高中数学 第2章《参数方程》教案 新人教版选修4-4

时间:2019-05-12 22:16:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学 第2章《参数方程》教案 新人教版选修4-4》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学 第2章《参数方程》教案 新人教版选修4-4》。

第一篇:高中数学 第2章《参数方程》教案 新人教版选修4-4

参数方程

考点要求 了解参数方程的定义。分析直线,圆,圆锥曲线的几何性质。会选择适当的参数,写出他们的参数方程。并理解直线参数方程标准形式中参数的意义。3掌握曲线的参数方程与普通方程的互化。

考点与导学

1参数方程的定义:在取定的坐标系中。如果曲线上任意一点的坐标x,y都是某个变量t的函数xf(t)(tT)

(1)yg(t)这里T是f(t),g(t)的公共定义域。并且对于t的每一个允许值。由方程(1)所确定的点

M(x,y)。都在这条曲线上;那么(1)叫做这条曲线的参数方程,辅助变数t叫做参数。

2过点p0(x0,y0),倾斜角为的直线l的参数方程 xx0tcos(错误!未找到引用源。)yy0tsin(t为参数)

(错误!未找到引用源。)通常称(错误!未找到引用源。)为直线l的参数方程的标准形式。其中t表示p0(x0,y0),到l上一点p(x,y)的有向线段p0p的数量。

t>0时,p在p0上方或右方;t<0时,p在p0下方或左方,t=0时,p与p0重合。xx0at(错误!未找到引用源。)直线的参数方程的一般形式是:(t为参数)

yybt0这里直线l的倾斜角的正切tanab(0或90时例外)。当且仅当ab10022且b>0时.(1)中的t才具有(错误!未找到引用源。)中的t所具有的几何意义。2 圆的参数方程。

xx0rcos圆心在点o(x0,y0),半径为r的圆的参数方程是(为参数)

yyrsin0'3 椭圆xa22yb22xacos1的参数方程。(为参数)

ybsin4 双曲线xa22yb22xasec1的参数方程:(为参数)

ybtan5 抛物线y2x2pt22px的参数方程。(t为参数)

y2pt用心

爱心

专心

x12t例1 已知某曲线C的参数方程为(其中t是参数,aR),点M(5,4)在该曲2yat线上。(1)求常数a;(2)求曲线C的普通方程。

例2 圆M的参数方程为x2y24Rxcos4Rysin3R20(R>0).(1)求该圆的圆心的坐标以及圆M的半径。(2)当R固定,变化时。求圆心M的轨迹。并证明此时不论取什么值,所有的圆M都外切于一个定圆。例3已知A,B分别是椭圆

x236y291的右顶点和上顶点,动点C在该椭圆上运动,求∆ABC的重心的轨迹的普通方程。

例4求经过点(1,1)。倾斜角为135的直线截椭圆〔解题能力测试〕

1x(a21 已知某条曲线的参数方程为:y1(a21a1a)0x24y21所得的弦长。

其中a是参数。则该曲线是())A 线段

B 圆

C 双曲线的一部分

D 圆的一部分

2x3t22 已知某条曲线的参数方程为(0t5)则该曲线是()

2yt1A 线段

B 圆弧

C 双曲线的一支

D 射线 3实数x,y满足x216y291,则zxy的最大值为:

;最小值为。

4已知直线l的斜率为k1.经过点M0(2,1)。点M在直线上,以的数量t为MM0参数.则直线l的参数方程为:。

x1tsin5 已知直线l的参数方程是(t为参数)其中实数的范围是(,)。

2y2tcos则直线l的倾斜角是:。

〔潜能强化训练〕

xsin1 在方程(为参数)所表示的曲线上的一点的坐标为()

ycos2A(2,7)

B(,)

C(,)

D(1,0)

3322212112下列参数方程(t为参数)与普通方程xy0表示同一曲线的方程是()

