第一篇:高中立体几何中线面平行的常见方法
高中立体几何证明平行的专题训练
立体几何中证明线面平行或面面平行都可转化为 线线平行,而证明线线平行一般有以下的一些方法:
(1)通过“平移”。
(2)利用三角形中位线的性质。
(3)利用平行四边形的性质。
(4)利用对应线段成比例。
(5)利用面面平行,等等。
(1)通过“平移”再利用平行四边形的性质
1.如图,四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点.求证:AF∥平面PCE;
分析:取PC的中点G,连EG.,FG,则易证AEGF是平行四边形
(第1题图)
2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥面CDE;(Ⅱ)求证:FG∥面BCD;
分析:取DB的中点H,连GH,HC则易证FGHC
是平行四边形
3、已知直三棱柱ABC-A1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, AC⊥BE.求证:
(Ⅰ)C1D⊥BC;(Ⅱ)C1D∥平面B1FM.B分析:连EA,易证C1EAD是平行四边形,于是MF//EA
F
A
1D
A4、如图所示, 四棱锥PABCD底面是直角梯形, BAAD,CDAD,CD=2AB, E为PC的中点, 证明: EB//平面PAD;
分析::取PD的中点F,连EF,AF则易证ABEF是
平行四边形
(2)利用三角形中位线的性质
5、如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:
AM∥平面EFG。
分析:连MD交GF于H,易证EH是△AMD的中位线
6、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。求证: PA ∥平面BDE
7.如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证:AB1//面BDC1;
分析:连B1C交BC1于点E,易证ED是
△B1AC的中位线
8、如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,BADFAB900,BC
//
AD,BE
2//
AF,G,H分别为FA,FD的中点 2
(Ⅰ)证明:四边形BCHG是平行四边形;(Ⅱ)C,D,F,E四点是否共面?为什么?
(.3)
利用平行四边形的性质
9.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证: D1O//平面A1BC1;
分析:连D1B1交A1C1于O1点,易证四边形OBB1O1 是平行四边形
10、在四棱锥P-ABCD中,AB∥CD,AB=
DC,E为PD中点.2求证:AE∥平面PBC;
分析:取PC的中点F,连EF则易证ABFE 是平行四边形
11、在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=90,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.
(I)证法一:
因为EF//AB,FG//BC,EG//AC,ACB90,所以EGF90,ABC∽EFG.由于AB=2EF,因此,BC=2FC,连接AF,由于FG//BC,FG
BC
2BC 2
在ABCD中,M是线段AD的中点,则AM//BC,且AM
因此FG//AM且FG=AM,所以四边形AFGM为平行四边形,因此GM//FA。又FA平面ABFE,GM平面ABFE,所以GM//平面AB。
(4)利用对应线段成比例
12、如图:S是平行四边形ABCD平面外一点,M、N分别是SA、BD上的点,且求证:MN∥平面SDC
分析:过M作ME//AD,过N作NF//AD 利用相似比易证MNFE是平行四边形
AMBN
=,SMND13、如图正方形ABCD与ABEF交于AB,M,N分别为AC和BF上的点且AM=FN求证:MN∥平面BEC
分析:过M作MG//AB,过N作NH/AB 利用相似比易证MNHG是平行四边形
(6)利用面面平行
14、如图,三棱锥PABC中,PB底面ABC,BCA90,PB=BC=CA,E为PC的中点,M为AB的中点,点F在PA上,且AF2FP.(1)求证:BE平面PAC;(2)求证:CM//平面BEF;
分析: 取AF的中点N,连CN、MN,易证平面CMN//EFB
第二篇:立体几何线面平行问题
线线问题及线面平行问题
一、知识点 1 1)相交——有且只有一个公共点;(2)平行——在同一平面内,没有公共点;(3)异面——不在任何一个平面内,没有公共点; ..
2.公理4 :推理模式:a//b,b//ca//c.
