第一篇:苏教版小学数学六年级下册《解决问题的策略—转化》教学设计
“解决问题的策略——转化”教学设计
[目标预设]
1、使学生初步学会运用转化的策略分析问题,灵活确定解题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。
2、使学生通过回顾运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。
3、使学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得的成功的体验,提高学好数学的信心.【教学重点】 感受“转化”策略的价值,会用“转化”的策略解决问题。
【教学难点】 会用“转化”的策略解决问题。【教学过程】
一、欣赏动画,感知转化
师:同学们喜欢看动画片吗?生:喜欢。
师:今天我们就用数学的眼光,来欣赏一个既熟悉又好看的动画片。(播放《曹冲称象》)
师:曹冲是借用什么方法称出大象重量的呢?
生:曹冲先把大象运上船,做上记号,然后把大象赶下船,装上石头,称出石头的重量,就称出了大象的重量。
师:也就是说,曹冲是用称石头的方法称出了大象的重量。小曹冲所用的这种方法,我们数学上称为转化。(板书:转化)转化是我们平时常用的一种解决问题的策略。(板书:解决问题的策略)
二、回顾旧知,感受转化的价值
师:转化这种解决问题的策略,其实同学们在以往的学习过程中已经反复的使用过。请同学们回忆一下我们六年来所学习的知识,你能举个例子来说明转化这种策略吗?把你想到的在小组里交流一下。学生充分列举,教师媒体配合演示。
预设一:推导平行四边形的面积公式时,把平行四边形转化成长方形。
生:把平行四边行转化成长方形。
预设二:推导三角形的面积公式时,把三角形转化成平行四边形。师:有的同学迫不及待的想说了,谁来说?
生:在学习图形的面积时,三角形的面积。把两个完全一样的三角形拼成一个平行四边形。
师:这是把一个三角形的面积转化成了平行四边形面积的一半。没错,这就是转化。
预设三:推导圆的面积公式时,把圆转化成长方形。
生:圆也是把圆分成若干个小扇形,然后再拼成一个近似的长方形。
预设四:推导圆柱的体积公式时,把圆柱转化成长方体。生:圆柱是把圆柱转化成长方体。师:这也是用转化解决的新问题。
预设五:推导梯形的面积公式时,把梯形化成平行四边形。
师:还有谁想说?
生:把两个完全一样的梯形拼成一个平行四边形。师:这是把什么转化成什么? 生:梯形转化成平行四边形
师:准确的说,这是把梯形转化成平行四边形面积的(一半)。从这些举得例子当中,我们可以看出转化这种策略在解决问题的过程中应用的非常广范。请同学们想一想在运用转化这种策略解决问题的过程中有什么相同点?
这几位同学都讲出了转化这种策略往往是把复杂的问题转化成简单的问题,或者是把未知的问题转化成我们已经会解答问题。(板书:复杂-简单 未知-已知)
第二篇:15苏教六年级数学下册第三单元解决问题的策略教学设计
第三单元 解决问题的策略
教材分析:
从三年级上册起,每一册教科书里都教学一种策略,依次是分析量关系的“从条件向问题推理”和“从问题向条件推理”,帮助理解题意的“列表整理”和“画图整理”,还有“枚举”“转化”“假设与替换”等策略。本单元没有安排新的策略,只是应用前面教学的策略,解决稍复杂的问题。目的是让学生进一步体会策略在解决新颖问题、复杂问题时的作用,体会解决同一个问题的方法多样、策略灵活,体会各种策略之间的相互配合、相互补充。全单元编排两道例题,具体安排见下表:
例1 把陌生的问题转化成熟悉的问题,体会转化可以多样 例2 通过假设和调整解决问题,体会假设与调整可以多样 教学目标: 1.使学生学会应用已有的解决问题的知识经验、思想方法,加强对策略的体验和方法的领悟,提高解决问题的能力。
2.使学生在解决问题过程的不断反思中,感受各种策略对于解决不同问题的价值,进一步发展分析,综合和简单推理的能力。
3.使学生进一步积累解决问题的经验,增强知识间的联系,获得解决问题的成功经验,提高学好数学的信心。
教学重点:合理运用策略解决问题,加强知识间的联系。
教学难点:运用已学的策略解决新颖、复杂的问题,体会一个问题多种方法及各种策略之间相互的关系。
课时安排: 3课时
