第一篇:证明直线与圆相切的常见方法(定稿)
证明直线与圆相切的常见方法
学习了直线与圆的位置关系,常会遇到证明一条直线是圆的切线的题目,如何证明一条直线是圆的切线,一般会出现以下三种情况.一、若证明是圆的切线的直线与圆有公共点,且存在连接公共点的半径,此时可根据“经过半径的外端并且垂直于这条半径的直线是圆的切线”来证明.简记为“见半径,证垂直”.例1如图1,已知AB为⊙O的直径,直线PA过点A,且∠PAC=∠B.求证:PA是⊙O的切线.图 1分析:要证明PA是⊙O的切线,因为AB是⊙O的直径,所以只要证明AB⊥AP.可结合直径所对的圆周为直角进行推理.证明:因为AB为⊙O的直径,所以∠ACB=90°,所以∠CAB+∠B=90°,因为∠PAC=∠B,所以∠CAB+∠PAC=90°,即∠BAP=90°,所以PA是⊙O的切线.二、若给出了直线与圆的公共点,但未给出过这点的半径,则连结公共点和圆心,然后根据“经过半径外端且垂直这条半径的直线是圆的切线”来证明.简记为“作半径,证垂直”.例2如图2,已知⊙O是△ABC的外接圆,AB是⊙O的直径,D是AB的延长线上的一点,AE⊥DC交DC的延长线于点E,且AC平分∠EAB.
求证:DE是⊙O的切线.
证明:连接OC,则OA=OC,所以∠CAO=∠ACO,因为AC平分∠EAB,所以∠EAC=∠CAO=∠ACO,所以AE∥CO,又AE⊥DE,所以CO⊥DE,所以DE是⊙O的切线.
三、若直线与圆的公共点不明确时,则过圆心作该直线的垂线段,然后根据“圆心到直线的距离等于圆的半径,该直线是圆的切线”来证明.简记为“作垂直,证相等”.例3如图3,已知,O为正方形ABCD对角线上一点,以O为圆心,OA的长为半径的⊙O与BC相切于M,与AB、AD分别相交于E、F.求证:CD与⊙O相切.
图3
分析:要识别“CD与⊙O相切”,由于不知道CD经过圆上哪一点,所以先过点O作:ON⊥CD于N,再证明ON是⊙O半径。易知OM是⊙O的半径,只要证明:OM=ON即可.证明:连结OM,作ON⊥CD于N,因为 ⊙O与BC相切,所以 OM⊥BC.因为四边形ABCD是正方形,所以 AC平分∠BCD.所以OM=ON.图 4
所以CD与⊙O相切.总结: 切线判断并不难,认真审题是重点;直线与圆有交点,连接半径是关键,推得垂直是切线;若没明确是切点,作过圆心垂线段,半径相等得切线.
第二篇:怎样证明直线与圆相切?
怎样证明直线与圆相切?
在直线与圆的各种位置关系中,相切是一种重要的位置关系.
现介绍以下三种判别直线与圆相切的基本方法:
(1)利用切线的定义——在已知条件中有“半径与一条直线交于半径的外端”,于是只需直接证明这条直线垂直于半径的外端.
例1:已知:△ABC内接于⊙O,⊙O的直径AE交BC于F点,点P在BC的延长线上,且∠CAP=∠ABC.
求证:PA是⊙O的切线.
证明:连接EC.
∵AE是⊙O的直径,∴∠ACE=90°,∴∠E+∠EAC=90°.
∵∠E=∠B,又∠B=∠CAP,∴∠E=∠CAP,∴∠EAC+∠CAP=∠EAC+∠E=90°,∴∠EAP=90°,∴PA⊥OA,且过A点,则PA是⊙O的切线.
(2)利用切线的判定定理——在已知条件中,有“一条直线过圆上某一公共点(即为切点),但没有半径”,于是先连接圆心与这个公共点成为半径,然后再证明这条直线和这条半径垂直.
例2:以Rt△ABC的直角边BC为直径作⊙O交斜边AB于P,Q为AC的中点. 求证:PQ必为⊙O的切线.
证明 连接OP,CP.
∵BC为直径,∴∠BPC=90°,即∠APC=90°.
又∵Q为AC中点,∴QP=QC,∴∠1=∠2.
又OP=OC,∴∠3=∠4.
又∠ACB=90°,∴∠2+∠4=∠1+∠3=∠ACB=90°,∴∠OPQ=90°.
∵P点在⊙O上,且P为半径OP的端点,则QP为⊙O的切线.
说明:要证PQ与半径垂直,即连接OP.这是判别相切中添辅助线的常用方法.
