2.2直接证明与间接证明学案(含答案)(精选五篇)

时间:2019-05-12 15:02:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2.2直接证明与间接证明学案(含答案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2.2直接证明与间接证明学案(含答案)》。

第一篇:2.2直接证明与间接证明学案(含答案)

§2.2直接证明与间接证明学案

审核签名:编制:编制时间: 3月4日 完成所需时间: 40分钟班级姓名第小组 一.自主测试

1.分析法是从要证的结论出发,寻求使它成立的条件.2.若a>b>0,则a+b+

b

11a

.(用“>”,“<”,“=”填空)

3.要证明

3+

7<

25,可选择的方法有以下几种,其中最合理的是(填序号).③综合法

2①反证法②分析法

4.用反证法证明命题:若整系数一元二次方程ax+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是.①假设a、b、c都是偶数

②假设a、b、c都不是偶数 ③假设a、b、c至多有一个偶数 ④假设a、b、c至多有两个偶数

5.设a、b、c∈(0,+∞),P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R同时大于零”的条件.二.典例分析

例1(1)设a,b,c>0,证明:

a

2b

b

2c

c

a

≥a+b+c.abc

(2)已知a,b,c为互不相等的非负数.求证:a2+b2+c2>

例2(1

1xy

1yx

(a

+

b

+

c)

(2)已知a>0,求证:

a

1a

≥a+

1a

-2.例3 若x,y都是正实数,且x+y>2, 求证:

<2与<2中至少有一个成立.三.巩固练习

1.用反证法证明“如果a>b,那么a

>b”假设内容应是2.已知a>b>0,且ab=1,若0<c<1,p=loga

cb,q=log

c

12

,则p,q的大小关系

a

b

是.3.设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列恒成立的等式的序号是.①(a*b)*a=a②[a*(b*a)]*(a*b)=a ③b*(b*b)=b

④(a*b)*[b*(a*b)]=b

4.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则△A1B1C1是三角形,△A2B2C2是三角形.(用“锐角”、“钝角”或“直角”填空)5.已知三棱锥S—ABC的三视图如图所示:在原三棱锥中给出下列命题: ①BC⊥平面SAC;②平面SBC⊥平面SAB;③SB⊥AC.其中正确命题的序号是.6.对于任意实数a,b定义运算a*b=(a+1)(b+1)-1,给出以下结论: ①对于任意实数a,b,c,有a*(b+c)=(a*b)+(a*c);

②对于任意实数a,b,c,有a*(b*c)=(a*b)*c;

③对于任意实数a,有a*0=a,则以上结论正确的是.(写出你认为正确的结论的所有序号)

7.(教材)在△ABC中,三个内角A,B,C的对边分别为a, b, c且A,B,C成等差数列,a, b, c成等比数列,求证△ABC为等边三角形。

8.(教材)已知1tan3sin24cos22tan

1,求证

9.已知a、b、c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能同时大于

14.参考答案

一,自主测试

1.分析法是从要证的结论出发,寻求使它成立的条件.答案充分

2.若a>b>0,则a+b+

b1

1a

.(用“>”,“<”,“=”填空)

答案> 3.要证明

+

7<

2,可选择的方法有以下几种,其中最合理的是(填序号).③综合法

①反证法答案②

②分析法

4.用反证法证明命题:若整系数一元二次方程ax+bx+c=0(a≠0)有有理数根,那么a、b、c中至少有一个是偶数时,下列假设中正确的是.①假设a、b、c都是偶数 ②假设a、b、c都不是偶数 ③假设a、b、c至多有一个偶数 ④假设a、b、c至多有两个偶数 答案②

5.设a、b、c∈(0,+∞),P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P、Q、R同时大于零”的条件.答案充要 二.典例分析

例1设a,b,c>0,证明:

a

b

b

c

c

a

≥a+b+c.证明∵a,b,c>0,根据基本不等式,有

a

b

+b≥2a,a

b

c

+c≥2b,b

c

a

+a≥2c.三式相加:即

a

bc

+

c

+

c

a

+a+b+c≥2(a+b+c).b

+

b

c

+

a

≥a+b+c.变.已知a,b,c为互不相等的非负数.求证:a+b+c>

abc

(a

+

+

c).证明∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac.又∵a,b,c为互不相等的非负数,∴上面三个式子中都不能取“=”,22

2∴a+b+c>ab+bc+ac, ∵ab+bc≥2ab+ac≥2

abc,bc+ac≥2

abc,abc,又a,b,c为互不相等的非负数,∴ab+bc+ac>∴a2+b2+c2>

abc

(a

a

+

b

b

+

c

c),abc

(++).例2(1)略(2)已知a>0,求证: 证明要证只要证

a

a

1a

≥a+

1a

-2.a1a

1a

1a

≥a++

1a

-2,2分

+2≥a+.