第一课时:转化的策略
教学内容:教材第27页的例1和第28页的“练一练”,完成练习五第1~3题。教学目标:
1.使学生学会联系不同的知识,作出不同的推理,体会策略和方法的多样性。2.在运用不同的策略解决问题的过程中,感受知识间的内在联系,形成最优化思想。3.在解决问题的过程中,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:掌握用转化的策略解决分数问题的方法。
教学难点:根据具体问题,确定转化后要实现的目标和转化的方法。教学资源:课件 教学过程:
一.回顾旧知,整理策略
谈话:从三年级上册起,每一册数学都教学一种策略,你们知道我们学了哪些策略?(学生可能已经忘记,教师帮助回顾整理:依次是分析量关系的“从条件向问题推理”和“从问题向条件推理”,帮助理解题意的“列表整理”和“画图整理”,还有“枚举”“转化”“假设与替换”等策略)
提问:这些策略你们都学会了吗?今天我们将合理的选择这些策略来解决新的问题,大家愿意接受挑战吗?(板书课题:转化的策略)
二.合作探究,运用策略
1、教学例1(课件出示例1)学生读题,自主完成。
谈话:这是一个稍复杂的分数问题,除了用刚才我们做的方法来解决,你们能否用以前学的策略来思考呢?(引导学生进一步分析)
小组交流方法。
汇报交流情况:(学生遇到困难可作适当的引导。)①根据“男生人数是女生的2/3”理解2/3这个分数的意义,可以画线段图,看出男生人数是美术组总人数的2/5。原来的问题就转化成美术组一共有35人,男生人数是总人数的2/5,女生人数是总人数的3/5,男生有多少人?女生有多少人?这是简单的求一个数的几分之几是多少的问题。
②根据分数2/3的意义,可以推理出“男生人数和女生人数的比是2∶3”。原来问题就转化成美术组一共有3/5人,男生与女生人数的比是2∶3,男生、女生各有多少人?这是按比例分配问题。
③根据分数2/3的意义,想到“女生人数看作3份,男生人数是2份”,于是产生解题思路:先算出1份是几人,再算2份、3份各是多少人。
④把作为单位“1”的女生人数设为x,那么男生人数就是2/3x,利用美术组一共35人,能够列方程解题。
„„
谈话:通过刚才的汇报和交流看出大家都有各自的想法,那你们最喜欢哪一种方法呢?为什么呢?(让多名学生回答,征求各自的看法。)
刚才我们运用了不同的策略来解决这个问题,你们能检验一下自己做的是否正确吗?(引导学生交流检验方法)
2.做第28页的“练一练”
引导学生运用刚才学过的策略,用自己喜欢的方法来解决。
要求学生说说“你选择了什么策略,是怎样想的”(通过他们在交流中获得这些体验,让学生体会方法的多样性。)
三.巩固练习,回顾策 1.练习五第1题。
要求学生根据示意图里的数量关系,写出分数,并转化成比。或者写出比,再转化成分数。(这道题可以看作沟通数学概念之间联系,组建概念系统的练习,有助于问题的转化。)
2.练习五第2题。
根据已知的比或百分数,把线段图补充完整,要求借助线段图,把稍复杂的问题转化成简单的问题,探索原来问题的解法。(在线段图上可以联想到的数学信息越多,思维就越开放,问题转化的思路会越开阔,解决问题的资源也就越充分。)
四.课堂小结,提升策略
谈话:通过今天的学习,我们知道了在小学阶段学习了很多解决问题的策略,如果能合理选择,就能起到“化繁为简”的作用,帮助我们更好的解决问题。
五.课堂作业:练习五第3题。
第二课时:假设的策略
教学内容:教材第28~29页的例2和第29页的“练一练”,完成练习五第4~5题。教学目标:
1.使学生学会通过假设和调整来解决问题,进一步的提升思维水平。2.在运用假设和调整来解决问题的过程中,体会假设与调整的多样性。3.在解决问题的过程中,获得解决问题的成功经验,提高学好数学的信心。教学重、难点:学会假设和调整的策略来解决问题,并体会假设与调整的多样性。教学资源:课件 教学过程: 一.谈话导入
上节课我们学习了运用已学的多种策略来解决问题,通过对条件的进一步分析和转化,使一个问题多种思维、多种解法。今天我们继续来学习解决问题的策略。(板书课题:假设的策略)
二.探究新知
1.教学例2(课件出示例2)
42人去公园划船,租10只船正好坐满。每只大船坐5人,每只小船坐3人。租的大船、小船各有多少只?
