第一篇:空间中直线平面平行的判定及其性质专题复习课修改前教案
高三数学教案案
专题复习:空间中直线、平面平行的判定及其性质(修改前教案)环节二:典例精析:
讲解例1(此例题的目的是让学生初步学会在要证明平行的平面内讲解例2(此例题的目的是让学生初步学会利用线面平行的性质定理证明线线平行的方法,处理方法同例1)
学习目标:
1.理解线面平行、面面平行的判定及性质定理,并会灵活
应用。
2.会进行空间线面平行位置关系的转化。
3.培养学生逻辑推理能力,并能规范的书写论证步骤。
教学过程:
环节一:内容回顾:由教师向学生就下面六个问题向学生提问: 直线与平面有哪几种位置关系:
平面与平面有哪几种位置关系:
直线与平面平行的判定定理的内容:
面面平行的判定定理的内容:
直线与平面平行的性质定理的内容:
面面平行的性质定理的内容:/ 2
找到与平面外的直线平行的直线的方法:即构造三角形,找中位线法,处理方法以教师讲解为主,启发学生自主探究为辅。)例1:(2013全国文改编)如图,直三棱柱ABCA1B1C1中,D,E分别是AB,BB1的中点。证明:BC1//平面ACD11;
A1
C 1
A
D
环节三:巩固练习与拓展应用
让学生做下面两个练习题巩固所学,处理方法是选两个学生上黑板做,其余学生在学案上做,然后教师启发学生用别的方法做,比如构造平行四边形找平行线及用面面平行证线线平行。练习1:(2012年辽宁文改编)如图,直三棱柱
ABCA/B/C/中,点M,N分别为A/B和B/C/的中点。证明:MN∥平面A/
ACC/
;
:/ 2
练习2
环节四:知识梳理与课堂小结:
教师对这节课所学的知识和方法进行梳理,画出知识与方法结构图,处理方法以教师讲解为主.环节五:布置作业
第二篇:2.2直线、平面平行的判定及其性质 教案2
直线和平面平行的判定与性质
(一)一、素质教育目标
(一)知识教学点
1.直线和平面平行的定义.
2.直线和平面的三种位置关系及相应的图形画法与记法. 3.直线和平面平行的判定.
(二)能力训练点
1.理解并掌握直线和平面平行的定义.
2.掌握直线和平面的三种位置关系,体现了分类的思想.
3.通过对比的方法,使学生掌握直线和平面的各种位置关系的图形的画法,进一步培养学生的空间想象能力.
4.掌握直线和平面平行的判定定理的证明,证明用的是反证法和空间直线与平面的位置关系,进一步培养学生严格的逻辑思维。除此之外,还要会灵活运用直线和平面的判定定理,把线面平行转化为线线平行.
(三)德育渗透点
让学生认识到研究直线与平面的位置关系及直线与平面平行是实际生产的需要,充分体现了理论来源于实践,并应用于实践.
二、教学重点、难点、疑点及解决方法
1.教学重点:直线与平面的位置关系;直线与平面平行的判定定理. 2.教学难点:掌握直线与平面平行的判定定理的证明及应用.
3.教学疑点:除直线在平面内的情形外,空间的直线和平面,不平行就相交,课本中用记号a≮α统一表示a‖α,a∩α=A两种情形,统称直线a在平面α外.
三、课时安排
1.7直线和平面的位置关系与1.8直线和平面平行的判定与性质这两个课题安排为2课时.本节课为
注意,如图1-58画法就不明显我们不提倡这种画法.
下面请同学们完成P.19.练习1.
1.观察图中的吊桥,说出立柱和桥面、水面,铁轨和桥面、水面的位置关系:(图见课本)
答:立柱和桥面、水面都相交;铁轨在桥面内,铁轨与水面平行.
(二)直线和平面平行的判定
师:直线和平面平行的判定不仅可以根据定义,一般用反证法,还有以下的方法.我们先来观察:门框的对边是平行的,如图1-59,a∥b,当门扇绕着一边a转动时,另一边b始终与门扇不会有公共点,即b平行于门扇.由此我们得到:
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.