用心

爱心

专心

xcostxtA 

B 

C 2ycostytxtant1cos2t

D y1cos2txtant1cos2t y1cos2tx2cos3 直线3x4y90与圆(为参数)的位置关系是()

y2sinA 相切

B 相离

C 直线过圆心

D 相交但直线不过圆心。4 设直线x1tcosy2tsin(t为参数)。如果为锐角,那么直线l1到直线l2:x10 的角是()A 2

B 2

C 

D 

x25 过点(1,1),倾斜角为135的直线截椭圆

o4y21所得的弦长为()

A 22B x425

C

2D

325 双曲线3tan(为参数),那么它的两条渐近线所成的锐角是:。

ysecxsin27 参数方程(为参数)表示的曲线的普通方程是:。

ysincos28 已知点M(2,1)和双曲线xy22求以M为中点的双曲线右支的弦AB所在直线l的1,方程。已知椭圆的中心在原点。焦点在y轴上且长轴长为4,短轴长为2。直线l的参数方程为

xtym2t(t为参数)。当m为何值时,直线l被椭圆截得的弦长为6?

10、求椭圆x216y2121上的点到直线:x2y120的最大距离和最小距离。

〔知识要点归纳〕

1. 参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的一种表示形式,而且有的参数还有几何意义或物理意义。

2. 面临一个轨迹问题,如何选择参数?如何用参数?是主要问题,必须在学习过程中深刻去

用心

爱心

专心

领会。

3. 在参数方程与普通方程互化过程中,要注意等价性。

12t5t2解:(1)由题意可知有2故  ∴a1

a1at4x12tx1(2)由已知及(1)可得,曲线C的方程为由第一个方程得代入第二个t22yt方程得:y(x12)。即(x1)224y为所求。

〔点评〕 参数方程化为普通方程的关键是消参数,并且要保证等价性。若不可避免地破坏了同解变形,则一定要通过xf(t),yg(t)。根据t的取值范围导出x,y的取值范围。解:(1)依题意得 圆M的方程为(x2Rcos)2(y2Rsin)2R2 故圆心的坐标为M(2Rcos,2Rsin).半径为R。

x2Rcos(2)当变化时,圆心M的轨迹方程为(其中为参数)两式平方相加得

y2Rsinxy224R。所以所有的圆M的轨迹是圆心在原点。半径为2R的圆

222由于(2Rcos)(2Rsin)(2Rcos)(2Rsin)2222R3RR2RRR所以所有的圆M都和定圆x2y2R2外22切,和定圆xy9R内切。

〔点评〕本题中所给的方程中含有多个参数,像这样的问题有时容易分不清哪个是真正的参数,究竟在具体的题目中哪个是真正的参数应视题目给定的条件,分清参数。解:由动点C在椭圆上运动,可设C的坐标为(6cos,3sin),点G的坐标为(x,y).依题意可知:A(6,0),B(0,3)由重心坐标公式可知

606cosx22cosx2cos(1)322 由此得:(1)(2)得 2y1sin(2)y033sin1sin3(x2)422(y1)1即为所求。

〔点评〕错误!未找到引用源。本题的解法体现了椭圆的参数方程对于解决相关问题的优越性。运用参数方程显得很简单。运算更简便。常用于解决有关最值问题。错误!未找到引用

用心

爱心

专心

源。“平方法”是消参的常用方法。

2tx12解:由条件可知直线的参数方程是:(t为参数)代入椭圆方程可得:

2y1t22242(1t)(122t)1 即252t32t10设方程的两实根分别为t1,t2。

262t1t25则则直线截椭圆的弦长是 t1t2tt2125(t1t2)4t1t22625

〔点评〕利用直线参数方程的几何意义求弦长的常用方法。但必须注意:直线的参数方程必xx0at须是标准形式。即 (t为参数)当a2b21且b>0时才是标准形式。若不满yy0btb2足a2b21且b>0两个条件。则弦长为 d=1()t1t2

a

四、参数方程

〔解题能力测试〕

2x2t32 1.C

2、A 3、5,-5

4、 5、22y1t2〔潜能强化训练〕

1、C

2、D

3、C

4、B

5、B 6、60

7、yx1(1x1)455455028、4xy90

9、m

10、dmax45dmin

用心

爱心

专心

第二篇:高中数学《圆参数方程的应用》教案 新人教A版选修4

圆参数方程的应用

教学目标:

知识与技能:利用圆的几何性质求最值(数形结合)过程与方法:能选取适当的参数,求圆的参数方程

情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。教学重点:会用圆的参数方程求最值。教学难点:选择圆的参数方程求最值问题.授课类型:复习课

教学模式:启发、诱导发现教学.教学过程:

一、最值问题

221.已知P(x,y)圆C:x+y-6x-4y+12=0上的点。

y(1)求 x 的最小值与最大值

(2)求x-y的最大值与最小值

222.圆x+y=1上的点到直线3x+4y-25=0的距离最小值是

/222.圆(x-1)+(y+2)=4上的点到直线2x-y+1=0的最短距离是_______;

223.过点(2,1)的直线中,被圆x+y-2x+4y=0截得的弦:

为最长的直线方程是_________;为最短的直线方程是__________;

224.若实数x,y满足x+y-2x+4y=0,则x-2y的最大值为

二、参数法求轨迹

21)一动点在圆x+y=1上移动,求它与定点(3,0)连线的中点的轨迹方程

2)已知点A(2,0),P是x+y=1上任一点,AOP的平分线交PA于Q点,求Q点的轨

22迹.C.参数法

解题思想:将要求点的坐标x,y分别用同一个参数来表示

22例题:1)点P(m,n)在圆x+y=1上运动, 求点Q(m+n,2mn)的轨迹方程

22242)方程x+y-2(m+3)x+2(1-4m)y+16m+9=0.若该方

程表示一个圆,求m的取值范围和圆心的轨迹方程。

三、小结:本节学习内容要求掌握 1.用圆的参数方程求最值;

2.用参数法求轨迹方程,消参。

四、作业:

第三篇:21《参数方程的概念--曲线的参数方程》教案(新人教选修4-4)(精)[定稿]

曲线的参数方程

教学目标

1.通过圆及弹道曲线的参数方程的建立,使学生理解参数方程的概念,初步掌握求曲线的参数方程的思路. 2.通过弹道曲线的参数方程的建立及选取不同参数建立圆的参数方程,培养学生探索发现能力以及解决实际问题的能力.

3.从弹道曲线的方程的建立,对学生进行数学的返璞归真教育,使学生体会数学来源于实践的真谛,帮助学生树立空间和时间是运动物体的形式这一辩证唯物主义观点. 教学重点与难点

曲线参数方程的探求及其有关概念是本节课的重点;难点是弹道曲线参数方程的建立. 教学过程

师:满足什么条件时,一个方程才能称作曲线的方程,而这条曲线才能够称作方程的曲线? 生:1.必须同时满足两个条件:(1)曲线上任一点的坐标都是这个方程的解;(2)同时以这个方程的第一组解作为坐标的点都在曲线上.那么,这个方程就称作曲线的方程,而这条曲线就称作这个方程的曲线. 师:请写出圆心在原点,半径为r的圆O的方程,并说明求解方法.

(师板书——⊙O:)师:求圆的方程事实上是探求圆上任一点M(x,y)的横、纵坐标之间的关系式.能用别的方法来探x、y之间的关系吗? 生:……

师:(诱导一下)不用刚才的方法给我们直接求x、y的关系带来了困难,能否考虑用间接的方法来求?即在x、y之间是否能建立一座桥梁,使之联系起来?(计算机演示动画,如图3-1)

师:驱使M运动的因素是什么? 生:旋转角θ.师:当我们把x轴作为θ角始边,并使OM绕O点逆时针旋转,请考虑θ在什么范围内取值就可以形成整个圆了?

生:

师:至此x、y之间的关系已通过θ联系起来了,谁能具体地说说它们之间的关系?

生3:

(c∈[0,2π],θ为变量,r为常数)

(生3叙述,师板书)师:①式是⊙O的方程吗? 生4:①式是⊙O的方程.师:请说明理由.生4:(生4叙述,师板书)(1)任取⊙O上一点,显然满足方程①;,总存在,由三角函数定义知

(2)任取, 由①得即M(). 所以

所以

M在⊙O上.由(1)、(2)知①是⊙O的方程..

