第一篇:七年级上册《3.2实数》教案 浙教版
浙江省温州市平阳县鳌江镇第三中学七年级上册《3.2实数》教案 浙教版
(一)教学目标
1从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系。
2让学生体验用有理数估计一个无理数的大致范围的过程,掌握 “逐次逼近法”这种对数进行分析、猜测、探索的方法
3培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点
(二)教材分析
“实数”是在对算术平方根的研究的基础上,实现数的范围到有理数后的进一步扩展。由
2、π激起学生思维的火花,揭示现实空间无限不循环小数的存在,并从本质上理解无理数与有理数的区别。
重点:无理数、实数的意义,在数轴上表示实数。
难点:无理数与有理数的本质区别,实数与数轴上的点的一一对应关系。
(三)学生分析
学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用。但对七年级学生来讲,思维仍较直观,无理数显得比较抽象,难以理解。对2的探索是本课的关键,不仅得到无理数的概念,还有利于培养学生的分析、探索的能力。
(四)设计理念
让学生主动参与合作交流,探索、发现,注重知识形成的过程
(五)教学方法
启发式、探索式教学
(六)教学过程 复习旧知,揭示矛盾,引入概念
回顾书本 3.1探究活动(图3.2),复习前面所学的有理数的分类,2既然在1与2之间就不是整数,也不是分数,因为如果是分数的话它的平方也应是分数,也就是说2 不是有理数,但由此题可知2确实是存在的,同时π也是如此。
出现矛盾以后,本课以2为例,从2开始,来探索无理数的特征,学习实数。
1.2 联系实际创设问题情境:
如果你是布料销售店的售货员,假设我要买剪2米布,你将会给我剪多少比较合适?
学生能从上节的图3-2中估计2在1与2之间
引导学生借助计算器进行合作学习:
(1)根据上节课 1<2<2,确定√2=1.…
(2)确定小数点后第一位数
22222 计算1.1 1.2 1.3 1.4 1.5
1.4=1.96<22
1.5=2.25>2 就不必再算下去了 很明显1.4<2<1.5。
也有学生可根据以往经验马上由1.4=1.96<2根据以上得:2=1.4…
(3)再求下一位 计算1.41 1.42 等
1.5=2.25>2得到1.4<2<1.5。
=1.41…
到此为止,能解决上面问题,大约剪1.4 米 或1.41米就可以了。1.3 继续探索2特征,得到无理数概念
以上得到的1.4,1.41仅是2的近似值,2究竟是多少?在解决此问题后,又出现了新疑点。这样激发学生沿着以上思路继续合作学习,结合书本p71的表格,探索2特征。再问:通过以上的探索同学们有什么感受?体验到了什么?学生能在对有理数的已有认知的基础上,知道2确实不同于前面所学的有理数,总结2的特征:无限、不循环,得到无理数的概念。
(以上学生合作探索2特征的过程,让学生体验无理数是怎样一个数,同时掌握求无理数近似的方法。)
1.4举例说出无理数,巩固对无理数的理解
1.5 课本 掌握用有理数逐步逼近无理数,从而求出无理数近似值的方法 2 叙述数史,剖析概念,扩展数集
2.1 讲述故事,介绍无理数的来历
师问:当你们看到“有理数”与“无理数”这两个词时,你们的第一感觉是怎么理解的? 有生会答:“有道理的数”与“无道理的数”。
师:确实会有我们这种想法,这不,为此,它们还发动了战争呢?(屏幕显示故事,学生讲述)
《有理数和无理数之战》
在一个早晨,同学小毅一觉醒来,发现窗户外的山坡上在打仗。仔细一看,一边打着“有理数”的大旗子,一边打着“无理数”的大旗子。
有理数和无理数为什么要打仗?哦,原来是为了名字。
听听无理数司令π怎么说:“我们无理数和有理数同样是数,为什么他们‘有理’,我们‘无理’?我们究竟哪点儿无理?”
对呀!无理怎么会存在嘛!小毅心里也在琢磨。
“因为人们最开始发现的是有理数,见到我们无理数时还不理解,所以取了‘无理数’这么难听的名字。可是现在,人们已经充分认识我们了,就该给我们摘掉‘无理’的帽子才对!”