求证:a∥α.
师提示:要证明直线与平面平行,只有根据定义,用反证法,并结合空间直线和平面的位置关系来证明.
∴ a∥α或 a∩α=A. 下面证明a∩α=A不可能. 假设a∩α=A ∵a∥b,在平面α内过点A作直线c∥b.根据公理4,a∥c.这和a∩c=A矛盾,所以a∩α=A不可能.
∴a∥α.
师:从上面的判定定理可以知道,今后要证明一条直线和一个平面平行,只要在这个平面内找出一条直线和已知直线平行,就可断定这条已知直线必和这个平面平行,即可由线线平行推得线面平行.
下面请同学们完成例题和练习.
(三)练习
例1 空间四边形相邻两边中点的连线,平行于经过另外两边的平面. 已知:空间四边形ABCD中,E、F分别是AB、AD的中点. 求证:EF∥平面BCD.
师提示:根据直线与平面平行的判定定理,要证明EF∥平面BCD,只要在平面BCD内找一直线与EF平行即可,很明显原平面BCD内的直线BD∥EF.
证明:连结BD.
性,这三个条件是证明直线和平面平行的条件,缺一不可. 练习(P.22练习1、2.)
1.使一块矩形木板ABCD的一边AB紧靠桌面α,并绕AB转动,AB的对边CD在各个位置时,是不是都和桌面α平行?为什么?(模型演示)
答:不是.
2.长方体的各个面都是矩形,说明长方体每一个面的各边及对角线为什么都和相对的面平行?(模型演示)
答:因为长方体每一个面的对边及对角线都和相对的面内的对应部分平行,所以,它们都和相对的面平行.
(四)总结
这节课我们学习了直线和平面的三种位置关系及直线和平面平行的两种判定方法.学习直线和平面平行的判定定理,关键是要会把线面平行转化为线线平行来解题.
五、作业
P.22中习题三1、2、3、4.
六、板书设计
一、直线和平面的位置关系直线在平面内——有无数个公共点. 直线在平面外
二、直线和平面平行的判定 1.根据定义:一般用反证法.
2.根据判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.
直线和平面的位置关系:
直线和平面平行的判定定理
求证:a∥α 例:
已知:空间四边形ABCD中,E、F分别是AB、AD的中点. 求证:EF∥平面BCD.
第三篇:2.2 直线、平面平行的判定及其性质 教学设计 教案
教学准备
1.教学目标
1、知识与技能
(1)理解并掌握直线与平面平行的判定定理;
(2)进一步培养学生观察、发现的能力和空间想象能力;
2、过程与方法
学生通过观察图形,借助已有知识,掌握直线与平面平行的判定定理。
3、情感、态度与价值观
(1)让学生在发现中学习,增强学习的积极性;(2)让学生了解空间与平面互相转换的数学思想。
2.教学重点/难点
重点、难点:直线与平面平行的判定定理及应用。
3.教学用具
投影仪等.4.标签
数学,立体几何
教学过程
(一)创设情景、揭示课题
引导学生观察身边的实物,如教材第55页观察题:封面所在直线与桌面所在平面具有什么样的位置关系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。
(二)研探新知
学生思考后,师生共同探讨,得出以下结论
直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。符号表示:
2、例1 引导学生思考后,师生共同完成
该例是判定定理的应用,让学生掌握将空间问题转化为平面问题的化归思想。
(三)自主学习、发展思维 练习:教材第57页 1、2题
让学生独立完成,教师检查、指导、讲评。
(四)归纳整理
1、同学们在运用该判定定理时应注意什么?
2、在解决空间几何问题时,常将之转换为平面几何问题。
(五)作业
1、教材第64页习题2.2 A组第3题;
2、预习:如何判定两个平面平行?
课堂小结
1、同学们在运用该判定定理时应注意什么?
2、在解决空间几何问题时,常将之转换为平面几何问题。
课后习题 作业
1、教材第62页习题2.2 A组第3题;
2、预习:如何判定两个平面平行?
