第一篇:实数教案
复习实数
学习目标:
1、2、理解实数的意义,能用数轴上的点表示数。能借助数轴理解相反数和绝对值得意义,会求一个数的相反数与绝对值。
3、了解平方根算数平方根、立方根的概念。重点:实数的分类。
难点:绝对值的意义和运用。
过程:
一、复习回顾实数的分类,方式:师生共同回顾后,师展示
二、自学:
(一)知识类:
1、相反数。a的相反数是,相反数等子本身的数量,若a、b互为相反数,则。
2、倒数。a(a≠0)的倒数是。用负指数表示为没有倒数。倒数等子本身的数是a、b互为倒数,则
3、绝对值。绝对值等于本身的数是,即
lal=
4、数轴。数轴的三要素为一一对应。
5、实数大小的比较。
(1)在数轴上表示两个数的点,左边的点表示的数表示的数。
(2)正数大于零;两个正数绝对值大的较。两个负数绝对值小的较
(3)设a.b是任意两实数。
若a-b>0,则b;若a-b=0,则b;若a-b<0,则b。
6、非负数的表现形式有
7、常见的几个实数:最小的自然数是,最大的负整数是,绝对值最小的整数是
(二)运用类:
1、某水井水位最低时低于水平面5米,记做-5米,最高时低于水平面1米,则水井位h米中h的取值范围是
2、若x的相反数是3,lyl=5,则-l-2l的倒数是
3、若 的算术平方根恰好使分式
第二篇:第二章 实数教案
第 实数(复习)
地点:205班 授课人:霍燕萍 时间:2010.1.7
一、教学目标:
1、能区分有理数和无理数。
2、熟练掌握算术平方根、平方根和立方根的运算。
3、能估计无理数的一个大致范围,并比较两个实数的大小。
4、能用数轴表示一个实数。
5、熟练掌握实数的四则运算。
二、教学重点与难点:
1、教学重点:(1)算术平方根、平方根和立方根的运算;
(2)能估计无理数的一个大致范围,并比较两个实数的大小;(3)实数的四则运算.2、教学难点:(1)无理数的估算;(2)实数的四则运算.三、教学过程设计(一)知识回顾
1、填空
(1)___________________________________叫做有理数;(2)___________________________________叫做无理数;(3)___________和____________统称为实数;
(4)一个正数有_____个平方根;0的平方根是_______;1的平方根是__________;负数_______(有/没有)平方根。
(5)正数的立方根是_________;0的立方根是________;负数的立方根是______。(6)ab_________a0,b0;
ab a0,b0.a(8)a(7)32______(a0);a______(a是任何实数)______;3a3______.23(二)例题讲解
例1 把下列各数写入相应的集合中:
1,0,327,0.5757757775(相邻的两个5之 ,311,0.3,25,0.272间7的个数逐次加1)
(1)正数集合{ }(2)负数集合{ }(3)有理数集合{ }(4)无理数集合{ } 例2 求下列各数的算术平方根:
49(1)13(2)9(3)(4)42(5)104
36例3 求下列各数的平方根:
(1)10(2)121(3)0.0004(4)25(5)106
2例4 求下列各数的立方根:(1)-8(2)0.064(3)(4)23 125例5 计算(1)163279(2)333(7)339222
例6 估计5和3600的大小(误差小于1)例7 比较311与的大小 22例8 请在数轴上用尺规作出5的对应的点。
例9 化简(1)(4)(64)(81)
(2)123(3)51
(5)2632
3232
例10 化简
(1)18
(2)6375(3)(4)748330 (13)
(三)课堂小结
1.要注意数的平方根与算术平方根的区别:
(1)任何正数a的平方根有两个,它们互为相反数,记作a,求一个正数的平方根时,不要漏掉其中的负的平方根。
(2)任何正数a的算术平方根只有一个,它就是正数a的正的平方根,记作a,这表明,正数的算术平方根也是正数。2.要注意数的平方根与立方根的区别,只有正数和零才有平方根,且正数的平方根有两个;任何实数都必须有立方根,且立方根只有一个。
3.无理数是无限不循环小数。一般来说,凡平方开不尽的数都是无理数,但要注意,并不是所有的无理数都可以写成根式的形式,如就不能写成根式的形式。
4.将数扩大到实数范围后,正数和零总可以实施开平方运算,但负数开平方没有意义。5.被开方数含有分母或含有开得尽的因数时,都需要进行化简。
(四)课堂小测
1、填空题
(1)一个数的平方等于它本身,这个数是______________;(2)平方根等于它本身的数是_____________;(3)算术平方根等于它本身的数是____________;(4)立方根等于它本身的数是___________。
2、比较比较2713与的大小 223、求下列各式的值(1)30.125(2)353
4、计算 1
5、化简 201042364
(1)212348(2)1320552
(3)(4)32312 2(五)布置作业 练习纸
第三篇:实数教案1
内容:13.3 实数(1)课型:新授 学习目标:
1、了解实数的意义,能对实数按要求进行分类。
2、了解实数范围内,相反数、倒数、绝对值的意义。
3、了解数轴上的点与实数一一对应,能用数轴上的点来表示无理数。学习重点:理解实数的概念。学习难点:正确理解实数的概念。
一、学前准备
1、填空
2、探究 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?,,二、探究新知
1、归纳: 任何一个有理数都可以写成_______小数或________小数的形式。反过来,任何______小数或____________小数也都是有理数
观察 通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数,____________小数又叫无理数,也是无理数 结论: _______和_______统称为实数 你能举出一些无理数吗?