提问:解决这个问题,你准备选择什么策略? 学生小组讨论。画图法。
先画10只大船坐50人,再去掉多的8人。
列举法。
从大船有9只、小船有1只开始,有序列举。并填写右表。(1)列表假设。
假设大船和小船同样多,那么我们要如何调整算出大船和小船各有多少只? ① 出示表格。②借助表格调整。
第一步:假设租5只大船和5只小船,就会比42人少2人。
第二步:还少2人,也就是这2人还没有上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整?
先想一想,再在小组里交流想法,然后在表中填一填。第三步:集体交流,得出方法:
引导思考:少了2人,需要把一些小船调整为大船,一条小船调整为一条大船可以多坐2人,2÷2=1(条),所以调整为小船4条,大船6条。
② 检验结果。学生口答检验方法。三.巩固练习
1.完成第29页“练一练”。
(1)引导学生先用第一种方法,根据要求提示动手操作,独立完成。(2)用列表假设的方法再进行思考练习。学生交流,并汇报想法。2.完成练习五第4题。
根据题中所给的假设学生自主调整,并汇报调整想法。四.课堂小结
通过本节课的学习,我们知道了哪些解决问题的策略?你有哪些收获? 五.课堂作业:练习五第5题。
第三课时:解决问题的策略(练习课)
教学内容:教材练习五第6~9题和思考题,了解“你知道吗”。教学目标:
1.通过练习让学生熟练运用转化和假设的策略来解决问题。2.在不断练习和反思中,感受运用策略对于解决特定问题的价值。3.通过这些策略的运用,了解解题方法的多样性,感受数学知识的魅力。教学过程: 一.谈话导入
在前面两节课的学习中我们主要运用了哪些策略来解决问题的?(转化和假设的策略)你们学会了吗?今天老师想考一考大家对这两个策略的运用情况,你们能接受挑战吗?(板书课题:解决问题的策略练习课)
二.练习应用
1.练习五第6题。
出示题目:要求先画图表示题意,再解答。要求中、下层各放了多少本书?可以通过上层放书的数量100本,及所对应的份数5,先求一份的量是多少,再求中、下层各放了多少本书。也可以引导学生从其他方面去思考,如把比转化成分数来解答。
2.练习五第7题。
结合图引导思考:根据货车的速度是客车的2∕3,可以想到相遇时货车行驶的路程也是客车行驶路程的2∕3,接着让学生在图上画一画,并解答。
3.练习五第8题。学生读题,出示右图:
先在图中表示出第二、三堆的白子和黑子。
学生动手画,教师巡视、辅导。(学生可能在第二、三堆中把白子和黑子平均分,可让学生尽量避免这种特殊情况。)
结合图帮助学生理解:第二、三堆中的白子合起来正好是完整的一堆棋子,也就是60枚,再加上第一堆中白子的数量,这样就解决了这一问题。
4.练习五第9题。出示题目和表格。先假设两种球分别投中的个数,再通过试验调整找出答案。
学生独立完成。5.练习五思考题。
让学有余力的学生自己思考,独立解答。6.课外了解。(第32页“你知道吗”)让学生了解我国古代的数学,渗透国情教育,并思考解决。
三.课堂小结
通过今天这节课的练习,你有了哪些新的收获? 使学生进一步巩固策略在特定问题中的应用。四.课堂作业:基础训练
第三篇:最新苏教版五年级数学下册“解决问题的策略(转化)教学设计
最新苏教版五年级下册“解决问题的策略(转化)教学设计
教学内容:
五年级下册“解决问题的策略(转化)”第105-108页、教学目标 :
1、学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。
2、学生通过回顾曾经运用转化策略解决问题的过程,从策略的角度进一步体会知识之间的联系,感受转化策略的应用价值。
3、学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得成功的体验。教学重难点 :
1、理解转化策略的价值,丰富学生的策略意识,初步掌握转化的方法和技巧。
2、让学生知道怎样转化是学生学习的难点。教学准备:
课件、每人一张例1的格子图 教学过程 :
一、观察交流,明确转化的策略
1、出示两个图形(例1)
观察下面两个图形,它们的面积相等吗?
一眼看不出来,有什么办法来证明呢?动手试一试。你是怎样想的?说给同桌听。汇报时,学生可能有:(1)数方格的方法,问:你对这种方法有什么看法?(麻烦、不准确)(2)变成长方形进行比较。怎样把它们变成长方形的?