师:既然①是⊙O的方程,那么它应该和生:能,消去θ即可.

是一致的,两者能统一起来吗?

师:这里,我们从另一个角度重新审视了圆,通过第三个变量θ把圆上任意一点的横、纵坐标x、y联系了起来,获得了圆的方程的另一种形式.通过间接的方法把某两个变量联系起来的例子不仅几何中有,在生产实践、军事技术、工程建设中也有.特别在两个变量之间的直接关系不易建立时,常用间接的方法将它们联系起来.请同学们再看一个例子.炮兵在射击目标时,需要考虑炮弹的飞行轨迹、射程等等.现在,我们假设一个炮兵射击目标,炮弹的发射角为α,发射的初速度为ν0.请同学们帮他求出弹道曲线的方程。(不计空气阻力)

师:同学们是否知道炮弹飞行轨迹的形状?请同学们大概地画一下.(师从同学们画出的图形中,选出一种画在黑板上,如图3-2.)

师:一般同学们都知道是轨物线的一段.现在的问题就是怎样求弹道曲线的方程(即点的轨迹方程),请思考求点的轨迹方程的首要工作是什么? 生:建系.师:怎样建系?(请同学们自行建系)

(师将同学们4种不同的建系方式依样画在黑板上或用投影仪直接打出。如图3-3-(1)、(2)、(3)、(4))

师:怎样建系由我们自己决定,然而我们总希望建立的坐标系较合乎常理,且使问题的求解方便一些,方程简单一些.现在请同学们从上述4种建系方式中选择较恰当的一种.生:(较一致地否定了(1)、(2),对(3)、(4)众说纷纭.)

师:(引导学生作常规分析)炮弹飞行与时间t有关,当t=0时,炮弹还在炮口位置,它是炮弹飞行的初始位置(起始点),这个起始点放在坐标系的什么位置才较好地合乎常理呢?

生:放在原点位置,即取炮口为原点,水平方向为x轴,建立直角坐标系,因此选图3-3(4).师:坐标系建立起来了,接着该做什么了呢? 生:设标,设炮弹发射后的位置为M(x,y).师:下面该进行哪一步了? 生:列式.师:怎么列?x与y之间的直接关系明显吗? 生:不明显.师:那么怎样把x、y之间的关系联系起来呢?

生5:像刚才用第三变量θ表示圆上任一点的坐标x、y之间的关系一样,通过间接的办法把x、y联系起来.师:很好!那么这里的第三变量是什么呢?它又能怎样把x、y联系起来呢?

生5:刚才圆上点M是依赖于角θ的运动而运动的,第三变量就选择了θ,我想这里要把x、y之间的关系建立起来,也要分析一下炮弹的运动方式,看看炮弹的位置是依赖于哪个量的变化而变化的.师:非常好!让我们一起来分析炮弹的运动方式.这里,炮弹的运动实际上是物理学中的斜抛运动.炮弹在水平方向作匀速直线运动,在竖直方向上作竖直上抛运动(由于受重力作用,炮弹作初速度不为零的匀速直线运动).显然在x、y分别是炮弹飞行过程中的水平位移和竖直位移(竖直高度),因此“怎样列式”事实上是解决如何刻画水平位移和竖直位移的问题.故应考虑运动物体的位移与哪些量有关.生:和速度、时间有关.师:这里既有水平位移,又有竖直位移,那么在水平方向的初速度和竖直方向的初速度分别是多少? 生6:(如图3-4)在水平方向的初速度是ν0cosα,在竖直方向的初速度是ν0cosα.(生6口述,师标在图3-4上)

师:时间有吗? 生:没有.师:怎么办? 生:设出来,设为t.师:现在能分别求x和y了吗?

生6:能!师:能对竖直方向上的位移作一解释吗?

生7:在竖直方向上,炮弹作竖直上抛运动,即炮弹受重力的作用作初速度不为零的匀减速直线运动.所以

师:这里我们把水平位移和竖直位移都用时间t表示出来了,即把x、y都表示成了t的函数,t是否应该有一个确定的范围? 生:有,令y=0,故0≤t≤.