2、试一试 把实数分类
像有理数一样,无理数也有正负之分。例如,是____无理数,,是____无理数。由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:
3、我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?
从图中可以看出OO′的长时这个圆的周长______,点O′的坐标是_______ 这样,无理数 可以用数轴上的点表示出来(2)
总结 ①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________ 当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数
② 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______
4、讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?
总结 数 的相反数是______,这里 表示任意____________。一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______
三、学以致用
例
1、把下列各数分别填入相应的集合里:
正有理数{ } 负有理数{ } 正无理数{ } 负无理数{ }
2、下列实数中是无理数的为()A.0 B.C.D.3、的相反数是,绝对值
4、绝对值等于 的数是,的平方是5、6、求绝对值
练习:
一、判断下列说法是否正确:
1.实数不是有理数就是无理数。()2.无限小数都是无理数。()3.无理数都是无限小数。()4.带根号的数都是无理数。()
5.两个无理数之和一定是无理数。()
6.所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数。(二、填空1、2、3、比较大小
4、_________
四、总结反思 这节课你有什么新发现?知道了哪些新知识?
无理数的特征: 1.圆周率 及一些含有 的数
2.开不尽方的数
3.有一定的规律,但循环的无限小数 注意:带根号的数不一定是无理数
五、自我测试
1、把下列各数填入相应的集合内:
有理数集合{ } 无理数集合{ })
整数集合{ } 分数集合{ } 实数集合{ }
2、下列各数中,是无理数的是()A.B.C.D.3、已知四个命题,正确的有()
⑴有理数与无理数之和是无理数 ⑵有理数与无理数之积是无理数 ⑶无理数与无理数之积是无理数 ⑷无理数与无理数之积是无理数 A.1个 B.2个 C.3个 D.4个
4、若实数 满足,则()A.B.C.D.5、下列说法正确的有()
⑴不存在绝对值最小的无理数 ⑵不存在绝对值最小的实数 ⑶不存在与本身的算术平方根相等的数 ⑷比正实数小的数都是负实数 ⑸非负实数中最小的数是0 A.2个 B.3个 C.4个 D.5个
6、⑴ 的相反数是_________,绝对值是_________
⑵ ⑶若,则 _________ ⑷ _______
7、是实数,则 _________
第四篇:七年级数学 实数教案
第三课时实数
学习目标了解无理数和实数的概念
2会对实数按照一定的标准进行分类;知道实数和数轴上的点的关系.能估算无理数的大小
3了解实数范围内相反数和绝对值的意义
学习重点正确理解实数的概念
学习难点理解实数的概念
问题用计算机把下列有理数写成小数的形式
5−3,7,8,1190,9
我们知道整数和分数统称有理数,所以任意一个有理数都可以写成有限小数或无限不循环小数的形式,反之,任何有限小数或无限小数也都是有理数。
那么无限不循环小数叫什么呢?
无理数:无限不循环小数叫做无理数。
通过上两节课的学习,我们知道许多数的平方根或立方根都是无限不循环小数,例如、、−、等都是无理数,π=3.1415926…也是无理数。
实数:有理数和无理数统称为实数。
有理数有限小数或无限小数依此分类实数无理数无限不循环小数
像有理数一样,无理数也有正负之分,由于非0有理数和无理数都有3479115
正负之分,所以依此 分类为
正实数 正有理数
正无理数
实数0负有理数 负实数 负无理数
例
一、把下列各数填入相应的集合内
0.6、-43、0、33、0.13、π、(1)有理数集合:{}
(2)无理数集合:{}
(3)整数集合 :{}
(4)分数集合:{}
(5)实数集合:{}
我们知道,每个有理数都可以用数轴上的点来表示。无理数是否也可以用数轴上的点来表示呢?