3.等角定理:4.等角定理的推论:若两条相交直线和另两条相交直线分别平行,那么这两条直线所成的锐角(或直角)相等.5.空间两条异面直线的画法
6.异面直线定理:连结平面内一点与平面外一点的直线,b
a
1AA
推理模式:A,B,l,BlAB与l
7.异面直线所成的角:已知两条异面直线a,b,经过空间任一点O作直线a//a,b//b,a,b所成的角的大小与点O的选择无关,把a,b所成的锐角(或直角)叫异面直线a,b所成的角(或夹角).为了简便,点O(0,
28.异面直线垂直:如果两条异面直线所成的角是直角,则叫两条异面直线垂直.两条异面直线a,b 垂直,记作ab.
9.求异面直线所成的角的方法:(1)通过平移,在一条直线上找一点,过该点做另一直线的平行线;
(210.两条异面直线的公垂线、距离:和两条异面直线都垂直相交....
异面直线的的定义要注意“相交
11.异面直线间的距离:两条异面直线的公垂线在这两条异面直线间的线段垂线段)的长度,叫做两条异面直线间的距离.
12.直线和平面的位置关系(1)直线在平面内(无数个公共a点);(2)直线和平面相交(有且只有一个公共点);(3)直
线和平面平行(没有公共点)——用两分法进行两次分
类.它们的图形分别可表示为如下,符号分别可表示为a,aA,a//. a13.线面平行的判定定理:如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行.推理模式:l,m,l//ml//.
14.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这
相交,那么这条直线和交线平行.推理模式:l//,l,ml//m.
lm个平面
二、基本题型
1.判断题(对的打“√”,错的打“×”)
(1)垂直于两条异面直线的直线有且只有一条()
(2)两线段AB、CD不在同一平面内,如果AC=BD,AD=BC,则AB⊥CD()(3)在正方体中,相邻两侧面的一对异面的对角线所成的角为60º()(4)四边形的一边不可能既和它的邻边垂直,又和它的对边垂直()
2.右图是正方体平面展开图,在这个正方体中
C
①BM与ED平行;②CN与BE是异面直线;③CN与BM成60º角; ④DM与BN垂直.以上四个命题中,正确命题的序号是()(A)①②③(B)②④(C)③④(DF
3.已知空间四边形ABCD.(1)求证:对角线AC与BD是异面直线;(2)若AC⊥BD,E,F,G,H分别这四条边AB,BC,CD,DA的中点,试判断四边形EFGH的形状;(3)若AB=
BC=CD=DA,作出异面直线AC与BD的公垂线段.4.完成下列证明,已知直线a、b、c不共面,它们相交于点P,Aa,Da,Bb,Ec求证:BD和AE证明:假设__ 共面于,则点A、E、B、D都在平面__Aa,Da,∴__γ.Pa,∴P__.Pb,Bb,Pc,Ec∴__,__,这与____矛 ∴BD、E,F,G,H分别是空间四边形四条边AB,BC,CD,DA的中点,(1)求证四边形EFGH是
2)若AC⊥BD时,求证:EFGH为矩形;(3)若BD=2,AC=6,求EG
HF
;(4)
若AC、BD成30º角,AC=6,BD=4,求四边形EFGH的面积;(5)若AB=BC=CD=DA=AC=BD=2,求AC与BD间的距离.6 间四边形ABCD中,ADBC2,E,F分别是AB,CD的中点,EFAD,BC7.在正方体ABCD-A1B1C1D1中,求(1)A1B与B1D1所成角;(2)AC与BD1所成角.8.在长方体ABCDABCD中,已知AB=a,BC=b,AA=c(a>b),求异面直线DB与AC
9.如图,已知P是平行四边形ABCD所在平面外一点,M、N分别
是AB、PC1)求证:MN//平面PAD;(2)若MNBC4,PA 求异面
直线PA与MN10.如图,正方形ABCD与ABEF不在同一平面内,M、N分别在AC、BF上,且AMFN求证:MN//平面CBE
参考答案:
1.(1)×(2)×(3)√(4)×2.C
3.证明:(1)∵ABCD是空间四边形,∴A点不在平面BCD上,而C平面BCD, ∴AC过平面BCD外一点A与平面BCD内一点C, 又∵BD平面BCD,且CBD.∴AC与BD是异面直线.(2)解如图,∵E,F分别为AB,BC的中点,∴EF//AC,且EF=同理HG//AC,且HG=
212
AC.AC.∴EF平行且相等HG,∴EFGH是平行四边形.又∵F,G分别为BC,CD的中点,∴FG//BD,∴∠EFG是异面直线AC与BD所成的角.o
