究过程中,我将通过记录比较课后作业的准确度,每一章节的单元测验试卷和配套试题的测验结果,即学生对知识掌握的程度来辨别和判定提高数学课堂效益的程度,研究学生自主学习能力的提高与数学课堂效益的提高是否相关或一致,从而确保研究的客观性和科学性。

七、研究的程序

实验在步骤上大致分为以下三个阶段。第一阶段:课题研究准备阶段。(2012年9月至2012年10月)l、确定研究课题

2、学生学习情况调查

3、设计课题研究方案、4、进行课题可行性研究(重点、难点)论证。

5、学习有关理论,进行模仿运用。具体可从培养学生课前预习、课后温习、平时自习、一段时间后复习入手,要求学生平时注意观察问题、思考问题、归纳知识,鼓励学生提出问题,对待学生质疑问难的勇气给予肯定以及激励评价等来激发学生的主动学习的欲望,促进学生自觉地主动地参与到学习中来。

第二阶段:课题研究实施阶段(2012年11月至2013年5月)

1、记录学生学习的反馈情况,登记每一单元测验的结果和每一章的评估结果等数据和信息,并进行适当的筛选。

2、撰写课题阶段性总结材料。

3、“变式教学”课堂汇报。

4、总结、反思、改进,构建数学“变式教学”新模式。

第三阶段:课题研究总结阶段(2013年5月至2013年6月)

1、整理材料并运用统计方面的知识,进行计算、对比,通过对结果分析,给予实验研究一个理性的评价。

2、撰写课题研究结题报告、论文。

八、研究的具体策略 1教育理论的学习

自从课题组成立以来,我们组织了大量的学习活动,学习了许多资料,主要资料有《数学课程标准》,《数学课程标准解题》,《数学教学理论与实践》等相关的专业理论知识,还利用互联网上提供的大量学习资料。

八、研究的具体策略 1教育理论的学习

自从课题组成立以来,我们组织了大量的学习活动,学习了许多资料,主要资料有《数学课程标准》,《数学课程标准解题》,《数学教学理论与实践》等相关的专业理论知识,还利用互联网上提供的大量学习资料。

2实验活动的展开

根据课题所采用“ 学习、实践、研究、反思、改进、实践、研讨、总结”的研究方法。首先学习了相关的理论知识,制定研究内容。

(1)开展集体学习。课程标准中强调要对数学学习有关好奇心和求知欲,建立数学学习的自信心,对数学有恰当的认识,养成质疑和独立思考的习惯。这些目标的变迁,充分体现了以学生发展为主的思想。另外数学教学内容的生活化和综合化,也强调了知识和生活的联系。因此,数学教学中要打破单一枯燥的教学模式,要从多角度,对学生进行变式训练,使学生全面客观地掌握知识,认识数学,发展生活中的数学,从而使数学生活学活用,发展学生的能力。

(2)实验阶段。对变式训练的内容进行研究,由张凌云、尹秀凤推出两节公开课。在展示在哪教学内容上使用变式训练教学。张凌云主讲《垂直与弦的直径》专题课,由单纯的数学题目上的计算,证明和判断,到与实际生活中的联系。比求石拱桥所在圆的半径,寻找残缺轮盘的圆心,每一个题目都由学生说出如何考察的本课的性质,掌握圆的对称性的重要性,如何应用这个性质解决问题。这节课按捺皮紧密,课堂气氛活跃,重点突出,教学效果很好。尹秀凤老师主讲二次函数的定义,在概念教学中巧用变式训练,使学生对二次函数有了一个全面的认识。因此,对变式训练的内容的研究过程中,容易混淆或不易理解的概念、公式及一些重要性质。在教学的过程中都要巧用变式训练教学,优化教学效果。教学过程中充分调动学生的积极性。教师只起“导演”的作用。让学生通过预习准备、合作交流、研究讨论中获得知识,提高技能。