事实上,每一个无理数都可以用数轴上的一个点表示出来。即数轴上的点有些表示有理数,有些表示无理数。
当数从有理数扩充到实数后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示:反过来,数轴上的每一个点都表示一个实数.平面直角坐标系中的点与有序实数对之间也是一一对应的。
与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。当数从有理数扩充到实数以后,有理数关于相反数的绝对值的意义同样适合实数。
(1)数a的相反数是-a,(a表示任何实数)
(2)一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.课堂小结
1、这节课你学到的知识有
2、这节课你的收获有
3、这节课应注意的问题有
练习题
a1、若实数a满足a1,则()A、a0B、a0C、a0D、a02、下列说法正确的是().A.无限小数都是无理数B.带根号的数都是无理数
C.无理数是无限小数D.无理数是开方开不尽的数
3、和数轴上的点一一对应的是()
A 整数B 有理数C 无理数D 实数
35x4、绝对值等于的数是,的相反数是,8的相反数是;12的相反数是_________________,绝对值是.
5、如果一个实数的绝对值是37,那么这个实数是
6、比较大小:-74
第五篇:实数说课稿
︽ 单 位:漯河市郾城区黑龙潭乡初级中学姓 名:实 数 ︾ 说 课 稿
王 淑 娟
《实数》说课稿
一、教材分析
1、教学内容
这节课的教学内容主要介绍无理数、实数的概念以及实数与数轴上的点一一对应的关系。
2、教材的地位和作用
本节课是人教版《数学》八年级(上)第十三章最后一个小节的内容,是在学生学习了平方根、立方根以后,接触过“2”、“π”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数。在中学阶段,大多数问题都是在实数的范围内研究的,因此,它对今后的数学学习有着非常重要的意义。
无理数的引入,数系的扩展充满着对立和统一的辩证关系及分类思想,实数和数轴上的点一一对应蕴含着数形结合的思想。所以这节课不仅仅是完善学生的知识结构,而且还是培养学生想象能力,渗透数学思想,感受数学美的有效载体,也是发展学生逻辑思维能力的重要内容。
二、目标分析
1、教学目标
完成实数概念的建构,达到教学目标。并结合计算器、多媒体、实物投投仪等现代教投手段实施教学,体现直观性。学生通过动手、动口、动脑等活动,主动探索、发现问题;互动合作,解决问题;归纳概括,形成能力。恰如其分的问题设计,真正的让学生进行探究,突出学生教学主体的地位。
四、教学过程
1、复习旧知,揭示矛盾,引入概念
回顾书本 82页探究活动,复习前面所学的有理数的规律任何一个有理数都可以写成有限小数或无限循环小数,而发现如2和π不是有理数,但2确实是存在的,同时π也是如此。出现矛盾以后,来探索无理数的特征,学习实数。
2、概念学习
由上面有理数的规律从而得出无理数的概念,然后通过举例,先从形式上认识无理数,再归纳总结,帮助学生理解无理数的概念。教师小结:“无理数”和“有理数”仅是名称而已,据说是清朝末年从日本引进时,翻译的讹误,因此不能从词义上理解,它们根本的区别,就是凡是有理数,都可以化成两个整数之比(可看成一个分数),而无理数,无论如何也不能化成两个整数之比(不能化为分数),从而突破本课第一个难点。这样理解无理数的概念了,实数的概念和分类就容易理解。然后练习讨论,反馈调整,巩固概念。
先复习有理数的相关知识,再完成84页的“思考”,归纳总结:在实数范围内,相反数、倒数、绝对值的意义和有理数范围内的相反数、绝对值的意义完全一样。
再通过课本例题学习及强化练习来巩固新知。
5、理清关系,概括方法,课堂小结 这节课你有什么新发现?知道了哪些新知识?(1)了解了无理数、实数的意义
(2)实数的分类及实数与数轴上的点的一一对应的关系
(3)数扩充到实数后,相反数、绝对值、倒数的意义仍然不变。
启发学生提出新的疑问,培养学生创造性思维,从起,我们还可以谈些什么?
例如:其他无理数? 圆周率π的近似值? 由2出发,可以造出哪些无理数?
2谈无理数与有理数的和、差、积等一定是无理数吗? 无理数与无理数的和、差、积等一定是无理数吗? 等等一系列问题,有待于我们进一步探索、研究
6、布置作业
五、设计后感
本课精心设计问题情景,积极引导,启发学生进行概念