第一篇:一元二次方程导学案
一元二次方程----导学案
姓名
一、学习目标了解一元二次方程的有关概念。能灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程。会根据根的判别式判断一元二次方程的根的情况。掌握一元二次方程根与系数的关系式,并会运用它解决有关问题。通过复习深入理解方程思想、转化思想、分类讨论思想,并会应用;进一步培养分析问题、解决问题的能力。
二、重点:能灵活运用直接开平方法、配方法、公式法、因式分
解法解一元二次方程。
难点:
1、会根据根的判别式判断一元二次方程的根的情况。
2、掌握一元二次方程根与系数的关系式,并会运用
它解决有关问题。
三、课前准备
(一)梳理知识点
1.方程中只含有未知数,并且未知数的最高次数是,这样的方程叫做一元二次方程.通常可写成如下的一般形式:________________()其中二次项系数是、一次项系数是、常数项。
例如: 一元二次方程7x-3=2x2化成一般形式是____________,其中二次项系数是、一次项系数是常数项是。
2.解一元二次方程的一般解法有
(1)_________________(2)
(3)(4)求根公式法,求根公式是_____________________
3.一元二次方程ax2+bx+c=0(a≠0)的根的判别式是,当时,它有两个不相等的实数根;
当时,它有两个相等的实数根;
当时,它没有实数根。
4.一元二次方程ax2+bx+c=0(a≠0)的两个根分别为x1,x2,则
x1+x2=;x1 ·x2=.(二)解答下列问题
1.下列关于x的方程:
35,(3)x22x30,(4)x2y21x
其中是一元二次方程的有()
A.4个B.3个C.2个
D.1个
2.选择适当的方法解下列方程:
(1)2(x-1)2=32(2)-3x2+4x=
2(3)2x2+8x+6=0(4)3x2-7x-20=0
(1)2x2x30,(2)x2
3.不解方程,判别方程3x2+2x-9=0根的情况.变式训练:己知关于x方程:ax22x90,试讨论根的情况。
4.方程2x2+3x —2=0的两个根分别为x1,x2 则x1+x2=;
x1·x2=.四、课堂活动
(一)构建知识网络
(二)交流课前练习
(三)变式训练
1.关于x 的方程mx2-3x=x2-mx+2 有解的条件是。
2.已知关于x的一元二次方程(m-2)x2+3x+m2-4=0有一个解是0,则 m =。
3.解下列方程:
(1)2x2+x+6=0;(2)5x2-4x-12=0;
(3)4x2+4x+10=1-8x(4)(2x+1)2=2(2x+1).5.(*)x1,x2是方程x2+5x —7= 0的两根,在不解方程的情况下,求下列代数式的值
(1)x13 +x23(2)︱x1-x2︱
课堂检测
1、解方程(1)4x2+8x-5=0;(2)3x2-5x-28=02、关于x的方程mx2-4x+2=0有实数根,求m的取值范围.3、x1,x2是方程x2+3x—1=0的两根,在不解方程的情况下,求下
列代数式的值
11(1)x12+x22(2(3)(x1—3)(x2—3)x1x2
第二篇:一元二次方程 导学案
一元二次方程
【学习目标】
1.理解一元二次方程及其有关概念;
2.掌握一元二次方程的一般形式,正确认识二次项系数,一次项系数及常数项;
3.了解根的意义.
【前置学习】
一、基础回顾:
1.多项式是
次
项式,其中最高次项是,二次项系数为,一次项系数为,常数项为
.
2.叫方程,我们学过的方程类型有
.
3.解下列方程或方程组:①
②
③
二、问题引领:
方程是以往学过的吗?通过本节课的学习你将认识这种新的方程.
三、自主学习(自主探究):
请你认真阅读课本引言及内容,边学边思考下列问题:
1.方程①②③有什么共同特点?
2.一元二次方程的定义:等号两边都是,只含有
个未知数(一元),并且未知数的最高次数是
(二次)的方程,叫做一元二次方程.
3.一元二次方程的一般形式:一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:
(a≠0),这种形式叫做一元二次方程的一般形式.其中
是二次项,是二次项系数,是一次项,是一次项系数,是常数项.
4.下面哪些数是方程的根?
-4,-3,-2,-1,0,1,2,3,4.
5.一元二次方程的解也叫做一元二次方程的,即:使一元二次方程等号左右两边相等的的值.
四、疑难摘要:
【学习探究】
一、合作交流,解决困惑:
1.小组交流:(在小组内说说通过自主学习,你学会了什么?你的疑难与困惑是什么?请同伴帮你解决.)
2.班级展示与教师点拨:
【点拨】
①方程ax2+bx+c=0只有当a≠0时才叫一元二次方程,如果a=0,b≠0时就是
方程了.所以在一般形式中,必须包含a≠0这个条件.
②二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.
展示1:课本第3页例题.
展示2:下列方程是一元二次方程的是有
:
(1);
(2)(x+1)(x-1)=0;
(3);
(4);(5);
(6).
展示3:课本第4页练习第1题.
展示4:课本第4页练习第2题.
二、反思与总结:本节课你学会了什么?你有哪些收获与体会?