九研究的成果

开展课题研究以来,本课题组成员推出多节校镇级公开课,多次组织说课、听课、评课等活动,重点研究了在数学教学中进行变式训练的途径,推动了我校的数学教学工作。

1促进教师的发展,提高数学教学水平

在课题研究过程中,通过数节公开课和多次的说课、评课等活动,带动了全校数学教学的研讨气氛。课题的研究方向及研究成果受到了数学组其他教师的好评以及学校领导的肯定。掀起了在全校推广变式训练教学的热潮,有效地促进了本课题组老师的专业水平的提升,引起了全校各科对变式训练的重视,提高了教育教学质量。在教学中如何实施变式训练由蒋海珠 4 老师撰写成论文,在数学组均达成共识。促进学生的发展,使学生成为学习的主人

变式训练就是以学生的发展为中心,把知识从不同的角度、以不同的形式展示给学生,让学生深入挖掘、思考,一题多解、一题多变,培养学生思维的灵活性、探索性,打破了思维的定向性,让学生在变式训练中领悟到知识点的“横看成岭侧成峰”的变化,灵活掌握,把数学学活,理解生活中的数学无处不在。

3师生的关系在转变。教师在实践过程中学会了反思,一是重新认识学生和自己一方面尊重学生人格,关注个体差异,满足学生发展的需要,一方面努力实现自身角色转换。不仅仅当知识的传授者,更要做学生学习的组织者、引导者。二是重新认识自己与学生的关系,建立起积极参与共同发展的、平等的师生关系、老师对学生学习主体地位的认识有了明显增强,大家都在关注学生的需要,学生的学习主动性开始成为教师关注的重点。三是重新认识教学过程,努力创新教学模式,注重培养学生的独立性、自主性,注意引导学生和质疑、探究。四是重新认识课堂,教师把微笑带进课堂,关爱、宽容每一个学生,教师把民主带进课堂,建立和谐的师生关系,教师把探索带进课堂,激发学生的求知欲望,教师把合作带进课堂,促进学生思维和合作创新,教师把成功带进课堂,让每个学生都能获得成功的体验。课堂教学中经常听到“谁想说?”“谁愿意说?”“谁还想说?”“谁还有不一样的方法?”等商量的口气与学生交流,鼓励学生发表自己的见解。

4本次课题实验不但改变了教与学,同时也逐步让家长感受到新评价带来的新气息和变化,改变了家长过去对子女“好不好,看成绩”的思想。在成长记录的评价中,那些充满鼓励性的话语和期待,已逐渐注意对子女的非智力因素的培养,共同促进子女的综合素质的提高。学生每周都要将自己的“成长记录”向家长介绍,让家长“参观”,使家长更清楚地了解到子女在校的各种情况,从而有的放矢地进行教育和引导。

5、培养了一支适应课改的教师队伍。我们数学组彻底各位老师勇于开拓,积极探索,在课题研究实践中不断成长,各位青年教师多次承担镇级公开课,均受到各级领导的一致赞评。并且我课题组杨学民和张凌云的论文分别获得区级一、二等奖,其他课题组成员也把的心得撰写成了论文.对我们的今后教学起到了积累作用.

十、思考与困惑

我们已经看到了课题研究的初步成效。我们的研究是为了更好地培养下一代,促进他们更健康、活泼地发展。同时也是为了每个教师的发展,每个教育者的发展。我们在今后的课题研究中,既要注意实现我们的理想目标、现代理念,也要考虑到先进观念与现实的合理融合。我们需要进一步研究:如何开展有效地数学教学,让学生健康持续发展下去,真正在学数学过程中既得到知识,又受到启发教育.成为合格的初中生.