(教师简单说明无理数的来历,培养学生勇于发现真理的科学精神)
问:听了故事后你们有什么看法,你认为他们根本的区别在哪里?(学生讨论)
教师小结:“无理数”和“有理数”仅是名称而已,据说是清朝末年从日本引进时,翻译的讹误,因此不能从词义上理解,它们根本的区别,就是凡是有理数,都可以化成两个整数之比(可看成一个分数),而无理数,无论如何也不能化成两个整数之比(不能化为分数),从而突破本课第一个难点。2.2实数的概念: 有理数和无理数统称为实数
(通过故事不仅增加趣味性,更重要的在于强化无理数与有理数的本质区别,得实数的意义。而且介绍数学史,对揭示数学知识的来源和应用,创造一种探索与研究的气氛,激发学生对数学的兴趣等都起到重要作用)
练习讨论,反馈调整,巩固概念(1)无理数的相反数、绝对值
由前面有理数的相反数、绝对值的意义,类似得到无理数的相反数、绝对值的意义。
(2)练习:在 1/7;-π;5;0;0.3 ;25 ;-2;0.3131131113…(两个3之间依次多一个1)中 ①属于有理数的有: 属于无理数的有: 属于实数的有:
②说出以上各数的相反数、绝对值;
练习:(抢答)判断下面的语句对不对?并说明判断的理由。
①无限小数都是无理数; ②无理数都是无限小数; ③带根号的数都是无理数;
④有理数都是实数,实数不都是有理数; ⑤实数都是无理数,无理数都是实数; ⑥实数的绝对值都是非负实数; ⑦有理数都可以表示成分数的形式。
3(通过练习巩固实数概念,分析实数的分类,弄清带根号的数并不都是无理数,无理数指的是无限不循环小数,不能化为分数的数,这才是它的本质特征,明白数的范围扩大后相反数、绝对值的意义仍不变。)数形结合,突破难点,深化概念
(前面我们从数本身的特征上探讨了数除了有理数外还有无理数,接下来我们再利用数轴来进行说明。)
我们已经知道每一个有理数都可以用数轴上的点表示出来,那么数轴上的每一个点都表示有理数吗?(思考)
由书本图3.2可知,在数轴正方向上取OA的长等于图3.2中阴影正方形的边长,则点A表示2,即无理数2可以在数轴上找到对应点。可见,数轴上的点对应的数,不都是有理数。(显示数轴)
像每个有理数都可以在数轴上找到一个对应点一样,每个无理数也都可以在数轴上找到一个对应点,因此,可以说,每个实数都可以在数轴上找到一个对应点。(想一想:为什么?)反过来,数轴上的每一点也都对应一个有理数或无理数,也就是说,数轴上的每一点都对应一个实数。把这两件事合在一起,我们就说全体实数和数轴上的点一一对应。
利用课件显示帮助理解以上内容,数形结合,突破本课的难点:在数轴上用绿色闪烁圆点表示有理数,但这些并不能布满直线,说明数轴上的每一个点并不都表示有理数。再用红色闪烁圆点表示无理数,讲到有理数时绿色圆点闪烁,讲到无理数时绿色圆点闪烁,讲到实数时红、绿圆点同时闪烁,这才成为一整条直线,由此形象、直观展示实数除了有理数外还包括无理数,深化了实数的概念。
5类比迁移,大小比较,例题分析
例 把下列实数表示在数轴上,并比较它们的大小(用“<”号连接):
--1.4,2,3.3,π,--2,1.5(1)让学生阅读题目,讨论比较大小的方法,培养学生的自学能力和探索精神,学会类比迁移。比较学生的解题思路,利用数轴比较或利用法则比较的(一般无理数需取近似值),都予以鼓励,抓住一题多解,培养学生思维的发散性和流畅性,有利于学生整体素质提高。
(2)着重讲解在数轴上如何表示无理数,利用数轴进行大小比较
根据书本图3.2 画表示2的点的方法:画边长为1的正方形的对角线
在数轴上表示无理数通常有两种情况: 如;
2尺规可作的无理数
π 尺规不可作的无理数,只能近似地表示
理清关系,概括方法,课堂小结
6.1 2是人们最早认识的无理数之一,这节课我们 从2谈起,谈到了什么?(1)知识方面:
正有理数(有限小数、无限循环小数)
有理数 { 零 } 可化为分数 实数{ 负有理数
正无理数(无限不循环小数)无理数 { } 负无理数 不能化为分数
实数与数轴上的点一一对应
(2)思维方法:用有理数逼近无理数,求无理数的近似值;数形结合的数学思想
6.2启发学生提出新的疑问,培养学生创造性思维
从2谈起,我们还可以谈些什么?