∵a>0,故只要证



a

1a

2



≥(a+

1a

+),6分

即a2+

1a

+

4a

1a

+4

≥a2+2+

a

+2

1

2a+2,aa

1a

8分 10分

从而只要证2

只要证4a

1a

1

2a,a



112

≥2(a+2+22aa),即a+

≥2,而该不等式显然成立,14分

故原不等式成立.例3若x,y都是正实数,且x+y>2, 求证:

1xy

<2与

1xy

1yx

<2中至少有一个成立.1yx

证明假设则有

1xy

<2和

1yx

<2都不成立,≥2和≥2同时成立,因为x>0且y>0,所以1+x≥2y,且1+y≥2x,两式相加,得2+x+y≥2x+2y,所以x+y≤2,这与已知条件x+y>2相矛盾,因此

一、填空题

1.(2008·南通模拟)用反证法证明“如果a>b,那么答案a

a

1xy

<2与

1yx

<2中至少有一个成立.>b”假设内容应是=b或a

<b

2.已知a>b>0,且ab=1,若0<c<1,p=logc是.答案p<q

a

b

2,q=logc



1a

b,则p,q的大小关系

3.设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列恒成立的等式的序号是.①(a*b)*a=a②[a*(b*a)]*(a*b)=a ③b*(b*b)=b 答案②③④

4.如果△A1B1C1的三个内角的余弦值分别等于△A2B2C2的三个内角的正弦值,则△A1B1C1是三角形,△A2B2C2是三角形.(用“锐角”、“钝角”或“直角”填空)答案锐角钝角

5.已知三棱锥S—ABC的三视图如图所示:在原三棱锥中给出下列命题: ①BC⊥平面SAC;②平面SBC⊥平面SAB;③SB⊥AC.其中正确命题的序号是

.④(a*b)*[b*(a*b)]=b

答案①

6.对于任意实数a,b定义运算a*b=(a+1)(b+1)-1,给出以下结论: ①对于任意实数a,b,c,有a*(b+c)=(a*b)+(a*c);②对于任意实数a,b,c,有a*(b*c)=(a*b)*c;

③对于任意实数a,有a*0=a,则以上结论正确的是.(写出你认为正确的结论的所有序号)答案②③

二、解答题 7.略,8略

9.已知a、b、c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能同时大于.41证明方法一假设三式同时大于,即(1-a)b>,(1-b)c>,(1-c)a>,111

∵a、b、c∈(0,1),∴三式同向相乘得(1-a)b(1-b)c(1-c)a>

164

.1aa

又(1-a)a≤

2

=,同理(1-b)b≤,(1-c)c≤,∴(1-a)a(1-b)b(1-c)c≤

164,这与假设矛盾,故原命题正确.方法二假设三式同时大于,41

∵0<a<1,∴1-a>0,(1a)b

(1a)b

=,同理

(1b)c

>,232

(1c)a

>,三式相加得>,这是矛盾的,故假设错误,∴原命题正确.

第二篇:直接证明与间接证明-分析法学案(!)

2.2.2直接证明与间接证明—分析法

班级:姓名:

【学习目标】:

(1)结合教学实例,了解直接证明的两种基本方法之一:分析法(2)通过教学实例,了解综合法的思考过程、特点

(3)通过教学实例了解分析法的思考过程、特点;体会分析法和综合法的联系与区别【学习过程】:

变式练习1:求证7225

自主学习

1:从要证明的,逐步需寻求是它成立的,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、、、等),这种证明方法叫分析法。

2:分析法是一种…,它的特点是。

合作学习

1:综合法与分析法的推理过程是合情推理还是演绎推理?

2:综合法与分析法的区别是什么?