师:当生:刚落地.时,炮弹运动到什么位置了?

师:不错!是炮弹的落地时刻,为书写方便,我们记, 则:(0≤t≤T)

师:(挑战性的)这个方程组表示的是弹道曲线的方程吗? 生:是.师:谁能简要地作一下说明?

生8:显然,任给轨迹上一点,由方程组的建立过程知其坐标x0、y0适合方程组;反之当t在内任取某一个值时,由方程组②就可确定当时炮弹所在位置(即表示炮弹的点在曲线上).故②就是炮弹飞行的轨迹方程.师:很好!前面我们举了两个例子,这两个方程组有一个共同的特点,就是曲线上的点的坐标之间的关系不是直接的,而是通过第三个变量间接地联系起来的.例1中旋转角θ参与了方程组的建立,且x、y都是θ的函数;例2中时间t参与了方程组的建立,且x、y都是t的函数.这些特点是以前建立的直接反映x、y关系的方程所不具备的,它和我们以前所熟悉的曲线的方程表达形式是不一样的,谁能给这样的曲线方程起个名字吗?

生:参数方程.(师随即写出课题——参数方程,指出联系x、y之间关系的变数叫做参变数,简称参数.)

师:例1中我们看到圆上任意一点的坐标x、y,都是参数θ的函数,且对于内的任意一个θ值,由①所确定的点M(x、y)都在圆上;例2中,我们看到炮弹的任意一个位置,即轨迹上任一点的坐标x、y都是t的函数,且对于任一个t的允许值,由②确定的点M(x、y)都在轨迹上.这样的方程我们刚才称它为参数方程,谁能通过刚才的例子,归纳出一般曲线的参数方程的定义?

生9:(定义)在给定的坐标系中,如果曲线上任一点的坐标x、y都是某个变数t的函数③且对于t的每一个允许值,由③所确定的点M(x、y)都在这条曲线上,则③就叫做这条曲线的参数方程,t称作参变数,简称参数.(生9途述,师板书)

师:相对于参数方程来说,以前的方程是有所不同的(显得那样的普通).为了区别起见,我们把以前学过的方程称作曲线的普遍方程.师:从上面两个例子看出,参数可以有明确的几何意义(例子中的旋转角θ——,主何的也可以有显的物理意义(例2中的时间t——物理的.)事实上,除此之外,还可以是没有明显意义的变数,即使是同一条曲线,也可以用不同的变数作参数.请同学们考虑,在例1中还可以用什么变数作参数? 生10:设弧长l为参数,由于l=rθ,故θ=lr,所以(l是参数,0≤l≤2πr).(生10叙述,师板书)

师:还可以用别的变数作参数吗? 生:……

师:(点拨一下)前面我们用旋转角θ作为参数,θ可以用什么表示?

生11:明白了,可设M的角速度为ω,运动所用时间为t,旋转角为θ,则θ=ωt.所以(t为参数,0≤t≤.(生11叙述,师板书)

师:曲线参数方程的建立,不但能使曲线上点的坐标较容易通过参数联系起来,同时某些情况下还可较好地反映变数的实际意义,如例2中,x 表示炮弹飞行的水平位移,y表示炮弹飞行的竖直高度.能求出炮弹的最大水平射程和相应的最大竖直高度吗? 生:能!

师:请一位同学具体说说.生12:上面曾求得炮弹落地时刻t=2ν0sinα g, 当t=2ν0sinα g时,x=v0cosα·g 2v0sinα g=v0sin2α g, 当2α=π 2,即α=π 4时,x最大=ν

202 g.此时,即当α=π 4,t=ν0sinα g时,y最大=ν0sinα·ν0sinα g-12gv0sinα g= v0sinα 2g=v0(2 2)2g=v0 4g.(生12叙述,师板书)师:今天这节课上,通过两个具体问题的研究,我们自行给出了参数方程的定义(口述),并且明确了参数的意义(结合例题口述),初步掌握了求曲线参数方程的思路.通过弹道曲线参数方程的探求,使我们体会到了数学源于实践,又服务于实践的真谛,培养了我们善于思考,勇于探索的精神.今天的作业——第120页第1题.设计说明

