线面垂直的性质定理 课后反思3

时间:2019-05-12 19:06:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《线面垂直的性质定理 课后反思3》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《线面垂直的性质定理 课后反思3》。

第一篇:线面垂直的性质定理 课后反思3

课后反思:

探究、讨论、合作和自学是本节课教学的主体,这节课,从复习直线和平面垂直的定义和判定定理开始→引导学生探究直线与平面垂直的性质定理→引导学生探究重要结论(垂直于同一直线的两个平面互相垂直)→初步掌握直线与平面垂直的性质定理及重要结论的运用→典型例题剖析→引导学生做典型习题→课堂小结→作业布置。

在探究过程中,引导学生通过探究,引发自己的思维冲突,让学生在联系生活实际和观察物体模型的基础上,进行操作确认,获得对线面垂直的性质定理;通过“只管感知、操作确认、推理证明”,培养学生空间观念、空间想象能力以及逻辑推理能力。

在教学的过程中,没有充分调动学生的积极性,要注意在以后的教学过程中,及时合理引导学生的思维,让学生充分行动起来;对性质定理的推理证明,学生有一定的困难,教学时应注意引导学生理解反证法的思路。

第二篇:线面垂直的性质定理

性质1:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

性质2:如果两个平面垂直,那么经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内。性质3:如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。

性质4:三个两两垂直的平面的交线两两垂直。

第三篇:面面垂直性质定理

数学学案

【学习目标】

1.掌握平面与平面垂直的性质定理;平面与平面垂直的性质编辑:

2.能运用平面垂直的性质定理解决一些简单问题;

3.了解平面与平面垂直的判定定理和性质定理间的相互联系。

【学习重点】掌握平面与平面垂直的性质定理并能运用解决一些简单问题

【数学思想】转化的思想

【知识回顾】

1.两个平面互相垂直的定义:

2.两个平面互相垂直的判定定理:符号表示:

【新知导航】

线面平行面面平行线面垂直面面垂直(面面垂直判定定理)

面面垂直线面垂直 ?

【探究1】黑板所在平面与地面垂直,你能否在黑板上画几条与地面垂直的直线?你为什么这么画?你能归纳总结出这些直线有什么共同点吗?

【探究2】下图正方体中,平面ADD1A1与平面ABCD垂直,直线A1A垂直于其交线AD,平面ADD1A1内的直线A1A与平面ABCD垂直吗?

A1B

1探究结论:()

【新知学习】两个平面互相垂直的性质定理

定理的证明:(由文字语言转化为符号语言证明)已知: 求证: 证明:

【探究3】过平面外一点作已知平面的垂线,你能做出几条来?

探究结论()【尝试练习1】如图,已知平面,,,直线a满足a,a,试判断直线a与平面的位置关系.【尝试练习2】如图,已知平面平面,平面平面,a,求证:

a.【课堂小结】

1、请归纳一下本节课你学习了什么性质定理,其内容各是什么?

2、类比两个性质定理,你发现它们之间有何联系?

【达标检测】

1、下列命题中,正确的是()

A、过平面外一点,可作无数条直线和这个平面垂直 B、过一点有且仅有一个平面和一条定直线垂直 C、若a,b异面,过a一定可作一个平面与b垂直

D、a,b异面,过不在a,b上的点M,一定可以作一个平面和a,b都垂直.2、已知直线l,m,平面,,且l,m,给出下列命题:(1)//lm(2)lm//(3)l//m(4)l//m其中正确的命题是

BCAB

3、在三棱锥P—ABC中,平面PAB平面PBC,求证:PA面ABC,4、如图,在正方体ABCDA1B1C1D1中,M是AB上的一点,N是A1C的中点,MN面A1DC,求证:(1)MN//AD1

(2)M是AB的中点

第四篇:线面垂直性质习题及答案

直线与平面垂直的性质练习

一.选择题

C是⊙O上的任一点,求证:PC⊥BC.