板书 略
第四篇:直线平面平行的判断及其性质的说课材料
一。教材分析
本节课主要学习直线和平面平行的定义,判定定理以及初步应用。其中,线面平行的定义是线面平行最基本的判定方法和性质,它是探究线面平行判定定理的基础,线面平行的判定充分体现了线线平行和线面平行之间的转化,它既是后面学习面面平行的基础,又是连接线线平行和面面平行的纽带!(可用箭头学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的非常重要的.二。教法学法
通过对大量实例、图片的观察感知,概括线面平行的定义对实例,模型的分析猜想,实验发现线面平行的判定定理。
学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、类比、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。
课前安排学生在生活中寻找线面平行的实例,上网查阅有关线面平行的图片、资料,然后网上师生交流,从中体现出学生活跃的思维,浓厚的兴趣,强烈的参与意识和自主探究能力,在初中学生已经掌握了平面内证明线线平行的方法,前一节又刚刚学过在空间中直线与直线的位置关系,对空间概念的建立有一定基础,因而可以采用类比的方法学习本课。
但是学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的重点是:通过直观感知和操作确认概括出线面平行的定义及判定定理
难点是:
1、操作确认并概括出线面平行的判定定理
2、反证法的证明方法
三。教学目标
考虑到学生的接受能力和课容量以及《课程标准》的要求,本节课只要求学生在构建线面平行定义的基础上探究线面平行的判定定理并进行定理的初步运用,灵活运用定理解决相关问题将安排在下一节课。故而本节课教学目标为:
知识方面:通过对图片,实例的观察,抽象概括出线面平行的定义,正确理解线面平行的定义;
能力方面:通过直观感知操作确认归纳线面平行的判定定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念;
情感方面:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
第五篇:直线与平面平行的判定和性质(第一课时)说课稿
一。教材分析
本节课主要学习直线和平面平行的定义,判定定理以及初步应用。其中,线面平行的定义是线面平行最基本的判定方法和性质,它是探究线面平行判定定理的基础,线面平行的判定充分体现了线线平行和线面平行之间的转化,它既是后面学习面面平行的基础,又是连接线线平行和面面平行的纽带!(可用箭头学好这部分内容,对于学生建立空间观念,实现从认识平面图形到认识立体图形的非常重要的.二。教法学法
通过对大量实例、图片的观察感知,概括线面平行的定义对实例,模型的分析猜想,实验发现线面平行的判定定理。
学生在问题的带动下,进行主动的思维活动,经历从现实生活中抽象出几何图形和几何问题的过程,体会转化、归纳、类比、猜想等数学思想方法在解决问题中的作用,发展学生的合情推理能力和空间想象力,培养学生的质疑、思辨、创新的精神。
课前安排学生在生活中寻找线面平行的实例,上网查阅有关线面平行的图片、资料,然后网上师生交流,从中体现出学生活跃的思维,浓厚的兴趣,强烈的参与意识和自主探究能力,在初中学生已经掌握了平面内证明线线平行的方法,前一节又刚刚学过在空间中直线与直线的位置关系,对空间概念的建立有一定基础,因而可以采用类比的方法学习本课。
但是学生的抽象概括能力,空间想象力还有待提高,线面平行的定义比较抽象,要让学生体会“与平面无公共点”有一定困难,线面平行的判定的发现有一定隐蔽性,所以我确定本节的 重点是:通过直观感知和操作确认概括出线面平行的定义及判定定理
难点是:
1、操作确认并概括出线面平行的判定定理
2、反证法的证明方法
三。教学目标
考虑到学生的接受能力和课容量以及《课程标准》的要求,本节课只要求学生在构建线面平行定义的基础上探究线面平行的判定定理并进行定理的初步运用,灵活运用定理解决相关问题将安排在下一节课。
故而本节课教学目标为:
知识方面:通过对图片,实例的观察,抽象概括出线面平行的定义,正确理解线面平行的定义;
能力方面:通过直观感知操作确认归纳线面平行的判定定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念;
情感方面:让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。
四。教学过程
(一).定义的建构
本环节是教学的第一个重点,是后面探究活动的基础,分三步:
a创设情境,感知概念
针对同学们找的大量图片资料以及日常生活中的常见线面平行的实例提出思考问题:如何定义一条直线与一个平面平行?