例如: 其他无理数?
圆周率π的近似值?
由2出发,可以造出哪些无理数?
无理数与有理数的和、差、积等一定是无理数吗? 无理数与无理数的和、差、积等一定是无理数吗? 等等一系列问题,有待于我们进一步探索、研究 布置作业
A组必做,B、C组选做
附: 课后阅读
化循环小数为分数
(七)设计后感
本课精心设计问题情景,积极引导,启发学生进行概念剖析,从2谈起,让学生合作探究其特征,进而得到实数的概念,实现了数的范围的进一步扩展,尽量让学生亲身体验知识的形成过程,同时掌握分析、解决问题的思想和方法。
第二篇:七年级数学 实数教案
第三课时实数
学习目标了解无理数和实数的概念
2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小
3了解实数范围内相反数和绝对值的意义
学习重点正确理解实数的概念
学习难点理解实数的概念
问题用计算机把下列有理数写成小数的形式
5−3,7,8,1190,9
我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数。
那么无限不循环小数叫什么呢?
无理数:无限不循环小数叫做无理数。
通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如、、−、等都是无理数,π=3.1415926…也是无理数。
实数:有理数和无理数统称为实数。
有理数有限小数或无限小数依此分类实数无理数无限不循环小数
像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479115
正负之分,所以依此 分类为
正实数 正有理数
正无理数
实数0负有理数 负实数 负无理数
例
一、把下列各数填入相应的集合内
0.6、-43、0、33、0.13、π、(1)有理数集合:{}
(2)无理数集合:{}
(3)整数集合 :{}
(4)分数集合:{}
(5)实数集合:{}
我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?
事实上,每一个无理数都可以用数轴上的一个点表示出来。即数轴上的点有些表示有理数,有些表示无理数。
当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.平面直角坐标系中的点与有序实数对之间也是一一对应的。
与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数。
(1)数a的相反数是-a,(a表示任何实数)
(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.课堂小结
1、这节课你学到的知识有
2、这节课你的收获有
3、这节课应注意的问题有
练习题
a1、若实数a满足a1,则()A、a0B、a0C、a0D、a02、下列说法正确的是().A.无限小数都是无理数B.带根号的数都是无理数
C.无理数是无限小数D.无理数是开方开不尽的数
3、和数轴上的点一一对应的是()
A 整数B 有理数C 无理数D 实数
35x4、绝对值等于的数是,的相反数是,8的相反数是;12的相反数是_________________,绝对值是.
5、如果一个实数的绝对值是37,那么这个实数是
6、比较大小:-74
第三篇:浙江省瞿溪华侨中学2013年七年级数学上册 3.2 实数教案 浙教版
3.2 实 数
【教学目标】
知识目标:理解无理数和实数的概念,理解实数与数轴上的点的关系。
能力目标:能对实数进行归类,并能利用数轴对实数进行大小比较。
情感目标:数的范围随着知识的增长而扩大,通过这节内容的学习,有助于培养学生探究新
知识的能力和兴趣。
【教学重点、难点】
重点:无理数、实数的意义以及实数的分类是本节重点。
难点:用夹逼法求无理数的取值范围,是本节难点。
【教学过程】
一、新课引入:
同学们,你们知道π是一个怎样的数吗?你能背出他的小数点后面几位呢? 23和 π一样,是一个无限不循环的小数,我们把这样的小数称之为 无理数,如:π、是正无理数,-π、,—3是负无理数,1.010010001„„也是无理数。
有理数和无理数统称为实数,实数分类如下:
正有理数
有理数零
负有理数
实数正无理数
无理数无限不循环小数
负无理数
注意:把数的范围扩充到实数以后,有理数中的相反数和绝对值同样适用于实数。
二、当堂练一练
(1)—3的相反数是多少?