课堂练习

例1:求证:372

例2.如图,SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F, 求证:AF⊥SC

变式训练2:已知a0,求证a21a2

2a1a2

【课后检测】:

1:校本教材P55页作业与测试。

第三篇:直接证明与间接证明学案(陈学俊整理)[推荐]

兴化市文正实验学校高二数学学案(选修2-2)第二章 推理与证明2013/3/

21§2.2.1直接证明

【学习目标】1.结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;

2.会用综合法、分析法证明问题;

【学习重点】会用综合法、分析法证明问题;

【学习难点】根据问题的特点,选择适当的证明方法或把不同的证明方法结合使用.【学习过程】

一、复习回顾,新课引入:

合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的。数学结论的正确性必须通过逻辑推理的方式加以证明,本节我们将学习两类基本的证明方法。

1:两类基本的证明方法2:直接证明的两中方法:和.二、学习过程

问题1:已知四边形ABCD是平行四边形,求证:AB=CD,BC=DA

D

新知:一般地,利用

经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法.练习:

1.已知a,b0, 求证:a(b2c2)b(c2a2)4abc.2.在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列, a,b,c成等比数列,求证△ABC为等边三角形.问题2.求证:

ab2ab(a>0,b>0)

新知:从出发,逐步,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.这种证明方法叫分析法.练习:1.求证372

52.求证:3265

小结:综合法与分析法从书写形式看,有何特点?

三、课堂练习:

1.已知,kcos2sin,2(kZ),且sin

sincossin2,2.课本P84练习:1,4四、课后作业:凤凰新学案练习本P41-4

422求证:1tan1tan21tan2(1tan2).§2.2.2间接证明

【学习目标】1.结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;

2.了解反证法的思考过程、特点;

3.会用反证法证明问题.【学习重点】了解反证法的思考过程、特点

【学习难点】反证法的思考过程、特点

【学习过程】

一、复习回顾:

1:直接证明的两种方法2:综合法的特点:,分析法的特点:

二、学习新知

问题1:将9个球分别染成红色或白色,那么无论怎样染,至少有5个球是同色的,你能证明这个结论吗?

问题2:在一个三角形的3个内角中,至少有两个锐角,为什么?请说明理由。

新知:一般地,假设原命题,经过正确的推理,最后得出,因此说明假设,从而证明了原命题.这种证明方法叫.反证法证明的步骤:

三、例题讲解

例1.证明:2,3,5不可能成等差数列.练习:求证:一个三角形中,至少有一个内角不小于60.例2.求证:正弦函数没有比2小的正周期。

练习:

1.若 求证:

都为实数,且中至少有一个大于0.,,2.设a3b32,求证ab2.例3.证明2不是有理数。

练习: 已知x,y0,且xy2.求证:

四、课堂练习:课本1x1y,yx中至少有一个小于2.P863,4,5P45-46

五、布置作业:凤凰新学案练习本

§2.3数学归纳法

【学习目标】1.了解数学归纳法的原理,理解数学归纳法的操作步骤;

2.能用数学归纳法证明一些简单的数学命题。

【学习重点】能用数学归纳法证明一些简单的数学命题

【学习难点】数学归纳法中递推思想的理解.【学习过程】

第四篇:直接证明与间接证明-反证法习题课学案

2.2.2直接证明与间接证明—反证法

班级:姓名:

【学习目标】:

(1)了解间接证明的一种方法—反证法及其思维过程,特点

(2)通过反证法的学习,体会直接证明与间接证明之间的辩证关系,掌握对立与统一的思想和方法(3)通过反证法的学习,培养慎密思维的习惯,开拓数学视野,认识数学的科学价值和人文价值。

【学习过程】:

1:反正法是的一种基本方法,假设原命题,经过正确的推理,最后的出,应此说明假设,从而证明了原命题成立,这样的证明方法叫反证法。

2:用反证法证明命题的步骤,大体上分为:

(1)反证:假设原命题的结论,即假设结论的反面成立;(2)归谬:从出发,通过推理论证,得出矛盾;(3)结论:由矛盾判定假设不正确,从而肯定原命题的结论正确。课堂练习