(3)证明“d=R”——在已知条件中“没有半径,也没有与圆有公共交点的直线”,于是过圆心作直线的垂线,然后再证明这条垂线的长(d)等于圆的半径(R).
例3:已知:在△ABC中,AD⊥BC与D,且AD=BC,E、F为AB、AC的中点,O为EF2的中点。
求证:以EF为直径的圆与BC相切.
证明:作OH⊥BC于H,设AD与EF交于M,又AD⊥BC,∴OH∥MD,则OHDM是矩形.
∴OH是⊙O的半径,则EF为直径的圆与BC相切.思考题:
1.AB是⊙O的直径,AC是弦,AC=CD,EF过点C,EF⊥BD于G.
求证:EF是⊙O的切线.
提示:连接CO,则OC是⊙O的半径,再证OC⊥EF.
2.DB是圆的直径,点A在DB的延长线上,AB=OB,∠CAD=30°.求证:AC是⊙O的切线.
提示:∵AC与⊙O没有公共点,∴作OE⊥AC于E,再证OE是⊙O的半径.
第三篇:圆锥曲线与直线相切的条件教案
圆锥曲线与直线相切的条件教案
教学目的(1)掌握圆锥曲线与直线相切的条件及圆锥曲线切线的定义;
(2)使学生会用初等数学方法求圆锥曲线的切线;
(3)应用相切的公式解题,从而培养学生综合应用能力.
教学过程
一、问题提出
1.有心的二次曲线包括哪些?无心的二次曲线包括哪些?
(答:有心的二次曲线是圆、椭圆及双曲线;无心的二次曲线是抛物线.)
(由教师启发下,让学生共同讨论.)
(1)当α>0,β>0且α=β时,方程表示为圆;
(2)当α>0,β>0且α≠β时,方程表示为椭圆;
(3)当α、β为异号时,方程表示为双曲线.
因此,这个方程可以统一表示有心的二次曲线.
3.圆锥曲线与直线的相切的条件是什么?
设直线l′与圆锥曲线相交于P、Q两点(图1),将直线l′绕点P旋转,使点Q逐渐靠近点P,当l′转到直线l的位置时,点Q与点P重合,这时,直线l叫做圆锥曲线在点P的切线.也就是圆锥曲线与直线l相切.根据这个定义,于是圆锥曲线方程
f(x,y)=0
与直线方程
y=kx+m
组成的方程组应有两个相同的实数解.实系数一元二次方程有两个相同的实数解的充要条件是判别式Δ=0,根据条件转化为求Δ=0.
(启发学生回答,由教师归纳,然后板书课题.)
今天我们要研究“圆锥曲线与直线相切的条件”.
二、讲述新课
根据上面分析,得
由②代入①,化简、整理得(αk2+β)x2+2αkmβ+α(m2-β)=0.③
当αk+β≠0时(二次项系数),Δ=4αkm-4α(αk+β)(m-β)
=4α2k2m2-4α2k2m2+4α2k2β-4αβm2+4αβ2
=4αβ(αk2+β-m2).
(启发学生讨论.)
由于α、β均不为零,因此当Δ=0时可知有心二次曲线与直线y=kx+m相切的充要条件为
m2=αk2+β,(αk2+β≠0)④
这里αk2+β恰是方程③的二次项系数.
(引导学生对结论④,在圆、椭圆、双曲线各种情况下变化规律进行讨论,教师边归纳,边板书.)
(1)对于圆x2+y2=γ2,可写成
222
222
即有α=β=γ2,于是相切条件为m2=γ2(k2+1).
(2)对于椭圆(焦点在x轴上)
即有α=a,β=b,于是相切条件为m=ak+b.
(3)对于椭圆(焦点在y轴上)
即有α=b2,β=a2,于是相切条件为m2=b2k2+a2.
(4)对于双曲线(焦点在x轴上)
即有α=a2,β=-b2,于是相切条件为m2=a2k2-b2.
(5)对于双曲线(焦点在y轴上)
即有α=-b2,β=a2,于是相切条件为m2=a2-b2k2.
[应用有心曲线统一公式,这样就不必从圆、椭圆、双曲线一个一个地去求,可避免一个一个冗长复杂的计算,使问题的解决变得简捷.]
2.无心的二次曲线y2=2px与直线y=kx+m相切的条件
根据上面的分析,得
由②代入①,化简整理,得
(kx+m)2=2px,k2x2+(2mk-2p)x+m2=0.
当二次项系数k2≠0时,Δ=(2mk-2p)2-4k2m2=4p2-8mkp
=4p(p-2mk)=0.