第一个图形:上面半圆向下平移5格。
第二个图形:下半部分凸出的两个半圆分割出来,以直径的上面端点为中心,分别按顺时针和逆时针方向旋转180度。
问:图形变化的过程中,它们的面积变了吗?现在可以准确判断面积大小吗? 问:为什么要把原来的图形转化成长方形呢?(原来图形复杂、不规则,难以比较,转化后图形简单了便于比较。)
2、小结:
像这样把不规则图形变成规则图形来解决问题,就是一种非常重要的解决问题的策略——转化。
板书:解决问题的策略——转化
3、练习运用
(1)练习十四 第二题 用分数表示图中的涂色部分。(2)练一练。
二、回顾实例,感受转化的价值
1、引导:在以往的学习中我们用到过转化的策略解决过问题,请同学们回顾一下,我们曾经运用转化的策略解决过哪些问题。学生边说,老师边课件演示
师:这些运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题。)
2、尝试练习
(1)计算:1/2+1/4+1/8+1/16 师:观察加数有什么特点?用什么方法求和?(通分转化)观察图有没有更简便的方法?小组交流。汇报:1-1/16 中的1和1/16各表示什么?
(2)小结:要求阴影部分的和可以从空白部分着想,看来用转化的思想解决问题也可以从反面入手。
如果再加上1/32呢?加上1/64呢?
三、练习巩固,运用转化的策略
3、练习十四 第一题
四、总结延伸,增强转化的意识
今天学习了什么?运用转化的策略有什么好处?以后再遇到一个陌生问题时,你会怎么想? “转化”随时随地都在我们身边,解决数学问题时,常常需要换个角度想问题;生活中,也常常需要换个角度想问题。
学生看故事了解生活中的转化
课件出示小故事
从前,有位老太太有两个女儿,大女儿嫁给伞店老板,二女儿嫁给洗衣作坊老板。于是,老太太成天忧心忡忡,每逢下雨天,她担心洗衣坊的衣服凉不干;天晴时,又担心雨伞卖不出去。日子过得非常忧郁。后来,一位聪明人告诉她:“老太太,你真是好福气!下雨天,你大女儿家生意兴隆,天晴时,你小女儿家顾客盈门,哪一天都有好消息呀!” 这位老太太一想,立刻笑逐颜开了。
说明:所以,有些时候,换个角度去想问题,我们会发现真的很不一样!其实自己的快乐与否,重在心态。只要你是用乐观的心态去面对,无论任何的事情,都会是快乐的!希望大家在数学中灵活地转化,在生活中快乐地转化!
第四篇:解决问题的策略——转化教学设计
苏教版五年级下册《解决问题的策略——转化》
教学内容:苏教版五年级下册第105-106例1和练一练,练习十六第1-3题。教学目标:
1.学生初步学会运用转化的策略分析问题,并能根据问题的特点确定具体的转化方法,从而有效解决实际问题。
2.学生通过对解决问题过程的反思,感受解决问题策略的特点和价值,进一步培养思维的条理性和严密性。
3.学生通过学习,进一步积累解决问题的实际经验,增强解决问题的策略意识,获得解决问题的成功体验。
教具学具准备:多媒体课件、练习纸。教学过程:
一、教学例1
师:今天老师为大家准备了两个图形朋友。(出示PPT1)你打算怎么比较这两个图形的面积?请大家拿出练习纸,动手试一试。可以在图上标一标、画一画、或是写一写,把自己的想法表示出来,便于交流想法。
指名学生到展示台上介绍自己的想法。师:大家觉得他这种方法好不好?生:好
师:下面让我们一起再来看看这个过程。(出示PPT2-9)师:还有那些同学也是用这种方法解决问题的?
师:老师想为大家点个赞!你们真的很了不起!其实,大家在解决这个问题的时候用到了一种解决问题的策略——转化。这就是我们今天这节课要共同研究的内容。板书课题:解决问题的策略——转化。
二、回顾提升 师:让我们一起来回顾一下,刚才我们是怎样比较他们的大小的?(出示PPT10)师:那么请大家比较一下,转化后的图形和转化前图形相比,什么变了,什么没变?而在转化的过程中我们又具体用到了哪些数学方法?