1.未来社会对人才素质的要求越来越高.高素质人才的培养对学校教育提出了更高的要求.由于人的素质是多方面的,因此课堂教学的目的不但要向学生传授科学知识,而且还要努力发展学生的思维,提高学生的能力,培养学生的个性品质.显然这种多元化的教学目标对于全面提高学生的素质有着重要的作用.本节课的3个教学目标正是据于这样的思考而制定的.2.这节课按如下6个步骤逐渐展开:(1)圆的参数方程;(2)弹道曲线的参数方程; ①请学生帮助炮兵求弹道曲线的方程; ②让学生由熟悉的感知事实得抽象的几何图形; ③选择原点,恰当建系;

2④分析炮弹运动方式,恰当选择参数; ⑤建立方程,检验二性(纯粹性,完备性);(3)参数方程的一般定义;

(4)两个例子的进一步研究(兼作例题);(5)课堂小结;(6)布置作业.主要据于如下理由:

相对于弹道曲线来说,学生对圆感到既熟悉,又简单.从简单而又熟悉的圆开始研究,符合循序渐进的原则,缩短了学生思维的“跨度/加快了学生思维的步伐,为学生利用类比的方法,进一步研究弹道曲线的方程(参数方程),提供了可参照的“样本”.这对于发展学生的思维品质,培养学生的合情推理能力都是十分有益的.在探求弹道曲线的参数方程中,如果按教材中直接取炮口为原点,水平方向为x轴,建立直角坐标系,并直接由物理学中的匀速直线运动和竖直上抛运动的位移公式得参数方程

(t为参数),那么,2(2)中的①、②、③、④步均可省略.这种直接地把知识和盘托出的教法(其实是“奉送”)确能使课堂上节约不少时间,然而对于激发学生数学的应用意义,发挥学生的主体参与,揭示知识的形成过程,诱发学生探索、发现新知识都起不到任何作用.这里插入步骤①、②、③、④,则充分调动了主体的积极性,各类学生都情不自禁地加入到探索、求知的行列.整个知识的形成过程,犹如“历史在戏剧中的重演”,而学生正是这一“历史剧”中的演员,教师则是导演.同时,学生还能从中品味发现新知识的乐趣,体会知识的应用价值.常此以往,坚持不懈,学生的素质必将得到极大的提高.通过圆及弹道曲线的参数方程的特点分析,让学生自行给分类方程命名,这种把命名权交给学生的做法极大地尊重了学生的主体地位,强化了学生的主体意识.在此基础上,引导学生给出曲线参数方程的一般定义.旨在培养学生由具体到抽象的推理能力.第(4)步中,将两个例子作了进一步研究.通过对圆的参数方程的不同表述,使学生体会到对同一个问题,可以选取不同的变数作参数.既培养了学生发散思维的能力,又培养了学生优化选择的意识.而对炮弹最大水平射程和相应的最大竖直高度的求解,一方面可使学生明了本题中通过参数t联系起来的x、y的最大值,有着鲜明的实际意义(几何的),另一方面又与前面提出的炮弹射击目标的例子中需要考虑的射程问题前后呼应,使学生领略到数学源于实践又服务于实践的真谛.

第四篇:高中数学 1.2.2充要条件教案 新人教A版选修2-1

福建省漳州市芗城中学高中数学 1.2.2充要条件教案 新人教A版选

修2-1(一)教学目标

1.知识与技能目标:

(1)正确理解充要条件的定义,了解充分而不必要条件, 必要而不充分条件, 既不充分也不必要条件的定义.

(2)正确判断充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件.(3)通过学习,使学生明白对条件的判定应该归结为判断命题的真假,. 2.过程与方法目标:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质. 3.情感、态度与价值观:

激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.

(二)教学重点与难点

重点:

1、正确区分充要条件;

2、正确运用“条件”的定义解题 难点:正确区分充要条件.

教具准备:与教材内容相关的资料。

教学设想:在观察和思考中,在解题和证明题中,培养学生思维能力的严密性品质.