1.直线平面,直线m内。则有()

Al和m异面Bl和m相交Cl∥mDl不平行m 2 直线a∥平面,直线ba, 则b与的关系是()A.b∥B、b 与相交C、b D、不能确定

3.直线b直线a,直线b平面,则直线a与平面的关系是()A.a∥BaD a 或a∥Da

A

4.已知PH⊥Rt△HEF所在的平面,且HE⊥EF,连结PE、PF,则图中直角三角形的个数是()F

A1B 2H

C3D

45.在下列四个正方形中,能得到AB⊥CD的是()

(A)

(B)(C)(D)

6.已知直线a、b和平面M、N,且aM,那么()(A)b∥Mb⊥a(B)b⊥ab∥M(C)N⊥Ma∥N(D)aNMN

二.填空题。

7.在RtABC中,D是斜边AB的中点,AC=6cm,BC=8cm,EC平面ABC,EC=12cm,则

EA=cm ;EB=cm ; ED=cm。

8.已知正△ABC的边长为2cm,PA⊥平面ABC,A 为垂足,且PA=2cm,那么P到BC的距离为。

9.设棱长为1的正方体ABCD-A/B/C/D/中,M、N分别为AA/和BB/的中点,则直线CM和D/N所成的角的余弦值为 10.在菱形ABCD中,已知∠BAD=600,AB=10cm,PA⊥菱形ABCD所在平面,且PA=5cm,则P到BD的距离为,P到DC的距离为。11.如图3,已知PA⊥平面ABC,AB是⊙O的直径,12.设A在平面BCD内的射影是直角三角形BCD的斜边BD的中点O,ACBC1,CD

求(1)AC与平面BCD所成角的大小;(2)二面角ABCD的大小;(3)异面直线AB和CD的大小.

参考答案

1~6DDCBAAEA=;

EB= ;9.1

10.10cm , 10cm

11.证明:∵PA⊥平面ABC, ∴PA⊥BC

∵AB是⊙O的直径 ∴AC⊥BC

∴BC⊥平面ACP ∴PC⊥BC 12.解:(1)∵AO面BCD,∴AOCO,∴ACO为AC与面BCD所成角.

∵BC1,CD

∴BD,∴CO

12BD

∴cosACO,∴ACO6,即AC与平面BCD所成角的大小为

.(2)取BC中点E,连接OE,AE,∴OE//CD.∵CDBC,A

F

B

OD

E

C。

ED= 13 cm

∴OEBC.又∵AO面BCD,∴AEBC,∴AEO为二面角ABCD的平面角.

11又∵OECDAO,∵AOOE,22

∴tanAEOAOAEOarctan 

OE22

. 2即二面角ABC

D的大小为arctan

(3)取AC的中点E,连接EF,OF,则EF//AB,OE//CD,∴OE与EF所成的锐角或直角即为异面直线AB和CD所成角. 易求得OEF45,即异面直线AB和CD所成角为45.

第五篇:线面、面面垂直性质测试题

线面、面面垂直性质练习试题

一、选择题

1在空间,如果一个角的两边分别与另一个角的两边垂直,那么这两个角的关系是()

A.相等B.互补C.相等或互补D.无法确定

2下列命题正确的是…………………………………………()

A、若两条直线和同一个平面所成的角相等,则这两条直线平行

B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行

C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行

D、若两个平面都垂直于第三个平面,则这两个平面平行

3.知下列命题:

(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;

(2)平面内与这个平面的一条斜线垂直的直线互相平行;

(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;

(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是().

A.(1)、(2)B.(2)、(3)C.(3)、(4)D.(2)、(4)

4.列图形中,满足唯一性的是().

A.过直线外一点作与该直线垂直的直线B.过直线外一点与该直线平行的平面

C.过平面外一点与平面平行的直线D.过一点作已知平面的垂线

5.平面α、β与另一平面所成的角相等,则()

A.α∥βB.α与β相交C.α∥β或α与β相交D.以上都不对

6.个平面,,,之间有,,则与()(B)平行(C)相交(D)以上三种可能都有(A)垂直

7.,是两个平面,直线l,l,设(1)l,(2)l//,(3),若

以其中两个作为条件,另一个作为结论,则正确命题的个数是()(A)0(B)1(C)2(D)

38.一点的三条直线两两垂直,则它们确定的平面互相垂直的对数有(D).A.0B.1C.2D.3

9.线m、n与平面α、β,给出下列三个命题:

①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题的个数是()

A.0B.1C.2D.310.在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论不成立的是……………………………………()

A.BC∥平面PDFB.DF⊥平面PAEC.平面PDF⊥平面PAED.平面PDE⊥平面ABC

11.四个命题:①若直线a//平面,则内任何直线都与a平行;

②若直线a平面,则内任何直线都与a垂直;

