第一篇:高中立体几何证明平行的专题
高中立体几何证明平行的专题(基本方法)
一、利用三角形及一边的平行线a.利用中位线
b.利用对应线段成比例
(a)、利用中位线
例
1、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。求证: PA ∥平面BDE
例
2、如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证AB1//平面BC1D
例
3、在四棱锥P-ABCD中,AB∥CD,AB=
练习
1、ABCDA1B1C1D1是正四棱柱,E是棱BC的中点。求证:BD1//平面C1DE1DC,E为PD中点.求证:AE∥平面PBC;
2练习
2、在三棱柱ABCA1B//平面ADC1; 1B1C1中,D为BC中点.求证:A
B
1B
C1
练习
3、如图所示, 四棱锥PABCD底面是直角梯形, BAAD,CDAD,CD=2AB, E为PC的中点,证明: EB//平面PAD;
练习
4、如图所示,正三棱柱ABC—A1B1C1中,D是BC的中点,试判断A1B与平面ADC1的位置关系,并证明你的结论.(b)、利用对应线段成比例
例
4、如图:S是平行四边形ABCD平面外一点,M、N分别是SA、BD上的点,且
SDC
AMBN
=,求证:MN∥平面SMND
例
5、在正方体ABCD—A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,求证:PQ∥平面DCC1D1。
1A
A
二、利用平行四边形的性质
例6.如图,四棱锥P-ABCD的底面是平行四边形,点E、F 分别为棱AB、PD的中点.求证:AF∥平面PCE;
例
7、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,求证:FG∥面BCD;
例
8、正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证: D1O//平面A1BC1;
例
9、在四棱锥P-ABCD中,AB∥CD,AB=
DC,E为PD中点.求证:AE∥平面PBC
2练习
5、四棱锥P-ABCD中,底面ABCD是矩形,M、N分别是AB、PC的中点,求证:MN∥平面
PAD;
练习
6、如图,在正方体ABCD——A1B1C1D1中,O是底面ABCD对角线的交点.求证:C1O//平面AD1B1.练习
7、已知四棱锥P-ABCD中,底面ABCD是矩形,E、F分别是
AB、PD的中点.求证:AF//平面PEC
P
A
E
B
C
练习
8、在三棱柱ABC-A1B1C1中,M,N分别是CC1,AB的中点.求证:CN //平面AB1M.
C
1A1
M
B1
C
A
B
3利用平行线的传递性
例
10、已知直三棱柱ABC-A1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, AC⊥BE.求证:C1D∥平面B1FM.F
A
1D
A
练习
9、三棱柱ABC—A1B1C1中,若D为BB1上一点,M为AB的中点,N为BC的中点.求证:MN∥平面A1C1D;
4利用面面平行
例
11、如图,三棱锥PABC中,E为PC的中点,M为AB的中点,点F在PA上,且AF2FP.求证:CM//平面BEF;
第二篇:高中立体几何证明平行的专题训练
1. 如图,四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点.求证:AF∥平面PCE;
2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+3,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(1)求证:求证:FG∥面BCD;
3、已知直三棱柱ABC-A1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, AC⊥BE.求证: C1D∥平面B1FM.4、如图所示, 四棱锥PABCD底面是直角梯形,FAD
A
1BAAD,CDAD,CD=2AB, E为PC的中点, 证明:
EB//平面PAD;
5、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。求证: PA ∥平面BDE
6.如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证:AB1//面BDC1;
7.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证: D1O//平面A1BC1;
8、在四棱锥P-ABCD中,AB∥CD,AB=求证:AE∥平面PBC;
9、在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=90,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.M是线段AD的中点,求证:GM∥平面ABFE;
10、S是平行四边形ABCD平面外一点,M、N分别是SA、BD上的点,且MN∥平面SDC11、如图,三棱锥PABC中,PB底面ABC,BCA90,PB=BC=CA,E为PC的中点,M为AB的中点,点F在PA上,且
DC,E为PD中点.AMSM
=
BNND,求证:
AF2F
P
.求证:CM//平面BEF;
第三篇:高中立体几何证明平行的专题训练)
高中立体几何证明平行的专题训练
深圳市龙岗区东升学校——罗虎胜
立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。
(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等等。
(1)通过“平移”再利用平行四边形的性质
1.如图,四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点.求证:AF∥平面PCE;
分析:取PC的中点G,连EG.,FG,则易证AEGF是平行四边形
(第1题图)
2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+3,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥面CDE;(Ⅱ)求证:FG∥面BCD;
分析:取DB的中点H,连GH,HC则易证FGHC是平行四边形
3、已知直三棱柱ABC-A1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, AC⊥BE.求证:
(Ⅰ)C1D⊥BC;(Ⅱ)C1D∥平面B1FM.分析:连EA,易证C1EAD是平行四边形,于是MF//EA
AD
BA14、如图所示, 四棱锥PABCD底面是直角梯形, BAAD,CDAD,CD=2AB, E为PC的中点, 证明: EB//平面PAD;
分析::取PD的中点F,连EF,AF则易证ABEF是
平行四边形
(2)利用三角形中位线的性质
5、如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:
AM∥平面EFG。
分析:连
MD交GF于H,易证EH是△AMD的中位线
6、如图,ABCD是正方形,O
是正方形的中心,E是
PC的中点。求证: PA ∥平面BDE
7.如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证:AB1//面BDC1;
分析:连B1C交BC1于点E,易证ED是
△B1AC的中位线
2128、如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,BADFAB90,BC
//
AD,BE
//
AF,G,H分别为FA,FD的中点
(Ⅰ)证明:四边形BCHG是平行四边形;(Ⅱ)C,D,F,E四点是否共面?为什么?