∵AC⊥BD,∴∠EFG=90.∴EFGH是矩形.(3)作法取BD中点E,AC中点F,连EF,则EF即为所求.4.答案:假设BD、AE共面于,则点A、E、B、D都在平面 ∵Aa,Da,∴ a .∵Pa,P .∵Pb,Bb,Pc,Ec.∴ b ,c ,这与a、b、c∴BD、AE5.证明(1):连结AC,BD,∵E,F是ABC的边AB,BC上的中点,∴EF//AC,同理,HG//AC,∴EF//HG,同理,EH//FG,所以,四边形EFGH证明(2):由(1)四边形EFGH∵EF//AC,EH//BD,∴由AC⊥BD得,EFEH,∴EFGH为矩形.解(3):由(1)四边形EFGH∵BD=2,AC=6,∴EF
2AC3,EH
BD
1∴由平行四边形的对角线的性质 EGHF2(EF
EH)20.B
D解(4):由(1)四边形EFGH∵BD=4,AC=6,∴EF
又∵EF//AC,EH//BD,AC、BD成30º角,∴EF、EH成30º角,AC3,EH
BD
2∴四边形EFGH的面积 SEFEHsin30
3.解(5):分别取AC与BD的中点M、N,连接MN、MB、MD、NA、NC,∵AB=BC=CD=DA=AC=BD=2,∴MB=MD=NA=NC=3 ∴MNAC,MNBD,∴MN是AC与BD的公垂线段 且MN
MB
NB
2∴AC与BD间的距离为2.6.解:取BD中点G,连结EG,FG,EF,∵E,F分别是AB,CD的中点,∴EG//AD,FG//BC,且EG
2AD1,FG
BC1,∴异面直线AD,BC所成的角即为EG,FG所成的角,EGFGEF
2EGFG
在EGF中,cosEGF
,G
F
D
∴EGF120,异面直线AD,BC所成的角为60.
7.解(1)如图,连结BD,A1D,∵ABCD-A1B1C1D1是正方体,∴DD1平行且相等BB1.∴DBB1D1为平行四边形,∴BD//B1D1.∴A1B,BD,A1D是全等的正方形的对角线.∴A1B=BD=A1D,△A1BD是正三角形,∴∠A1BD=60,∵∠A1BD是锐角,∴∠A1BD是异面直线A1B与B1D1所成的角.∴A1B与B1D1成角为60o.(2)连BD交AC于O,取DD1 中点E,连EO,EA,EC.∵O为BD中点,∴OE//BD1.∵∠EDA=90o=∠EDC,ED=ED,AD=DC,∴△EDA≌△EDC,∴EA=EC.在等腰△EAC中,∵O是AC的中点,∴EO⊥AC,∴∠EOA=90o.又∴∠EOA是异面直线AC与BD1所成角,∴AC与BD1成角90.8.解(1)如图,连结BD,A1D,∵ABCD-A1B1C1D1是正方体,∴DD1平行且相等BB1.∴DBB1D1为平行四边形,∴BD//B1D1.∴A1B,BD,A1D是全等的正方形的对角线.∴A1B=BD=A1D,△A1BD是正三角形, ∴∠A1BD=60o,∵∠A1BD是锐角,∴∠A1BD是异面直线A1B与B1D1所成的角.∴A1B与B1D1成角为60o.(2)连BD交AC于O,取DD1 中点E,连EO,EA,EC.∵O为BD中点,∴OE//BD1.∵∠EDA=90o=∠EDC,ED=ED,AD=DC,∴△EDA≌△EDC,∴EA=EC.o
在等腰△EAC中,∵O是AC的中点,∴EO⊥AC,∴∠EOA=90.又∴∠EOA是异面直线AC与BD1所成角,∴AC与BD成角90o.9.略证(1)取PD的中点H,连接AH,NH//DC,NH
12DC
o
o
C
NH//AM,NHAMAMNH为平行四边形 MN//AH,MNPAD,AHPADMN//PAD
解(2): 连接AC并取其中点为O,连接OM、ON,则OM平行且等于BC的一半,ON平行且等
于PA的一半,所以ONM就是异面直线PA与MN所成的角,由
MNBC
4,PAOM=2,ON=
所以ONM300,即异面直线PA与MN成30010.略证:作MT//AB,NH//AB分别交BC、BE于T、H点
AMFNCMT≌BNHMTNH
从而有MNHT为平行四边形MN//THMN//CBE
E
第三篇:立体几何中线面平行的经典方法+经典题(学生用)
高中立体几何证明平行的专题(基本方法)
立体几何中证明线面平行或面面平行都可转化为
线线平行,而证明线线平行一般有以下的一些方法:
(1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。
(4)利用对应线段成比例。(5)利用面面平行,等等。