【自我检测】
1.下列方程中,是关于x的一元二次方程的是()
A.B.C.D.2.一元二次方程化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:
.
3.关于x的方程,当
时为一元一次方程;当
时为一元二次方程.
4.判断下列一元二次方程后面括号里的哪些数是方程的解:
(1)
(-7,-6,-5,5,6,7)
(2)
【应用拓展】
5.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.
6.如果2是方程的一个根,那么常数c是多少?求出这个方程的其它根.
第三篇:《一元二次方程》复习学案
第17章
一元二次方程
单元复习
学习目标:
1、进一步理解一元二次方程的意义。
2、熟练掌握一元二次方程的解法,会根据一元二次方程的特点灵活地选择解法。
3、理解并掌握一元二次方程知识在数学中和生活中的应用,养成建立数学模型解决实际问题的思想方法。
4、培养和提高分析问题、解决问题的能力。体会数学的价值。学习过程:
一、阅读教材试编写知识结构图,并与教材知识点作比较。
二、梳理本章知识:
1、一元二次方程的定义及一般形式: 理解一元二次方程的定义须抓住哪三个要素?
一元二次方程的一般形式是什么?应注意什么?要确认一元二次方程的各项系数须注意些什么?
2、一元二次方程有哪四种解法?其中哪几种解法属特殊解法?哪属一般解法?
(1)直接开平方法:什么形式的方程可用直接开平方法求解?(2)因式分解法:
如果一元二次方程经过因式分解能化成(x+a)(x+b)=0的形式,它就可以化为哪两个一元一次方程来求解?这种方法体现了怎样的数学思想?你能小结因式分解法的步骤吗?(3)配方法:
2通过配方把一元二次方程ax2+bx+c=0变形为(x+)=的形式,再利用直接开平方法解之,这就是配方法。
请你小结配方法解一元二次方程的一般步骤:
① 移
②化
③ 配
④ 用直接开平方法解变形后的方程。(注 “将二项系数化为1”是配方的前提条件,配方是关键)
(4)公式法:(注意根的判别式与根的数量的关系)
你会写出求根公式吗?注意的条件是什么?你会推导这个“万能公式”吗?用公式法解一元二次方程的一般步骤:
/ 3
①化方程为一般形式,即
(a≠0); ②确定a、b、c的值,并计算
的值(注意符号); ③当b2-4ac≥0时,将a、b、c及b2-4ac的值代入求根公式,得出方程根:x=
;当b2-4ac
0时,原方程
实数解。
3、解一元二次方程的应用题基本步骤有:
(1)审
。(2)设
(3)列
(4)解方程。(5)检验,结果是否符合实际意义。
4、用适当的方法解下列一元二次方程。
1.x22x503.x216x406.0.09x20.21x0.102.(x4)2(2x1)204.2x23x60
5.x23a24ax(a为常数)7.(x4)2(x5)2(x3)2244x5、自我提高
(一)填空题:
(1)x2x
(2)4x2(x1()21)2)2
(3)x24x3(x
将多项式3x212x写成配方的形式:________________
(二)解下列方程:
(1-x)2=1
49x2-144=0
x2+6x+9=0
x(7-3x)=4x(40-2x)(28-2x)=448
2x2-3(x-3)2=6
(三)解答题:
1、已知:x24xy5y24y40,求yx;
/ 3
22、已知关于x的方程(m3)xm12(m1)x10
(1)m为何值时,它是一元一次方程。
(2)m为何值时,它是一元二次方程,并求出此方程的解;
(四)将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个,问为了赚得8000元的利润,售价应定为多少?这时应进货多少个?