(2):|-
π(3):一个数的绝对值是 2
三、实数的大小比较:
在实数范围内,每一个数都可以用数轴的点来表示;反之,数轴上的每一点都表示一个实数,我们说实数和数轴上的点一一对应。
与有理数一样,在数轴上表示的两个实数,右边的数总比左边的数大。
四、师生互动:
例1:把下列实数表示在数轴上,并比较他们的大小用“<”号连接。
—4,2,3.3,π,—,1.5
五、当堂训练:见书本的课内练习。
六、布置作业。
教学反思:
对于2,可画边长为1的正方形的对角线得到,对于π等无理数,可以取其适当的近似值,近似的表示在数轴上。请学生自己动手,在数轴上画出所对应的点,然后根据上面的法则把这些数进行排序。
第四篇:《3.2实数》教学设计(定案)
《3.2实数》教学设计(定案)
(一)教材分析
“实数”是在对算术平方根的研究的基础上,实现数的范围到有理数后的进一步扩展。由
2、π激起学生思维的火花,揭示现实空间无限不循环小数的存在,并从本质上理解无理数与有理数的区别。
(二)学生分析
学生对有理数和平方根已有初步的了解,也已经了解近似数,掌握计算器的简单运用。思维仍较直观,无理数显得比较抽象,难以理解。对2的探索是本课的关键,不仅得到无理数的概念,还有利于培养学生的分析、探索的能力。
(三)教学目标
1、知识与技能:通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系。
2、过程与方法:掌握 “逐次逼近法”这种对数进行分析、猜测、探索的方法
3、情感态度价值观:培养学生勇于发现真理的科学精神,渗透数形结合及分类的思想。
(四)教学重难点
教学重点:无理数、实数的意义,在数轴上表示实数。
教学难点:无理数与有理数的本质区别,实数与数轴上的点的一一对应关系。
(五)设计理念
让学生主动参与合作交流,探索、发现,注重知识形成的过程。
(六)教学方法
启发式、探索式教学
(七)教学过程
1、复习旧知,揭示矛盾,引入概念
复习前面所学的有理数的分类,2既然在1与2之间就不是整数,也不是分数,也就是说2不是有理数,但由此题可知2确实是存在的,同时π也是如此。总结2的特征:无限、不循环,得到无理数的概念。(以上学生合作探索2特征的过程,让学生体验无理数是怎样一个数,同时掌握求无理数近似的方法。)举例说出无理数,巩固对无理数的理解。
课本p73 课内练习2:掌握用有理数逐步逼近无理数,从而求出无理数近似值的方法叙述数史,剖析概念,扩展数集
讲述故事,介绍无理数的来历。
师问:当你们看到“有理数”与“无理数”这两个词时,你们的第一感觉是怎么理解的? 有生会答:“有道理的数”与“无道理的数”。师:确实会有我们这种想法,为此,它们还发动了战争呢?
(教师讲故事并简单说明无理数的来历,培养学生勇于发现真理的科学精神)问:听了故事后你们有什么看法,你认为他们根本的区别在哪里?(学生讨论)教师小结:“无理数”和“有理数”仅是名称而已,因此不能从词义上理解,它们根本的区别,就是凡是有理数,都可以化成两个整数之比(可看成一个分数),而无理数,无论如何也不能化成两个整数之比(不能化为分数),从而突破本课第一个难点。
2、实数的概念:
有理数和无理数统称为实数
(通过故事不仅增加趣味性,更重要的在于强化无理数与有理数的本质区别,得实数的意义。而且介绍数学史,对揭示数学知识的来源和应用,创造一种探索与研究的气氛,激发学生对数学的兴趣等都起到重要作用)
3、练习讨论,反馈调整,巩固概念
(1)无理数的相反数、绝对值
由前面有理数的相反数、绝对值的意义,类似得到无理数的相反数、绝对值的意义。
(2)
练习:在 1/7;-π;5;0;0.3 ;25
;-2;0.3131131113„(两个3之间依次多一个1)中 ①属于有理数的有:属于无理数的有: 属于实数的有: ②说出以上各数的相反数、绝对值;
练习:(抢答)判断下面的语句对不对?并说明判断的理由。