(1)通过“平移”再利用平行四边形的性质
1.如图,四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点.求证:AF∥平面PCE;
2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得DE⊥EC.(Ⅰ)求证:BC⊥面CDE;(Ⅱ)求证:FG∥面BCD;
3、已知直三棱柱ABC-A1B1C1中,D, E, F分别为AA1, CC1, AB的中点,M为BE的中点, AC⊥BE.求证:
(Ⅰ)C
1D⊥BC;(Ⅱ)C1D∥平面B1FM.BA1
DFA14、如图所示, 四棱锥PABCD底面是直角梯形,BAAD,CDAD,CD=2AB, E为PC的中点,证明: EB//平面PAD;
(2)利用三角形中位线的性质
5、如图,已知E、F、G、M分别是四面体的棱AD、CD、BD、BC的中点,求证:AM∥平面EFG。
6、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。求证: PA ∥平面BDE
7.如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证:AB1//面BDC1;
8、如图,平面ABEF平面ABCD,四边形ABEF与ABCD都是直角梯形,BADFAB900,BC
//
AD,BE
2//
AF,G,H分别为FA,FD的中点 2
(Ⅰ)证明:四边形BCHG是平行四边形;(Ⅱ)C,D,F,E四点是否共面?为什么?
(.3)利用平行四边形的性质
9.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证: D1O//平面A1BC1;
10、在四棱锥P-ABCD中,AB∥CD,AB=求证:AE∥平面PBC;
DC,E为PD中点.211、在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=90,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.
(4)利用对应线段成比例
12、如图:S是平行四边形ABCD平面外一点,M、AMBN
N分别是SA、BD上的点,且=,SMND求证:MN∥平面SDC13、如图正方形ABCD与ABEF交于AB,M,N分别为AC和BF上的点且AM=FN求证:MN∥平面BEC
(5)利用面面平行
14、如图,三棱锥PABC中,PB底面ABC
为PC的中点,M为AB的中点,点F在PA上,且AF2FP.(1)求证:BE平面PAC;(2)求证:CM//平面BEF;
直线、平面平行的判定及其性质 经典题
一、选择题
1.下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面;B.一个平面内的两条直线平行于另一个平面 C.一个平面内有无数条直线平行于另一个平面 D.一个平面内任何一条直线都平行于另一个平面
2.E,F,G分别是四面体ABCD的棱BC,CD,DA的中点,则此四面体中与过E,F,G的截面平行的棱的条数是A.0B.1C.2D.33. 直线a,b,c及平面,,使a//b成立的条件是()
A.a//,bB.a//,b//C.a//c,b//cD.a//,b 4.若直线m不平行于平面,且m,则下列结论成立的是()A.内的所有直线与m异面B.内不存在与m平行的直线 C.内存在唯一的直线与m平行D.内的直线与m都相交 5.下列命题中,假命题的个数是()
① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④平行于同一条直线的两条直线和同一平面平行;⑤ a和b异面,则经过b存在唯一一个平面与平行
A.4B.3C.2D.1 6.已知空间四边形ABCD中,M,N分别是AB,CD的中点,则下列判断正确的是()
A.MN1ACBCB.MN1ACBC
2C.MN1ACBCD.MN1ACBC
二、填空题
7.在四面体ABCD中,M,N分别是面△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.8.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是
①②③④
9.正方体ABCD-A1B1C1D1中,E为DD1中点,则BD1和平面ACE位置关系是.
