第一篇:初一平行线练习题
1.2.3.DF//AC.4.已知:如图,CD平分∠ACB,AC∥DE,CD∥EF,试说明EF平分∠DEB.
CADFBE
5.如图9:∵BE平分∠ABC(已知)
∴∠1=∠3()
又∵∠1=∠2(已知)
∴_________=∠2()
∴_________∥_________()
∴∠AED=_________()
6.如图:已知直线AB∥CD,直线MN分别交AB、CD于M、N两点,若ME、NF
分别是∠AMN、∠DNM的角平分线,试说明:ME∥NF。
7.已知:如图,12,3B,AC//DE,且B、C、D在一条直线上。
AE 求证:AE//BD2BCD
8.已知:如图,
CDACBA,DE平分CDA,BF平分CBA,且ADEAED。
求证:DE//FB
DF
AEB
C
第二篇:初一数学平行线的判定练习题
选择题
1、如图,能判定DE∥BC的条件是()A、∠E=∠DCA B、∠DCE=∠E C、∠E=∠CDE D、∠BCE=∠E
2、如图,下列说法正确的是()A、如果∠1=∠2,那么AD∥BC B、如果∠3=∠4,那么AB∥DC C、如果∠3=∠5,那么AD∥BC D、如果∠3=∠5,那么AB∥DC
3、如图,下列条件中,不能判断AD∥BC的是()A、∠1=∠3 B、∠2=∠4 C、∠EAD=∠B D、∠D=∠DCF
4、下列说法中,正确的是()A、经过一点,有且只有一条直线与已知直线平行 B、两条直线被第三条直线所截,同位角相等 C、垂直于同一条直线的两条直线互相平行 D、两条直线被第三条直线所截,如果内错角相等,则两直线平行
第三篇:平行线经典练习题
平行线经典练习题(整理版)
一.判断题:
1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。()
2.如图①,如果直线⊥OB,直线⊥OA,那么与
一定相交。()
3.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()
二.填空题:
1.如图③
∵∠1=∠2,∴_______∥________()。
∵∠2=∠3,∴_______∥________()。
2.如图④
∵∠1=∠2,∴_______∥________()。
∵∠3=∠4,∴_______∥________()。
3.如图⑤
∠B=∠D=∠E,那么图形中的平行线有________________________________。
4.如图⑥
∵
AB⊥BD,CD⊥BD(已知)
∴
AB∥CD
()
又∵
∠1+∠2
=(已知)
∴
AB∥EF
()
∴
CD∥EF
()
三.选择题:
1.如图⑦,∠D=∠EFC,那么()
A.AD∥BC
B.AB∥CD
C.EF∥BC
D.AD∥EF
2.如图⑧,判定AB∥CE的理由是()
A.∠B=∠ACE
B.∠A=∠ECD
C.∠B=∠ACB
D.∠A=∠ACE
3.如图⑨,下列推理错误的是()
A.∵∠1=∠3,∴∥
B.∵∠1=∠2,∴∥
C.∵∠1=∠2,∴∥
D.∵∠1=∠2,∴∥
4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()
A.
①③
B.②④
C.①③④
D.①②③④
四.完成推理,填写推理依据:
1.如图⑩
∵∠B=∠_______,∴
AB∥CD()
∵∠BGC=∠_______,∴
CD∥EF()
∵AB∥CD,CD∥EF,∴
AB∥_______()
2.如图⑾
填空:
(1)∵∠2=∠B(已知)
∴
AB__________()
(2)∵∠1=∠A(已知)
∴
__________()
(3)∵∠1=∠D(已知)
∴
__________()
(4)∵_______=∠F(已知)
∴
AC∥DF()
3.填空。如图,∵AC⊥AB,BD⊥AB(已知)
∴∠CAB=90°,∠______=90°()
∴∠CAB=∠______()
∵∠CAE=∠DBF(已知)
∴∠BAE=∠______
∴_____∥_____()
4.已知,如图∠1+∠2=180°,填空。
∵∠1+∠2=180°()又∠2=∠3()
∴∠1+∠3=180°
∴_________()
五.证明题
1.已知:如图⑿,CE平分∠ACD,∠1=∠B,求证:AB∥CE
2.如图:∠1=,∠2=,∠3=,试说明直线AB与CD,BC与DE的位置关系。
3.如图:已知∠A=∠D,∠B=∠FCB,能否确定ED与CF的位置关系,请说明理由。
4.已知:如图,,且.求证:EC∥DF.1
A
E
C
D
B
F
图10
5.如图10,∠1∶∠2∶∠3
=
2∶3∶4,∠AFE
=
60°,∠BDE
=120°,写出图中平行的直线,并说明理由.
6.如图11,直线AB、CD被EF所截,∠1
=∠2,∠CNF
=∠BME。求证:AB∥CD,MP∥NQ.
F
A
B
C
D
Q
E
P
M
N
图11
7.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。
求证:GH∥MN。
8.如图,已知:∠AOE+∠BEF=180°,∠AOE+∠CDE=180°,求证:CD∥BE。
9.如图,已知:∠A=∠1,∠C=∠2。求证:求证:AB∥CD。
第四篇:平行线经典练习题-条件
初一下平行线条件题库
基础:
1.如图.AD是∠EAC的平分线,∠B=64°,∠EAC=128°.试判断AD与BC的位置关系并说明理由.
2.如图,∠2=3∠1,且∠1+∠3=90°,试说明AB∥
CD
3.如图,如果∠1=125°,∠2=55°,直线AB、CD平行吗?说说你的理由.