(三)教学过程 学生探究过程: 1.思考、分析

已知p:整数a是2的倍数;q:整数a是偶数.请判断: p是q的充分条件吗?p是q的必要条件吗? 分析:要判断p是否是q的充分条件,就要看p能否推出q,要判断p是否是q的必要条件,就要看q能否推出p.

易知:pq,故p是q的充分条件; 又q  p,故p是q的必要条件. 此时,我们说, p是q的充分必要条件 2.类比归纳

一般地,如果既有pq,又有qp 就记作 p  q.此时,我们说,那么p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p  q,那么p 与 q互为充要条件.3.例题分析

例1:下列各题中,哪些p是q的充要条件?

2(1)p:b=0,q:函数f(x)=ax+bx+c是偶函数;(2)p:x > 0,y > 0,q: xy> 0;(3)p: a > b ,q: a + c > b + c;(4)p:x > 5, ,q: x > 10

22(5)p: a > b ,q: a > b

分析:要判断p是q的充要条件,就要看p能否推出q,并且看q能否推出p. 解:命题(1)和(3)中,pq,且qp,即p  q,故p 是q的充要条件; 命题(2)中,pq ,但q  p,故p 不是q的充要条件;

命题(4)中,pq,但qp,故p 不是q的充要条件; 命题(5)中,pq,且qp,故p 不是q的充要条件; 4.类比定义

一般地,若pq ,但q  p,则称p是q的充分但不必要条件; 若pq,但q  p,则称p是q的必要但不充分条件;

若pq,且q  p,则称p是q的既不充分也不必要条件. 在讨论p是q的什么条件时,就是指以下四种之一:

①若pq ,但q  p,则p是q的充分但不必要条件;

②若qp,但p  q,则p是q的必要但不充分条件;

③若pq,且qp,则p是q的充要条件;

④若p  q,且q  p,则p是q的既不充分也不必要条件. 5.巩固练习:P14 练习第 1、2题

说明:要求学生回答p是q的充分但不必要条件、或 p是q的必要但不充分条件、或p是q的充要条件、或p是q的既不充分也不必要条件.

6.例题分析

例2:已知:⊙O的半径为r,圆心O到直线l的距离为d.求证:d=r是直线l与⊙O相切的充要条件.

分析:设p:d=r,q:直线l与⊙O相切.要证p是q的充要条件,只需要分别证明充分性(pq)和必要性(qp)即可. 证明过程略.

3、设p是r的充分而不必要条件,q是r的充分条件,r成立,则s成立.s是q的充分条件,问(1)s是r的什么条件?(2)p是q的什么条件?

7.教学反思: 充要条件的判定方法

如果“若p,则q”与“ 若p则q”都是真命题,那么p就是q的充要条件,否则不是. 8.作业:P14:习题1.2A组第1(3)(2),2(3),3题

7、教学反思

8、安全教育

第五篇:高中数学 数学归纳法教案 新人教A版选修4-5

第一课时4.1数学归纳法

教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明一些简单的数学命题.教学难点:数学归纳法中递推思想的理解.教学过程:

一、复习准备:

1.分析:多米诺骨牌游戏.成功的两个条件:(1)第一张牌被推倒;(2)骨牌的排列,保证前一张牌倒则后一张牌也必定倒.回顾:数学归纳法两大步:(i)归纳奠基:证明当n取第一个值n0时命题成立;(ii)归纳递推:假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.2.练习:已知f(n)1352n1,nN*,猜想f(n)的表达式,并给出证明?过程:试值f(1)1,f(2)4,„,→ 猜想f(n)n2→ 用数学归纳法证明.3.练习:是否存在常数a、b、c使得等式132435......n(n2)

对一切自然数n都成立,试证明你的结论.二、讲授新课:

1.教学数学归纳法的应用:

① 出示例1:求证11n(an2bnc)611111111,nN* 2342n12nn1n22n

分析:第1步如何写?n=k的假设如何写? 待证的目标式是什么?如何从假设出发? 关键:在假设n=k的式子上,如何同补?