第五篇:初中数学中“变式训练

变式训练案例分析

变式训练是中学数学教学中的一种重要教学策略,在提高学生的学习兴趣、培养学生的数学思维和数学解题能力方面有着不可忽视的作用。通过变式训练可以使教学内容变得更加丰富多彩,使学生的思路更加宽广。所谓“变式训练”,就是有针对性地设计一组题,采用一题多解,多题一解,多图一题,一题多变,对此辨析,逆向运用等方法,对初始题目加以发展变化,从逻辑推理上演绎出几个或一类问题的解法,通过对一类问题的研究,迅速将相关知识系统化、结构化、网络化,提高解题能力。

教学案例:

(一)一题多图

在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。

①当直线MN绕点C旋转到图1的位置时,有DE=AD+BE,请说明为什么? ②当直线MN绕点C旋转到图2的位置时,有DE=AD-BE,请说明为什么?

①当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并说明理由。

感悟:

通过一题多图可以让学生掌握类比的数学思想。

(二)一题多变

一题多变主要在平面几何中用应广泛需要老师们认真总结练习。

1、(32-1)×(32+1)=。

2、(32-1)×(32+1)×(34+1)×(38+1)…………(364+1)=3、3×(32+1)×(34+1)×(38+1)…………(364+1)=

4、(32+1)×(34+1)×(38+1)…………(364+1)=

5、(32+1)×(34+1)×(38+1)…………(364+1)+9=

感悟:

通过一题多变培养学生寻找共性,克服困难的信心,将知识网路化、系统化。

(三)一题多解

如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,求证:AD垂直平分EF。

方法

1、两次全等证明

方法

2、角平分线定理和一次全等综合证明。

方法

3、线段垂直平分线逆定理证明。

方法

4、“三线合一”证明。

感悟:

通过一题多解培养学生的发散思维和创新能力,使学生的能力大大提高。更能展现出教师的魅力。

变式训练并不是一朝一夕就可以成熟的,需要我们认真钻研大纲和教材把知识系统化、网路化用心对待!

下载初中数学例习题的变式与重组的教学初探-泉州六中word格式文档
下载初中数学例习题的变式与重组的教学初探-泉州六中.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《初中数学习题变式训练的研究》在教学中的应用

    《初中数学习题变式训练的研究》 在数学教学中的应用 铁力三中初二数学组 对于在教学一线的大部分教师来说,工作勤勤恳恳,把自己的知识毫无保留的传授给学生,但学生掌握知识......

    数学变式教学(讲座)

    数学变式训练对学生的长远影响 教师:李芳芳 时间过得真快,转眼一学期又要结束了。这学期我们九年级数学重点是通过变式练习的教学提高课堂教学质量。通过听三位教师的公开课及......

    浅谈数学变式教学(五篇范文)

    浅谈数学变式教学 在新课程标准的指引下,数学教学方法也在不断改进、创新。数学教学不应局限于一个狭窄的课本知识领域里,应该是让学生对知识和技能初步理解与掌握后,进一步的......

    浅谈初中数学例题变式教学的应用

    浅谈初中数学例题变式教学的应用 【摘要】在数学的学习教育中,教育手段和检测手段主要是解题.通过教授例题讲解知识和解题思路,通过利用例题变式加深和巩固已学的知识.因此,数......

    初中数学教学中的变式训练教学[大全]

    初中数学教学中的变式训练教学 摘要:所谓数学变式训练,即是指在数学教学过程中对概念、性质、定理、公式,以及问题从不同角度、不同层次、不同情形、不同背景做出有效的变化,使......

    谈初中数学教学中的变式教学(最终定稿)

    谈初中数学教学中的变式教学 【摘要】随着时代的发展以及新课程改革的不断深入,初中数学教学课堂也面临着新的挑战,如何使数学课堂的教学质量得到有效提升就成了每一位初中数......

    浅谈初中数学教学中的变式训练

    浅谈初中数学教学中的变式训练 松江区茸一中学 沈菊华 素质教育是以培养具有创造性思维和创造能力的人才为目标而进行的创新教育为归宿的教育。在课堂教学中落实素质教育,就......

    初中数学变式训练的应用研究

    初中数学变式训练的应用研究 摘要:新课程改革以来,越来越多的中学数学教师经常用到“变式”练习,这是一种数学教学中的变换方式,通过变式练习可以让学生准确地掌握数学解题方法......