三、解答题
10.如图,正三棱柱ABCA1B1C1的底面边长是2,侧棱长是3,D是AC的中点.求证:B1C//平面A1BD.A
11.如图,在平行六面体ABCD-A1B1C1D1中,E,M,N,G分别是AA1,CD,CB,CC1的中点,求证:(1)MN//B1D1 ;(2)AC1//平面EB1D1 ;(3)平面EB1D1//平面BDG.6
第四篇:立体几何三视图及线面平行经典练习
立体几何三视图
例
1、若某空间几何体的三视图如图所示,则该几何体的体积是
()(A)2(B)1(C)2 31(D)
3例
2、一个几何体的三视图如图,该几何体的表面积是()
(A)372(B)360(C)292(D)280
例
3、如图1,△ ABC为正三角形,AA//BB //CC , CC ⊥平面ABC且3AA=
()
例
4、一空间几何体的三视图如图所示,则该几何体的体积为().A.2
B.4
3BB=CC=AB,则多面体△ABC-ABC的正视图(也称主视图)是
2C.2
练习
D.4 3
3正(主)视
侧(左)视图
俯视图
1.一个空间几何体的正视图是长为4,宽为3的长方形,侧视图是边长为2的等边三角形,俯视图如图2所示,则这个几何体的体积为 A.
234B.2C.D.
433
2.如图所示,一个空间几何体的正视图和侧视图都是边 长为1的正方形,俯视图是一个圆,那么这个几何 体的体积为 ..
B. 42
C.D.
2A.
侧视图
3.一个几何体的三视图如图2所示,那么这个几何体的表面积为
....
2正视图
2侧视图
正视图
侧视图
俯视图
俯视图
4.已知某几何体的三视图如图所示, 其中俯视图是腰长为2的等腰梯形, 则该几何体的体积为
A.C.空间点、直线、平面之间的位置关系 1平面
判定直线在平面内:如果一条直线上的两点在一个平面内,那么这两条直线在此平面内。
确定一个平面:过不在一条直线上的三个点,有且只有一个平面 推论1:一个直线外的点与一条直线确定一个平面 推论2:两条相交直线确定一个平面 推论3:两条平行直线确定一个平面
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
空间中直线与直线的位置关系
判断直线与直线平行:平行于同一条直线的两直线互相平行(平行的传递性)等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。异面直线垂直:如果两条异面直线所成角是直角,那么这两条线互相垂直。·异面直线所成角不大于90度!空间中直线与平面之间的位置关系
·直线与平面的位置关系:在平面内,与平面相交,与平面平行。平面与平面之间的位置关系
·平面与平面的位置关系有且只有两种:相交于平行 2 直线、平面平行的判定及其性质 直线与平面平行的判定
定理1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
定理2:若两个平面平行,则其中一个面的任意一条直线与另一个面平行。平面与平面平行的判定
定理1:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行 定理2,:若两条相交直线与另外两条相交直线分别平行,则这两个平面平行直线与平面平行的性质
定理1:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与此平面平行。
(·作用:证明线线平行 ·做法:经已知直线做一个平面与已知平面相交)平面与平面平行的性质
定理:如果两个平行平面同时和第三个平面相交,那么他们的交线平行。
补充:证明线线平行的方法: 1.平行的传递性
2.线面平行的性质定理(·关键:寻找面面的交线)3.证明为第三个平面与两个平行平面的交线
一、选择题
1.下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面;B.一个平面内的两条直线平行于另一个平面 C.一个平面内有无数条直线平行于另一个平面 D.一个平面内任何一条直线都平行于另一个平面
2、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是()A.b∥αB.b
α
C.b与α相交D.以上都有可能
3. 直线a,b,c及平面,,使a//b成立的条件是()
A.a//,bB.a//,b//C.a//c,b//cD.a//,b 4.若直线m不平行于平面,且m,则下列结论成立的是()A.内的所有直线与m异面B.内不存在与m平行的直线 C.内存在唯一的直线与m平行D.内的直线与m都相交 5.下列命题中,假命题的个数是()
① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④平行于同一条直线的两条直线和同一平面平行;
A.4B.3C.2D.1 6.在空间中,下列命题正确的是(). A.若a∥α,b∥a,则b∥α
B.若a∥α,b∥α,a⊂β,b⊂β,则β∥α C.若α∥β,b∥α,则b∥β D.若α∥β,a⊂α,则a∥β.β是两个不重合的平面,a,b是两条不同直线,在下列条件下,可判定∥β,的是()
A.,β都平行于直线a,b
B.内有三个不共线点到β的距离相等 C.a,b是内两条直线,且a∥β,b∥β
D.a,b是两条异面直线且a∥,b∥,a∥β,b∥β
8.平面α∥平面β,a⊂α,b⊂β,则直线a,b的位置关系是(). A.平行C.异面
B.相交 D.平行或异面
9.设a,b表示直线,,表示平面,P是空间一点,下面命题中正确的是()A.a,则a//B.a//,b,则a//bC.//,a,b,则a//bD.Pa,P,a//,//,则a 10.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是()
A.异面B.相交C.平行D.不能确定 11.下列四个命题中,正确的是()①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行 A.①③B.①②C.②③D.③④ 12.在下列命题中,假命题的是A.若平面α内的任一直线平行于平面β,则α∥βB.若两个平面没有公共点,则两个平面平行
C.若平面α∥平面β,任取直线aα,则必有a∥β
D.若两条直线夹在两个平行平面间的线段长相等,则两条直线平行
二、填空题
13.如下图所示,四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得到AB//面MNP的图形的序号的是
①②③④
14.正方体ABCD-A1B1C1D1中,E为DD1中点,则BD1和平面ACE位置关系是.