3*.如图,∠1和∠D互余,CE⊥DE,那么AB和CD平行吗?试说明理由.
中等:
10、如图,直线EF和AB、CD分别相交于K、H,且EG⊥AB,∠CHF=60º,∠E=30º,试说明AB∥CD.
(书)13.13.如图,直线AB、CD与EF相交于点G、H,且∠EGB=∠EHD.(1)说明: AB∥CD
(2)若GM是∠EGB的平分线,FN是∠EHD的平分线,则GM与HN平行吗?说明理由
11、如图,∠CDA=∠CBA,DE平分∠CDA,BF平分∠CBA,且∠ADE=∠AED.试说明DE∥FB.
12.如图,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.试说明CD∥AB.
规律
20.(本题12分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角
相等.
(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线
m平行,且1=38o,则2=_______o,3_______o.
(2)在(1)中,若1=55o,则3_______o;若1=40o,则3=_______o.
(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角3_______o时,可以使任何射到平面镜a上的光线m,经
过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?
答案:(1)76,90(2)90,90(3)90
第五篇:初一平行线证明题
初一平行线证明题
用反证法
A平面垂直与一条直线,设平面和直线的交点为p
B平面垂直与一条直线,设平面和直线的交点为Q
假设A和B不平行,那么一定有交点。
设有交点R,那么
做三角形pQR
pR垂直pQQR垂直pQ
没有这样的三角形。因为三角形的内角和为180
所以A一定平行于B
证明:如果a‖b,a‖c,那么b‖c证明:假使b、c不平行则b、c交于一点O又因为a‖b,a‖c所以过O有b、c两条直线平行于a这就与平行公理矛盾所以假使不成立所以b‖c由同位角相等,两直线平行,可推出:内错角相等,两直线平行。同旁内角互补,两直线平行。因为a‖b,a‖c,所以b‖c(平行公理的推论)
2“两直线平行,同位角相等.”是公理,是无法证明的,书上给的也只是说明而已,并没有给出严格证明,而“两直线平行,内错角相等“则是由上面的公理推导出来的,利用了对等角相等做了一个替换,上面两位给出的都不是严格的证明。
一、怎样证明两直线平行证明两直线平行的常用定理(性质)有:1.两直线平行的判定定理:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行(或垂直)于同一直线的两直线平行.2、三角形或梯形的中位线定理.3、如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.4、平行四边形的性质定理.5、若一直线上有两点在另一直线的同旁).(A)艺l=匕3(B)/2=艺3(C)匕4二艺5(D)匕2+/4=18)分析:利用平行线判定定理可判断答案选C认六一值!小人﹃夕叱的一试勺洲洲川JLZE一B/(一、图月一飞/匕一|求且它们到该直线的距离相等,则两直线平行.例1(2003年南通市)已知:如图l,下列条件中,不能判断直线l,//l:的是(B).例2(2003年泉州市)如图2,△注Bc中,匕BAC的平分线AD交BC于D,④O过点A,且和BC切于D,和AB、Ac分别交B于E、F,设EF交AD于C,连结DF.(l)求证:EF//Bc
(1)根据定义。证明两个平面没有公共点。
由于两个平面平行的定义是否定形式,所以直接判定两个平面平行较困难,因此通常用反证法证明。
(2)根据判定定理。证明一个平面内有两条相交直线都与另一个平面平行。
(3)根据“垂直于同一条直线的两个平面平行”,证明两个平面都与同一条直线垂直。
2.两个平行平面的判定定理与性质定理不仅都与直线和平面的平行有逻辑关系,而且也和直线与直线的平行有密切联系。就是说,一方面,平面与平面的平行要用线面、线线的平行来判定;另一方面,平面
与平面平行的性质定理又可看作平行线的判定定理。这样,在一定条件下,线线平行、线面平行、面面平行就可以互相转化。
3.两个平行平面有无数条公垂线,它们都是互相平行的直线。夹在两个平行平面之间的公垂线段相等。
因此公垂线段的长度是唯一的,把这公垂线段的长度叫作两个平行平面间的距离。显然这个距离也等于其中一个平面上任意一点到另一个平面的垂线段的长度。
两条异面直线的距离、平行于平面的直线和平面的距离、两个平行平面间的距离,都归结为两点之间的距离。
1.两个平面的位置关系,同平面内两条直线的位置关系相类似,可以从有无公共点来区分。因此,空间不重合的两个平面的位置关系有:
(1)平行—没有公共点;
(2)相交—有无数个公共点,且这些公共点的集合是一条直线。
注意:在作图中,要表示两个平面平行时,应把表示这两个平面的平行四边形画成对应边平行。
2.两个平面平行的判定定理表述为:
4.两个平面平行具有如下性质:
(1)两个平行平面中,一个平面内的直线必平行于另一个平面。
简述为:“若面面平行,则线面平行”。
(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
简述为:“若面面平行,则线线平行”。
(3)如果两个平行平面中一个垂直于一条直线,那么另一个也与这条直线垂直。
(4)夹在两个平行平面间的平行线段相等
用反证法
A平面垂直与一条直线,设平面和直线的交点为p
B平面垂直与一条直线,设平面和直线的交点为Q
假设A和B不平行,那么一定有交点。
设有交点R,那么
做三角形pQR
pR垂直pQQR垂直pQ
没有这样的三角形。因为三角形的内角和为180
所以A一定平行于B