小结:证n=k+1时,需从假设出发,对比目标,分析等式两边同增的项,朝目标进行变形.nn② 出示例2:求证:n为奇数时,x+y能被x+y整除.k+2k+22k2k2kk2k2k 分析要点:(凑配)x+y=x·x+y·y=x(x+y)+y·y-x·y

2kkk222kkk=x(x+y)+y(y-x)=x(x+y)+y·(y+x)(y-x).③ 出示例3:平面内有n个圆,任意两个圆都相交于两点,任何三个圆都不相交于同一点,2求证这n个圆将平面分成f(n)=n-n+2个部分.分析要点:n=k+1时,在k+1个圆中任取一个圆C,剩下的k个圆将平面分成f(k)个部分,而圆C与k个圆有2k个交点,这2k个交点将圆C分成2k段弧,每段弧将它所在的平

22面部分一分为二,故共增加了2k个平面部分.因此,f(k+1)=f(k)+2k=k-k+2+2k=(k+1)-

(k+1)+2.2.练习:

① 求证

:(11)(1)(1

131)n∈N*).2n1

② 用数学归纳法证明:

(Ⅰ)72n42n297能被264整除;

(Ⅱ)an1(a1)2n1能被a2a1整除(其中n,a为正整数)

n③ 是否存在正整数m,使得f(n)=(2n+7)·3+9对任意正整数n都能被m整除?若存在,求出最大的m值,并证明你的结论;若不存在,请说明理由.3.小结:两个步骤与一个结论,“递推基础不可少,归纳假设要用到,结论写明莫忘掉”;从n=k到n=k+1时,变形方法有乘法公式、因式分解、添拆项、配方等.三、巩固练习: 1.练习:教材501、2、5题2.作业:教材50 3、4、6题.第二课时4.2数学归纳法

教学要求:了解数学归纳法的原理,并能以递推思想作指导,理解数学归纳法的操作步骤,能用数学归纳法证明一些简单的数学命题,并能严格按照数学归纳法证明问题的格式书写.教学重点:能用数学归纳法证明几个经典不等式.教学难点:理解经典不等式的证明思路.教学过程:

一、复习准备:

1222n2n(n1),nN*.1.求证:1335(2n1)(2n1)2(2n1)

2.求证:11111nn,nN*.2342

1二、讲授新课:

1.教学例题:

① 出示例1:比较n2与2n的大小,试证明你的结论.分析:试值n1,2,3,4,5,6 → 猜想结论 → 用数学归纳法证明

→ 要点:(k1)2k22k1k22kkk23kk2k2„.小结:试值→猜想→证明

11② 练习:已知数列an的各项为正数,Sn为前n项和,且Sn(an),归纳出an的公2an

式并证明你的结论.解题要点:试值n=1,2,3,4,→ 猜想an → 数学归纳法证明

③ 出示例2:证明不等式|sinn|n|sin|(nN).要点:|sin(k1)||sinkcoscosksin||sinkcos||cosksin|

|sink||sin|k|sin||sin|(k1)|sin|

④ 出示例3:证明贝努利不等式.(1x)n1nx(x1,x0,nN,n1)

*2.练习:试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N且a、b、c

nnn互不相等时,均有a+c>2b.bnn解答要点:当a、b、c为等比数列时,设a=, c=bq(q>0且q≠1).∴ a+c=„.q

ancnacn*当a、b、c为等差数列时,有2b=a+c,则需证>()(n≥2且n∈N).2

2ak1ck11k+1k+1k+1k+11(a+c+a+c)>(ak+1+ck+1+ak·c+ck·a)„.当n=k+1时,24

41kkackacack+1=(a+c)(a+c)>()·()=().4222

3.小结:应用数学归纳法证明与正整数n有关的不等式;技巧:凑配、放缩.三、巩固练习:

111tan(2n))(1)....(1)1.用数学归纳法证明:(1.cos2cos4cos2ntan

11112.已知nN,n2,1.2n1n22n

3.作业:教材P543、5、8题.

下载高中数学 第2章《参数方程》教案 新人教版选修4-4word格式文档
下载高中数学 第2章《参数方程》教案 新人教版选修4-4.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