(.3)
利用平行四边形的性质
9.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证: D1O//平面A1BC1;
分析:连D1B1交A1C1于O1点,易证四边形OBB1O1 是平行四边形
10、在四棱锥P-ABCD
中,AB∥CD,AB=求证:AE∥平面PBC;
DC,E为PD
2分析:取PC的中点F,连EF则易证ABFE 是平行四边形
11、在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=90,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.
(I)证法一:
因为EF//AB,FG//BC,EG//AC,ACB90,所以EGF90,ABC∽EFG.由于AB=2EF,因此,BC=2FC,连接AF,由于FG//BC,FG
12BC
在ABCD中,M是线段AD的中点,则AM//BC,且AMBC
因此FG//AM且FG=AM,所以四边形AFGM为平行四边形,因此GM//FA。又FA平面ABFE,GM平面ABFE,所以GM//平面AB。
(4)利用对应线段成比例
12、如图:S是平行四边形ABCD平面外一点,M、N分别是SA、BD上的点,且求证:MN∥平面SDC
分析:过M作ME//AD,过N作NF//AD 利用相似比易证MNFE是平行四边形
13、如图正方形ABCD与ABEF交于AB,M,N证:MN∥平面BEC
AMSM
=
BNND,分析:过M作MG//AB,过N作NH/AB 利用相似比易证MNHG是平行四边形
(6)利用面面平行
14、如图,三棱锥PABC中,PB底面ABC,BCA90,PB=BC=CA,E为PC的中点,M为AB的中点,点F在PA上,且AF2FP.(1)求证:BE平面PAC;(2)求证:CM//平面BEF;
分析: 取AF的中点N,连CN、MN,易证平面
CMN//EFB
第四篇:高中立体几何证明方法
高中立体几何
一、平行与垂直关系的论证
由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。1.线线、线面、面面平行关系的转化:
面面平行性质
//
a,
ab
//b)
线面平行性质
////
a
b
a//a//b
//
a
//
a//
2.线线、线面、面面垂直关系的转化:
在内射影a
则aOAaPOaPOaAO
l
线面垂直定义
a
la
ba a,ab
a a
面面垂直定义
l,且二面角l
成直二面角
3.平行与垂直关系的转化:
a//ba
a
a
b
a
//
面面平行判定2 面面平行性质
3ab
a//b
//a
a
4.应用以上“转化”的基本思路——“由求证想判定,由已知想性质。”5.唯一性结论:
二、三类角
1.三类角的定义:
(1)异面直线所成的角θ:0°<θ≤90°
(2)直线与平面所成的角:0°≤θ≤90°(0时,b∥或b
)
(3)二面角:二面角的平面角θ,0°<θ≤180°
2.三类角的求法:转化为平面角“一找、二作、三算”即:(1)找出或作出有关的角;(2)证明其符合定义;(3)指出所求作的角;(4)计算大小。
(三)空间距离:求点到直线的距离,经常应用三垂线定理作出点到直线的垂线,然后在相关三角形中求解。求点到面的距离,一般找出(或作出)过此点与已知平面垂直的平面利用面面垂直的性质求之也可以利用“三棱锥体积法”直接求距离,直线与平面的距离,面面距离都可转化为点到面的距离。
第五篇:立体几何的平行与证明问题
立体几何
1.知识网络
一、经典例题剖析
考点一 点线面的位置关系
1、设l是直线,a,β是两个不同的平面()
A.若l∥a,l∥β,则a∥β B.若l∥a,l⊥β,则a⊥β
C.若a⊥β,l⊥a,则l⊥β D.若a⊥β, l∥a,则l⊥β
2、下列命题正确的是()
A.若两条直线和同一个平面所成的角相等,则这两条直线平行
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D.若两个平面都垂直于第三个平面,则这两个平面平行
3、已知空间三条直线l、m、n.若l与m异面,且l与n异面,则()
A.m与n异面.B.m与n相交.C.m与n平行.D.m与n异面、相交、平行均有可能.4、(2013年高考江西卷(文15))如图,正方体的底面与正四面体的底面在同一平面α上,且AB//CD,则直线EF与正方体的六个面所在的平面相交的平面个数为
_____________.D
1CB
考点二证明平行关系
5、如图,在正方体ABCDA1B1C1D1中,E是AA1的中点,D C
BDE。求证: AC1//平面
6、(2013年高考陕西卷(文))如图, 四棱柱ABCD-A1B1C1D1的底面ABCD是正方形, O
为底面中心, A1O⊥平面ABCD, ABAA1
A
(Ⅰ)证明: A1BD //平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的体积.考点三证明垂直问题
7、(2013年高考辽宁卷(文))
如图,AB是圆O的直径,PA垂直圆O所在的平面,C是圆O上的点.(I)求证:BC平面PAC;
(II)设Q为PA的中点,G为AOC的重心,求证:QG//平面PBC.8、已知正方体ABCDA1BC11D1,O是底ABCD对角线的交点.D1AD
BBC
1求证:(1)C1O∥面AB1D1;(2)AC面AB1D1.1
C
综合练习:
9、(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC中,D,E分别是AB,AC
边上的点,ADAE,F是BC的中点,AF与DE交于点G,将ABF沿AF折起,得到如图5所示的三棱锥ABCF,其中BC
.(1)证明:DE//平面BCF;(2)证明:CF平面ABF;
图
410、如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=证明:PQ⊥平面DCQ;
PD.
2AC平面B'D'DB;BD'
平面ACB'.11、正方体ABCDA'B'C'D'中,求证:(1)(2)