b观察归纳,形成概念
1.学生画图请画出电线和地面位置关系相应的几何图形
2.如何定义一条直线平行于一个平面呢?(学生讨论并交流)
3.归纳线面平行的定义,介绍相关概念(直线与平面三种位置关系),并要求学生用符号语言表
示
c辨析讨论,深化概念
这一环节深化本节基础,线面平行的定义较抽象,使学生从线面平行的直观感知中抽象出“直线与平面无公共点”是本环节的关键,因此,教学中充分发挥学生的主观能动性,安排学生收集大量图片多感知,然后通过动手画图,讨论交流和多媒体课件演示,使其经历从实际背景中抽象出几何概念的全过程,从而形成完整和正确的概念,最后通过辨析讨论,加紧学生对概念的理解,这种立足于感性认识的归纳过程,即由特殊到一般,由具体到抽象,既有利于学生对概念本质的理解,又使学生的抽象思维得到发展,培养学生几何直观能力。
(二)直线与平面平行判定定理的探究
这个探究活动是本节的关键所在,分三步:
(1)分析实例,猜想定理
问题1.长方体中,上底面的棱与下底面的关系?你认为保证上底面棱和下底面平行的条件是什么?
问题2.如何把灯管挂平(平行于天花板)?
问题3.由上述两实例,你能猜想出判断一条直线与一个平面平行的方法吗?
学生猜想出结论后,教师板书
(2)动手实验,确认定理
书平放在桌面上,书封面的边缘与桌面的关系?(两者有无公共点)
(3)质疑反思,深化定理
《课程标准》中不要求严格证明线面平行的判定定理,只要求直观感知,操作确认,注重合情推理,因而安排学生课前自己预先了解证法即可(可以鼓励学生自己寻求不同证明方法),课上安排学生动手实验,讨论交流,增设动态演示模拟实验,让学生更清楚地看到“平面化”的过程。
学生在已有数学知识的基础,加以公理的支撑,便可确认定理。
判断正误:如果a,b是两条直线,并且a平行于b,那么a平行于经过b的任何平面(突出一条线在面内,一条线在面外)
那么我们应该注意哪些呢?学生总结定理中需注意问题(三要素)a在平面内,b在平面外,a平行于b
(三)定理初步应用
课本例一
空间四边形相邻两边中点的连线,平行于经过另外两边的平面
考虑到学生处于初学阶段,此题可以帮助学生由线面的感性认识上升的理性认识。
(四)反思提高
教师给出问题:
1.通过这节课的学习,你学会了哪些线面平行的方法?
2.证明线面平行时,注意哪些问题?
3.本节你还有哪些问题?
侧重三点:
(1)归纳线面平行的判断方法
一、定义
二、判定定理
(2)说明本课蕴含转化、类比、归纳、猜想等数学思想方法,强调“平面化”是解决立体几何问题的一般思路
(3)鼓励学生反思
通过小结使本节课知识系统化,使学生深刻理解数学思想方法在解题中的地位和应用,培养学生认真总结的学习习惯,使学生在知识,能力,情感三个维度得到提高,并为下节的学习提供改进方向。
(五)布置作业,自主探究
布置三个习题
第一题:课本习题9.3的1题直接利用线面平行的判定定理
第二题:习题9.3 的3题 难度稍大
第三题:三角形ABC所在平面外一点p,MN是PC和AC上的点,过MN作平面平行于BC,画出这个平面与其他各面的交线,并说明画法理由
此题为学有余力同学安排,这样就使不同程度学生都有所收获,巩固新知识并培养应用意识
板书设计略
(六)教学反思
教学中时刻注意素质教育的要求,紧紧围绕《课程标准》中的要求,真正让学生动手操作,动脑思考,体验数学学习和研究的过程和方法,使学生投入其中,乐此不疲,主动探究,防止教师为赶进度,赶时间用自己的思路代替学生思路,强加到学生身上,弱化学生本身强烈的求知欲,切忌,切记!