①无限小数都是无理数;②无理数都是无限小数;③带根号的数都是无理数; ④有理数都是实数,实数不都是有理数; ⑤实数都是无理数,无理数都是实数;⑥实数的绝对值都是非负实数; ⑦有理数都可以表示成分数的形式。
(通过练习巩固实数概念,分析实数的分类,弄清带根号的数并不都是无理数,无理数指的是无限不循环小数,不能化为分数的数,这才是它的本质特征,明白数的范围扩大后相反数、绝对值的意义仍不变。)
4、数形结合,突破难点,深化概念
(前面我们从数本身的特征上探讨了数除了有理数外还有无理数,接下来我们再利用数轴来进行说明。)
我们已经知道每一个有理数都可以用数轴上的点表示出来,那么数轴上的每一个点都表示有理数吗?(思考)
由书本图3.2可知,在数轴正方向上取OA的长等于图3.2中阴影正方形的边长,则点A表示2,即无理数2可以在数轴上找到对应点。可见,数轴上的点对应的数,不都是有理数。(显示数轴)
像每个有理数都可以在数轴上找到一个对应点一样,每个无理数也都可以在数轴上找到一个对应点,因此,可以说,每个实数都可以在数轴上找到一个对应点。(想一想:为什么?)反过来,数轴上的每一点也都对应一个有理数或无理数,也就是说,数轴上的每一点都对应一个实数。把这两件事合在一起,我们就说全体实数和数轴上的点一一对应。
5、类比迁移,大小比较,例题分析
例
把下列实数表示在数轴上,并比较它们的大小(用“<”号连接): 1.4,2,3.3,π,--2,1.5(1)让学生阅读题目,讨论比较大小的方法,培养学生的自学能力和探索精神,学会类比迁移。比较学生的解题思路,利用数轴比较或利用法则比较的(一般无理数需取近似值),都予以鼓励,抓住一题多解,培养学生思维的发散性和流畅性,有利于学生整体素质提高。着重讲解在数轴上如何表示无理数,利用数轴进行大小比较
根据书本图3.2 画表示2的点的方法:画边长为1的正方形的对角线 在数轴上表示无理数通常有两种情况: 如;2 用尺规可作,π用尺规不可作,只能近似地表示。
7、这节课我们的收获是什么?
(1)知识方面:
(2)思维方法:用有理数逼近无理数,求无理数的近似值;数形结合的数学思想。无理数与有理数的和、差、积等一定是无理数吗? 无理数与无理数的和、差、积等一定是无理数吗? 等等一系列问题,有待于我们进一步探索、研究。
8、布置作业
第五篇:鲁教版七年级上册第三章实数第五节用计算器开方教案
3.5 用计算器开方
教学目标:
1、会用计算器求平方根和立方根。
2、经历运用计算器探求数学规律的活动,发展合情推理的能力。重点、难点
重点:用计算器求平方根和立方根;运用计算器探求数学规律。难点:探求规律,发展合情推理的能力。教学过程
一、创设情景
1、出示投影:科学计算器教学模板。提出课题:利用科学计算器怎样进行开方运算?
2、说明开平方、开立方运算的方法。(1)开方运算要用到乘方运算键x第二功能“对于开平方运算,按键顺序为:2nd22”和∧的第二功能“
x”。
x
被开方数
=
nd对于开平方运算,按键顺序为:3 ∧
被开方数
=
二、师生共同参与活动
1、让学生跟随教师按步骤利用计算器计算下列各数,各题的按键顺序同课本P42的“按键顺序”。
2、做一做
利用计算器,求下列各式的值(结果保留4个有效数字)
223(1)800;
(2)5 ;
(3)0.58 ;
(4)0.432 3让学生交流完成上述各题,教师可展示部分学生的答案并指出正确的结果:(1)28.28
(2)1.639
(3)0.7616
(4)—0.7560
3、例1利用计算器比较3和2的大小。(1)让学生讨论出如何比较两数大小的方法。
3(2)让一个学生把计算3和2的过程在教学模板上演示。3(3)演示P42页例1的解答。
教师归纳:我们可以利用计算器计算比较两个无理数的大小。
三、随堂练习
利用计算器比较下列各组数的大小:
51531、11,52、8,2
四、小结
1、如何利用计算器求平方根和立方根,举出具体例子并口述过程。
2、如何比较两个无理数的大小?
3、今天探索了什么规律?
五、作业
1、P55习题3.7
六、教后反思