15.a,b,c为三条不重合的直线,α,β,γ不在平面内,给出六个命题:
a∥ca∥∥c①a∥b;②a∥b;③∥;b∥cb∥∥c④
为三个不重合的平面,直线均
∥c
∥∥
a∥;⑤∥⑥a∥a∥c∥a∥
其中正确的命题是________________.16.如图,若PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB、PD的中点,求证:AF∥平面
PCE.
第五篇:立体几何平行证明题常见模型及方法[定稿]
立体几何平行证明题常见模型及方法 证明空间线面平行需注意以下几点:
①由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
②立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。
③明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。
平行转化:线线平行 线面平行 面面平行;
类型一:线面平行证明(中位线法,构造平行四边形法,面面平行法)
(1)方法一:中位线法以锥体为载体
例1:如图,在底面为平行四边形的四棱锥PABCD中,点E是PD的中点.求证:PB∥平面AEC;
变式1:若点M是PC的中点,求证:PA||平面BDM;
变式2:若点M是PA 的中点,求证:PC||平面BDM。EAB变式3如图,在四棱锥SABCD中,底面ABCD是菱形,(2)以柱体为载体
例2在直三棱柱ABCA1B1C1,D 为BC的中点,求证:AC1||平面AB1D
变式1 在正方体ABCDA1BC11D1中,若E是CD的中点,求证:B1D||平面BC1E 变式2在正方体ABCDA1BC11D1中,若E是CD的中点,求证:B1D||平面BC1E 变式 3如图,在直三棱柱ABC—A1B1C1中,AA1=,AC=BC=2,∠C=90°,点D是A1C1的中点.求证:BC1//平面AB1D;
方法2:构造平行四边形法
例1如图,在四棱锥SABCD中,底面ABCD为正方形,E、F
分别为AB,SC的中点.证明○1EF∥平面SAD○2BF∥平面SDE S
A
变式1:若E、F分别为AD,SB的中点.证明EF∥平面SCD
变式2若E、F分别为SD,AB的中点.证明EF∥平面SCB
例2如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB//CD,AB=4, BC=CD=2,AA1=2,E、E1分别是棱AD、AA1的中点.设F是棱AB的中点,证明:直线EE1//平面FCC
1E1E
F
E
B
C
AD1
B1
方法3:面面平行法(略)
举一反三
1如图,已知AB平面ACD,DE平面ACD,△ACD为等边三角形,ADDE2AB,F为CD的中点.(1)求证:AF//平面BCE;(2)求证:平面BCE平面CDE;
E
A
C
F
2如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,M是BD的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求出该几何体的体积;
(2)若N是BC的中点,求证:AN∥平面CME;(3)求证:平面BDE⊥平面BCD.3直四棱柱ABCD-A1B1C1D1中,底面ABCD是等腰梯形,AB∥DC,AB=2AD=2DC=2,E为BD1的中点,F为AB中点.
(1)求证EF∥平面ADD1A1;(2)求几何体DD1AA1EF的体积。