无心的二次曲线x2=2py与直线y=kx+m相切的条件,应为
(让学生独立完成.)
三、巩固新课
(让学生直接对照上述结论,设所求公切线的斜率为k,截距为m,再根据椭
解 设所求的公切线斜率为k,截距为m,根据相切条件有
由②代入①,化简整理,得
81k4+36k2-5=0,(9k2-1)(9k2+5)=0,∵9k2+5≠0,∴9k2-1=0,代入②,得m=±5.
因此,所求的公切线方程为
即
x+3y+15=0或x-3y+15=0.
求双曲线的两条互相垂直的切线交点的轨迹方程.
(帮助学生分析解题的几个要点,然后由学生上黑板解,教师巡视指点.)
y=kx+m,则由相切条件,可知m2=a2k2-b2.
(2)设两切线交点为P(x0,y0),则切线方程为
y-y0=k(x-x0),即
y=kx+(y0-kx0).
(3)y=kx+m,y=kx+(y0-kx0)表示同一直线,就有
m=(y0-kx0),∴(y0-kx0)=ak-b.
整理得
(4)k1k2=-1,用韦达定理从方程①求得k1k2,即
因此,点P的轨迹方程为
x+y=a-b.
这里a>b,点P的轨迹是一个实圆;
a=b,点P的轨迹是一个点圆;
a<b,点P无轨迹(虚圆).
解略.
法,不难得出轨迹方程为圆方程
x+y=a+b;
这题若改为求抛物线y=2px的两条互相垂直的切线的交点的轨迹方程,方法也类似,不难得出轨迹方程为
即点P一定在准线上.
[这样改变一下题目,可让学生开拓思路,举一反三.]
四、练习
1.已知l为椭圆x+4y=4的切线并与坐标轴交于A、B两点,求|AB|的最小值及取得最小值时切线l的方程.
2解 如图2,设切线方程为
y=kx+m,根据相切条件有m2=4k2+1,即①
|OA|2=4k2+1.
在y=kx+m中,令y=0,得
即
于是得
代入m=4k+1,求得 2
因此,所求的切线共有四条(图3),它们的方程为
求四边形ABCD的最大面积.
则由相切条件,知
m2=a2k2+b2,故两切线方程为
即
两切线间的距离
∴四边形ABCD的最大面积为
五、补充作业
轨迹方程.
2.求出斜率为k的圆锥曲线的切线方程.
教案说明
这一节课的指导思想是:根据现代教育理论,强调在教学的过程中培养能力,特别是思维能力.数学思维结构与科学结构十分相似,学习数学的过程,就是从一种思维结构过渡到另一种思维结构的过程,数学知识只是进行思维结构训练的材料.二次曲线与直线相切的条件若从上述结构进行训练,就是使学生形成完整的思维结构,使对数学的认识有新的突破.这一点已成为我在课堂教学中进行探索和研讨的课题.
这节课的整个教学过程中,着重于讲解——启导——探究,培养学生的分析能力.讲解时,突出重点:“相切条件”,并以此为中心,达到举一反
三、触类旁通.其中也穿插了自学讨论,而不是教师满堂灌.
在练习中,注意到了再现性练习、巩固性练习,同时也留有发现性练习,使学生以新带旧,巩固新知,发展智力,反过来从思维结构上形成完整体系,以认识数学本身.