/ 3
第四篇:一元二次方程解法(复习课)导学案
一元二次方程(复习课)导学案
复习目标
1. 了解一元二次方程的有关概念。
2. 能灵活运用直接开平方法、配方法、公式法、因式分解法解一元二次方程。3. 会根据根的判别式判断一元二次方程的根的情况。
4. 掌握一元二次方程根与系数的关系式,并会运用它解决有关问题。5. 通过复习深入理解方程思想、转化思想、分类讨论思想、整体思想,并会
应用;进一步培养分析问题、解决问题的能力。
重点:能灵活运用开平方法、配方法、公式法、因式分解法解一元二次方程。难点:
1、会根据根的判别式判断一元二次方程的根的情况。
2、掌握一元二次方程根与系数的关系式,并会运用它解决有关问题。复习流程 回忆整理
1.方程中只含有未知数,并且未知数的最高次数是,这样的方程叫做一元二次方程.通常可写成如下的一般形式:________________()其中二次项系数是、一次项系数是常数项。
例如: 一元二次方程7x-3=2x2
化成一般形式是___________________其中二
次项系数是、一次项系数是常数项是。2.解一元二次方程的一般解法有(1)_________________(2)(3)(4)求根公式法,求根公式是 ___________________3.一元二次方程ax2
+bx+c=0(a≠0)的根的判别式是,当时,它有两个不相等的实数根;当时,它有两个相等的实数根;当时,它没有实数根。例如:不解方程,判断下列方程根的情况:
(1)x(5x+21)=20(2)x2
+9=6x(3)x2
—3x = —5
4.设一元二次方程ax2
+bx+c=0(a≠0)的两个根分别为x1,x2 则x1 +x2=;x1 ·x2= ____________
例如:方程2x2
+3x —2=0的两个根分别为x1,x2 则x1+x2=;x1 ·x2= _________典例精析
例1:已知关于x的一元二次方程(m-2)x2
+3x+m2
-4=0有一个解是0,求m的值.例2:解下列方程:
(1)2 x2
+x-6=0;(2)x2
+4x=2;
(3)5x2
-4x-12=0;(4)4x2
+4x+10=1-8x.5)(x+1)(x-1)=22x(6)
(2x+1)2
=2(2x+1).温馨提示:解题时应抓住各方程的特点,选择较合适的方法。
例3:已知关于x的一元二次方程(m—1)x2
—(2m+1)x+m=0,当m取何值时:(1)它没有实数根。
(2)它有两个相等的实数根,并求出它的根。(3)它有两个不相等的实数根。分析:在解题时应注意m—1≠0这个隐含的条件。
巩固练习
1.关于x的方程mx2
-3x=x2
-mx+2是一元二次方程的条件是2.已知关于x的方程x2
-px+q=0的两个根是0和-3,求p和 q的值
3.m取什么值时,关于x的方程2x2
-(m+2)x+2m-2=0 有两个相等的实数根?求出这时方程的根.4.解下列方程:(1)x2
+(+1)x=0;(2)
(x+2)(x-5)=1 ;
(3)3(x-5)2
=2(5-x)。
5.说明不论m取何值,关于x的方程(x-1)(x-2)=m2
总有两个不相等的实
数根。
6、已知关于x的方程x2
-6x+p2
-2p+5=0的一个根是2,求方程的另一个根和p的值.(请用两种方法来解)
7、写一个根为x=1,另一个根满足—1 8、x2 1,x2是方程x+5x —7= 0的两根,在不解方程的情况下,求下列代数式的值:(1)x 21+x2(2)x1 x2 (3)(x1—3)(x2—3) 课堂总结 1、这节课我们复习了什么? 2、通过本节课的学习大家有什么新的感受? ( 因式分解法解一元二次方程导学案 【学习目标】 1、会用因式分解法(提公因式法、公式法)解一元二次方程,体会“降次”化归的思想方法。 2、能根据一元二次方程的特征,选择适当的求解方法,体会解决问题的灵活性和多样性。任务一 1、自学课本60页“议一议”上面的内容,明确:小颖、小明、小亮解方程的方法有什么不同?谁的解法不对?错在什么地方?为什么?正确解法中你觉得哪种简单一些? 说明:当一元二次方程的一边为0时,而另一边易于分解成两个一次因式的乘积时,这种解法被称为分解因式法,其理论依据是:若 ab=0 那么a=0 或 b=0(a、b为因式)。 2、用因式分解法来解一元二次方程,其关键是什么? 用因式分解法来解一元二次方程必须要先化为一般形 式吗? 3、自学例一并总结用因式分解法解一元二次方程的步骤 1)方程右边化为。 2)将方程左边分解成两个的乘积。3)至少因式为零,得到两个一元一次方程。4)两个就是原方程的解。 任务二 1.仿照例题解方程: (1)x2 -4=0(2)(x+2)2 -25=0(3)4x(2x+1)=3(2x+1) 2、如果方程x2-3x+c=0有一个根为1,那么,该方程的另一根为 该方程可化为(x-1)(x)=0 任务三 思考:如何选用解一元二次方程的方法? 因式分解法解一元二次方程课堂小测 A1、已知方程4x2-3x=0,下列说法正确的是() A.只有一个根x= B.只有一个根x=0C.有两个根x1=0,x2= 334 D.有两个根x1=0,x2=- 4A2、如果(x-1)(x+2)=0,那么以下结论正确的是() A.x=1或x=-2B.必须x=1C.x=2或x=-1D.必须x=1且x=-2 A3、方程(x+1)2=x+1的正确解法是() A.化为x+1=1B.化为(x+1)(x+1-1)=0C.化为x2+3x+2=0D.化为x+1=04.用因式分解法解一元二次方程 必做:2(x+3)2=x(x+3)选作:(4x+2)2=x(2x+1) 因式分解法解一元二次方程课堂小测 A1、已知方程4x2-3x=0,下列说法正确的是() A.只有一个根x= B.只有一个根x=0C.有两个根x31=0,x2= D.有两个根x1=0,x2=- 4A2、如果(x-1)(x+2)=0,那么以下结论正确的是() A.x=1或x=-2B.必须x=1C.x=2或x=-1D.必须x=1且x=-2 A3、方程(x+1)2=x+1的正确解法是() A.化为x+1=1B.化为(x+1)(x+1-1)=0C.化为x2+3x+2=0D.化为x+1=04.用因式分解法解一元二次方程 必做:2(x+3)2=x(x+3)选作:(4x+2)2=x(2x+1)第五篇:分解因式法解一元二次方程导学案