师:其实,转化的策略我们以前也运用过。想一想:我们曾经运用转化的策略解决过那些问题?(出示PPT11)1.图形面积公式的推导
师:比如说推导图形的面积计算公式(出示PPT12-14)
师:那你们有没有想过,我们为什么要进行转化呢?(出示PPT15)2.计算
师:在计算里面,我们有没有用过转化的策略呢?(出示PPT16-17)师:这里我们为什么也要用转化的策略?(出示PPT18-19)师:看来,我们在解决问题时,经常会运用转化的策略。如果以后你再遇到一个复杂或是陌生的问题,你会怎么想?比如说:我们马上要学习圆,你觉得圆的面积可以怎样推导? 生:各抒己见。
师:课后有兴趣的同学可以提前去进行尝试研究研究。
三、巩固练习
1.探索1看一看:书109页练习十六第1题(出示PPT20)学生独立完成后交流。
2.探索2想一想:书109页练习十六第2题(出示PPT21-28)学生独立完成后交流。
3.探索3算一算:书109页练习十六第3题(出示PPT29)学生独立完成后交流。
四、总结提升
今天这节课我们共同研究了解决问题的策略——转化。通过今天的研究你学到了什么?转化的策略不但在数学中运用广泛,其实在生活有时也会用到,而且还可以求人。比如司马光砸缸的故事。(出示PPT30)
五、赠送数学家名言。
数学家的名言送给大家,作为今天这节课的结束。(出示PPT31)
【教学反思】
本节课原本是六年级上册的内容,现调整到五年级来上,放在最后一个单元。现在又提前到前面来上,对于学生来说,应该提高了难度。所以,上完本节课,我有几点感受,与大家共享。
1.对于学生来说,解决问题的策略——转化,其实并不陌生,在以前的学习中已经运用过,只是并没有提炼。现在单独作为一个单元来进行教学,我觉得应该是在原有基础上进行提高,也就是说要理解为什么要进行转化,什么时候进行转化,怎样转化?而不是单独的为了解决一个单一的问题。因此,教学时,我大胆的进行尝试,放手让学生直接比较两个不规则图形的面积,学生在开始的时候并没有想到转化,而是运用已有经验,用数方格的方法进行解决的,整个班级我只发现了一个学生采用了转化的策略,既把图形通过转化变成长方形,然后进行比较。在这里,我处理的有点急,看到学生用了转化的策略,我就急忙让该生进行展示,引导学生评价这种方法是否可行,然后让大家也尝试这种方法。整个过程,看似流畅,但缺乏思维的碰撞。如果当时,能将转化和数方格两种不同的方法进行展示,让学生进行对比,然后思考两种方法的可行性,我想学生对于转化的策略运用感悟会更深,可能效果会更好。
2.上课前,我一直在思考,怎样才能让学生充分体验转化的策略,因此,教学时,我通过不断的回顾、提炼和总结,目的是为了引导学生通过这样的活动过程理解、感悟转化的策略,帮助学生形成:当我们遇到不规则的图形或是未知的知识时,我们可以通过转化变成规则的图形或是已知的知识,从而找到解决问题的方法。应该说效果还是不错的,只不过学生在回忆的过程中,语言概括上还略有不足。其实当图形出现后,学生就明白了其中的含义,只是不会用语言来进行合理的表达。因此,在今后课堂中我们要多关注学生的语言表述,提高他们发言的激情和语言表述能力。
3.学习的目的是学以自用。当学生深刻理解转化策略就是把不规则图形转化成规则,把未知转化成已知,会不会用,能不能想到用成为我思考的一个问题。因此教学中,我设计了一个环节,就是问学生当我们以后如果在遇到一个复杂或是陌生的问题,你会怎么想?我列举了即将学到的圆,让学生大胆猜测圆的面积可以怎样推导?这个过程看似没什么,其实它是考验学生到底有没有将所学知识进行有效运用。课堂上,学生虽然没有具体说怎么推导,但在他们心中已经有了这样一个想法,就是可以把圆转化成长方形、正方形、平行四边形等等,其实这也正说明学生头脑中已经有了转化策略的形成。应该说,本节课设计条理清晰,层次分明。但在课堂实施中,我还是遇到了一些问题:比如说课堂气氛的沉闷,很多学生都不敢发表自己的见解,这可能和自己的教学引导有关。因此,在今后的教学中,我还有许多需要改进的地方。但不管怎么说,还是应该感谢孩子们,有了他们才有今天的共享。
第五篇:解决问题的策略——转化教学设计
白兔有5只,黑兔有3只。
你能根据这两个条件说一句话吗? 活动一:
例2 学校美术组有35人,其中男生人数是女生人数的2。女生有多少人?
31.认真读题,先理清题中的数量关系,然后选择合适的方法解答。(只列式不计算)
2.从“男生人数是女生人数的学过的“比”想想哦!)
3.受到刚才的启发,这道题是否可以直接列式解答呢?试一试吧!
答:女生有()人。4.小组交流,说清自己的思考过程。
活动二:
2”你能知道什么?(可以试着画线段图,也可以联系以前3