第四篇:立体几何常见证明方法
立体几何方法归纳小结
一、线线平行的证明方法
1、根据公理4,证明两直线都与第三条直线平行。
2、根据线面平行的性质定理,若直线a平行于平面A,过a的平面B与平面A相交于b,则 a//b。
3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b。
4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线 a与直线 b,则a//b。
5、由向量共线定理,若ABxCD,且AB、CD不共线,则向量AB所在的直线a与向量cd所在的直线b平行,即a//b。
二、线面平行的证明方法
1、根据线面平行的定义,证直线与平面没有公共点。
2、根据线面平行的判定定理,若平面 A内存在一条直线b与平面外的直线a平行,则a//A。(用相似三角形或平行四边形)
3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。
4、向量法,向量c与平面A法向量垂直,且向量c所在直线c不在平面内,则c//A。
三、面面平行的证明方法
1、根据定义,若两平面没有公共点,则两平面平行。
2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。
或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。
3、垂直同一直线的两平面平行。
4、平行同一平面的两平面平行。
5、向量法,证明两平面的法向量共线。
四、两直线垂直的证明方法
1、根据定义,证明两直线所成的角为90°
2、一直线垂直于两平行直线中的一条,也垂直于另一条.3、一直线垂直于一个平面,则它垂直于平面内的所有直线.4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线).5、向量法.五、线面垂直的证明方法
1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面.2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面.3、一直线垂直于两平行平面中的一个,也垂直于另一个.4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面.5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.6、向量法,证明平面的法向量与表示该直线的向量共线.六、面面垂直的证明方法
1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。
2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。
3、一平面垂直于两平行平面中的一个,也垂直于另一个。
4、向量法,证明两平面的法向量垂直(即法向量的数量积为零)。
七、两异面直线所成角的求法
1、根据定义,平移其中一条和另一条相交,然后在三角形中求角。
2、利用中位线,将两异面直线平移至一特殊点(中位线的交点)然后在三角形中求角。
3、cos=cos1cos
24、向量法.八、直线与平面所成角的求法
1、根据定义,作出直线与平面所成角,然后在直角三角形中求角。
2、转化为距离(sin=h/l)
3、向量法,求出平面的法向量,然后求平面的斜线与法向量的夹角。(注意为正弦)
注:对两异面直线所成角和直线与平面所成角一定要注意角的范围。
九、二面角的求法
1、定义法,从二面角的棱上的某一点分别在两个半平面内作棱的垂线,求两条垂线所形成的角。
2、根据三垂线定理,先作出二面角的平面角,再在直角三角形中求角。
3、射影面积法,先作出一个半平面内的某个多边形,在另一个半平面内的射影多边形,然后由公式 cosθ=s'/s(其中θ为二面角的平面角,s'为射影多边形的面积,s为多边形的面积)求出二面角的平面角。
4、向量法,求出两个半平面的法向量,然后求两法向量的夹角。(一般要先根据已知判断二面角是锐角还是钝角,否则要判断指向,同内同外为补角)
5.公式法(异面直线上点距离公式和三类角公式)
十、点到平面的距离的求法
1、根据定义,直接求垂线段的长度。
2、向量法,利用公式|PAn|d=|n|(其中PA为平面的一条斜
线,向量n 为平面的一个法向量。
3、等体积法,主要用在四面体(三棱锥)中,根据四面体的体积等于1/3底面积×高,选取不同的底面积,求出其中一条高长。
十一、平面图形翻折问题的处理方法
1、先比较翻折前后的图形,弄清哪些量和位置关系在翻折过程中不变,哪些已发生变化,然后将不变的条件集中到立体图形中,将问题归结为一个条件与结论都已知的立体几何问题。
2、有关翻折问题的计算,必须抓住在翻折过程中点、线、面之间的位置关系、数量关系中,哪些是变的,哪些没变,尤其要抓住不变量。对计算几何体上两点之间的最短距离问题,要注意转变为平面图形求两点间的距离来计算。
十二、要注意的问题
1、对推理论证与计算相结合的题目的解题原则是一作、二证、三计算。(向量法可省略证角,但必须交代如何建系,右手系)。
2、正方体中,两个平行的正三角形截面把一条与它们垂直的体对角线三等分。
3、已知三条射线两两夹角,会求线面角和二面角(课堂笔记,只需会推导方法,不需强记公式)