③若平面//平面,则内任何直线都与平行;

④若平面平面,则内任何直线都与垂直.其中正确的两个命题是()A.①与②B.②与③C.③与④D.②与④

12.如图、—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是…()

A.AC⊥SBB.AB∥平面SCD

C.SA与平面SBD所成的角等于SC与平面SBD所成的角

D.AB与SC所成的角等于DC与SA所成的角

二、解答题

13.已知平面α⊥平面β,交线为BC,P∈α,A∈β,且AC⊥BC,AC=6cm, BC=8cm,PA=PB=7cm.求点P到平面β的距离.14.如图,几何体ABCDE中,△ABC是正三角形,EA和DC都垂直于平面ABC,且EA=AB=2a,DC=

a,F、G分别为EB和AB的中点。

(1)求证:FD∥平面ABC;(2)求证:AF⊥BD;

15.如图,(1)求证:(2)求证:(3)若

矩形

平面,求证:

平面

所在平面,分别是

和的中点.17.在四棱锥中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD

18.如图,AB是圆O的直径, PA垂直于圆O所在的平面, C是圆周上不同于

A, B的任意一点,(1)求证:平面PAC⊥平面PBC

(2)若A在PB、PC上的射影分别为E、F,求证:EF⊥PB

19.如图,PA⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点(1)MN//平面PAD(2)PA=AD时,MN⊥平面PCD

AB,PD的中点,又二面角PCDB的大小为45,21.已知△

BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且

(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?

22.如图,平行四边形ABCD中,DAB60,AB2,AD4将 沿BD折起到EBD的位置,使平面EDB平面ABD

求证:ABDE

CBD

23.如图,正方体ABCD—A1B1C1D1的棱长为1,P、Q分别是线段AD1和BD上的点,且D1P∶PA=DQ∶QB=5∶12.(1)求证PQ∥平面CD D1 C1;(2)求证PQ⊥AD;(3)求线段PQ的长.

下载线面垂直的性质定理 课后反思3word格式文档
下载线面垂直的性质定理 课后反思3.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    1线面垂直的性质

    《线面垂直的性质》教案桃江一中,徐令芝 教学目标:1.探究线面垂直的性质定理,培养学生的空间想象能力 2.对性质定理进行变式探究,培养学生发现问题,提出问题的能力 3.掌握线面垂......

    线面垂直的判定定理 教案

    线面垂直的判断定理数学科学学院 刘桂钦 20072201135一、 教学目标(一) 知识与技能目标理解直线与平面垂直的定义,掌握直线与平面垂直的判定定理及其应用。(二) 过程与方法目标通......

    专题线面垂直

    专题九: 线面垂直的证明 题型一:共面垂直(实际上是平面内的两条直线的垂直) 例1:如图在正方体ABCDA1BC11D1中,O为底面ABCD的中心,E为CC1中点,求证:AOOE 1题型二:线面垂直证明 (利用......

    面面垂直性质定理及习题(大全)

    面面垂直性质定理及习题《必修2》1.2.4一、 学习目标撰稿:第四组审稿:高二数学组时间:2009-9-81. 理解面面垂直的性质定理2. 会用性质定理解决有关问题3. 线线、线面、面面之间的......

    面面垂直的性质定理(范文模版)

    线面、面面垂直的性质定理教学目标:1.掌握垂直关系的性质定理,并会应用。2.通过定理的学习,培养和发展空间想象能力、推理论证能力、运用图形语言进行交流的能力、几何直观能......

    线面平行的性质定理教案

    《直线与平面平行的性质定理》教案整体设计教学分析上节课已经学习了直线与平面平行的判定定理,这节课让学生体会线面平行的性质定理,并熟悉掌握性质定理证明过程。灵活运用线......

    线面垂直的判定定理的证明过程

    线面垂直的判定定理的证明过程证明:已知直线L1 L22相交于O点且都与直线L垂直,L3是L1 L2所在平面内任意1条不与L1 L2重合或平行的直线(重合或平行直接可得它与L1平行) 不妨假设L3......

    《2.3.1线面垂直判定定理》教学设计

    《直线与平面垂直的判定》教学设计 一、 学习内容分析 本节课内容选自《普通高中课程标准实验教科书·数学必修2(人教A版)》第二章2.3.1节。本节课主要学习直线与平面垂直的定......