例1:求证:两条相交直线有且只有一个交点例

a,b,c

是互不相等的实数,求证:

yax22bxc,ybx22cxa和ycx22axb确定的三条抛物线至少有一条与x轴有

两个不同的交点,变式训练:若下列三个方程:x24ax4a30,x2(a1)xa2=0,x22ax2a0

中至少有一个方程有实根,求a的范围。

例3:求证当x2bxc20有两个不相等的非零实根时bc0

变式训练:已知实数p满足不等式(2p1)(p2)0,用反证法证明:关于x的方程x22x5p20无实根

【课后检测】: 校本教材P75课时作业

第五篇:2.2直接证明与间接证明(学生学案)

SCH数学题库(学生学案)班级座号姓名请到QQ群208434765或高二数学备课组百度文库下载答案

2.2直接证明与间接证明(学生学案)(1)2.2.1综合法和分析法(1)--综合法

1(课本P36例):已知a,b>0,求证

2a(b

c)

b(2c)a4abc

布置作业:

A组:

1、若a0,b0,且a+b=4,则下列不等式中恒成立的个数是____(个)(写出所有正确的情况)

例2(课本P37例3):在△ABC中,三个内角A,B,C的对边分别为a,b,c,且A,B,C成等差数列, a,b,c成等比数111111

②1③ab2④2

ab2abab282、(课本P44习题2.2A组:NO:1)已知A,B都是锐

列,求证△ABC为等边三角形.例3:已知a,bR,求证aabbabba

.例

4、若实数x1,求证:

3(1x2x4)(1xx2)2.例5.设函数f(x)对任意x,yR,f(xy)f()x,且f(yx0时,f(x)0.(1)证明f(x)为奇函数;

(2)证明f(x)在R上为减函数.

角,且AB

,(1tanA)(1tanB)2,,求证:AB

.3、(课本P44习题2.2 A组:NO:2)

4、在△ABC中,已知(abc)(abc)3a,b且2cosAsiBnsCi.判断n△ABC的形状. 都有

下载2.2直接证明与间接证明学案(含答案)(精选五篇)word格式文档
下载2.2直接证明与间接证明学案(含答案)(精选五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    直接证明与间接证明(大全5篇)

    乡宁三中高中部“自主、互助、检测”大学堂学案数学选修2-22014 年3月4日 课题:直接证明与间接证明 主备人:安辉燕参与人:高二数学组1112.①已知a,b,cR,abc1,求证:9. abc ②已知a,b......

    6.6 直接证明与间接证明修改版

    高三导学案学科 数学 编号 6.6编写人 陈佑清审核人使用时间班级:小组:姓名:小组评价:教师评价:课题:(直接证明与间接证明)【学习目标】1. 了解直接证明的两种基本方法——分析法和综......

    5直接证明与间接证明

    龙源期刊网 http://.cn 5直接证明与间接证明 作者: 来源:《数学金刊·高考版》2014年第03期 直接证明与间接证明贯穿在整张高考卷的始终,解题过程中处处离不开分析与综合.近年......

    2.2直接证明与间接证明同步练习含答案详解

    2.2直接证明与间接证明一、选择题(每小题5分,共20分)1.分析法是从要证明的结论出发,逐步寻求使结论成立的 A.充分条件B.必要条件C.充要条件D.等价条件2.下列给出一个分析法的片断:欲证θ成......

    35 直接证明与间接证明(五篇材料)

    【2012高考数学理科苏教版课时精品练】作业35第五节 直接证明与间接证明1.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,则实数a的取值范围是(c,+∞),其中c=________.解析:由log2x≤2,得00a恒......

    直接证明与间接证明测试题[五篇材料]

    直接证明与间接证明测试题一、选择题1.用反证法证明一个命题时,下列说法正确的是A.将结论与条件同时否定,推出矛盾B.肯定条件,否定结论,推出矛盾C.将被否定的结论当条件,经过推理得出的......

    直接证明与间接证明(共5则)

    8.2 直接证明与间接证明教学目标:重点:综合法,分析法与反证法的运用.难点:分析法和综合法的综合应用.能力点:能用三种方法解决简单的证明问题及三种证明方法的综合应用.教育点:体会数......

    人教版高中数学选修1-2 直接证明与间接证明 导学案

    §2.2直接证明与间接证明班级_______姓名________小组序号_______一、学习目标: 了解综合法与分析法的概念,并能简单应用。二、预习内容:证明方法可以分为直接证明和间接证明1.......