4、适当时候,坐标法不方便时可以考虑基向量法,求向量
模易出错:r
a。
5、求异面直线间的距离,若公垂线找不到,除向量法外,可以考虑构造平行平面或平行线面,转化为点面距离求。
第五篇:立体几何常见证明方法
立体几何方法归纳小结
一、线线平行的证明方法
1、根据公理4,证明两直线都与第三条直线平行。
2、根据线面平行的性质定理,若直线a平行于平面A,过a的平面B与平面A相交于b,则 a//b。
3、根据线面垂直的性质定理,若直线a与直线b都与平面A垂直,则a//b。
4、根据面面平行的性质定理,若平面A//平面B,平面C与平面A和平面B的交线分别为直线 a与直线 b,则a//b。
5、由向量共线定理,若ABxCD,且AB、CD不共线,则向量AB所在的直线a与向量cd所在的直线b平行,即a//b。
二、线面平行的证明方法
1、根据线面平行的定义,证直线与平面没有公共点。
2、根据线面平行的判定定理,若平面 A内存在一条直线b与平面外的直线a平行,则a//A。(用相似三角形或平行四边形)
3、根据平面与平面平行的性质定理,若两平面平行,则一个平面内的任一直线与另一个平面平行。
4、向量法,向量c与平面A法向量垂直,且向量c所在直线c不在平面内,则c//A。
三、面面平行的证明方法
1、根据定义,若两平面没有公共点,则两平面平行。
2、根据两平面平行的判定定理,一个平面内有两相交直线与另一平面平行,则两平面平行。
或根据两平面平行的判定定理的推论,一平面内有两相交直线与另一平面内两相交直线平行,则两平面平行。
3、垂直同一直线的两平面平行。
4、平行同一平面的两平面平行。
5、向量法,证明两平面的法向量共线。
四、两直线垂直的证明方法
1、根据定义,证明两直线所成的角为90°
2、一直线垂直于两平行直线中的一条,也垂直于另一条.3、一直线垂直于一个平面,则它垂直于平面内的所有直线.4、根据三垂线定理及逆定理,若平面内的直线垂直于平面的一条斜线(或斜线在平面内的射影),则它垂直于斜线在平面内的射影(或平面的斜线).5、向量法.五、线面垂直的证明方法
1、根据定义,证明一直线与平面内的任一(所有)直线垂直,则直线垂直于平面.2、根据判定定理,一直线垂直于平面内的两相交直线,则直线垂直于平面.3、一直线垂直于两平行平面中的一个,也垂直于另一个.4、两平行直线中的一条垂直于一个平面,另一条也垂直于这个平面.5、根据两平面垂直的性质定理,两平面垂直,则一个平面内垂直于它们交线的直线垂直于另一个平面.6、向量法,证明平面的法向量与表示该直线的向量共线.六、面面垂直的证明方法
1、根据面面垂直的定义,两平面相交所成的二面角为直二面角,则两平面垂直。
2、根据面面垂直的判定定理,一平面经过另一平面的一条垂线,则两平面垂直。
3、一平面垂直于两平行平面中的一个,也垂直于另一个。
4、向量法,证明两平面的法向量垂直(即法向量的数量积为零)。
七、两异面直线所成角的求法
1、根据定义,平移其中一条和另一条相交,然后在三角形中求角。
2、利用中位线,将两异面直线平移至一特殊点(中位线的交点)然后在三角形中求角。
3、cos=cos1cos2
4、向量法.八、直线与平面所成角的求法
1、根据定义,作出直线与平面所成角,然后在直角三角形中求角。
2、转化为距离(sin=h/l)
3、向量法,求出平面的法向量,然后求平面的斜线与法向量的夹角。(注意为正弦)注:对两异面直线所成角和直线与平面所成角一定要注意角的范围。九、二面角的求法
1、定义法,从二面角的棱上的某一点分别在两个半平面内作棱的垂线,求两条垂线所形成的角。
2、根据三垂线定理,先作出二面角的平面角,再在直角三角形中求角。
3、射影面积法,先作出一个半平面内的某个多边形,在另一个半平面内的射影多边形,然后由公式 cosθ=s'/s(其中θ为二面角的平面角,s'为射影多边形的面积,s为多边形的面积)求出二面角的平面角。
4、向量法,求出两个半平面的法向量,然后求两法向量的夹角。(一般要先根据已知判断二面角是锐角还是钝角,否则要判断指向,同内同外为补角)
5.公式法(异面直线上点距离公式和三类角公式)
十、点到平面的距离的求法
1、根据定义,直接求垂线段的长度。
2、向量法,利用公式
|PAn|d=|n|(其中PA为平面的一条斜线,向量n 为平面的一个法向量。
3、等体积法,主要用在四面体(三棱锥)中,根据四面体的体积等于1/3底面积×高,选取不同的底面积,求出其中一条高长。
十一、平面图形翻折问题的处理方法
1、先比较翻折前后的图形,弄清哪些量和位置关系在翻折过程中不变,哪些已发生变化,然后将不变的条件集中到立体图形中,将问题归结为一个条件与结论都已知的立体几何问题。
2、有关翻折问题的计算,必须抓住在翻折过程中点、线、面之间的位置关系、数量关系中,哪些是变的,哪些没变,尤其要抓住不变量。对计算几何体上两点之间的最短距离问题,要注意转变为平面图形求两点间的距离来计算。
十二、要注意的问题
1、对推理论证与计算相结合的题目的解题原则是一作、二证、三计算。(向量法可省略证角,但必须交代如何建系,右手系)。
2、正方体中,两个平行的正三角形截面把一条与它们垂直的体对角线三等分。
3、已知三条射线两两夹角,会求线面角和二面角(课堂笔记,只需会推导方法,不需强记公式)
4、适当时候,坐标法不方便时可以考虑基向量法,求向量模易出错:rar2a。
5、求异面直线间的距离,若公垂线找不到,除向量法外,可以考虑构造平行平面或平行线面,转化为点面距离求。