第一篇:七年级数学上册 3.1.2《等式的性质》教案 (新版)新人教版
3.1.2《等式的性质》教案
教学内容
课本第82页至第84页.
教学目标
1.知识与技能
会利用等式的两条性质解方程. 2.过程与方法
利用天平,通过观察、分析得出等式的两条性质. 3.情感态度与价值观
培养学生参与数学活动的自信心、合作交流意识.
重、难点与关键
1.重点:了解等式的概念和等式的两条性质,并能运用这两条性质解方程. 2.难点:由具体实例抽象出等式的性质.
3.关键:了解和掌握等式的两条性质是掌握一元一次方程的解法的关键.
教具准备
投影仪.
教学过程
一、引入新课
我们可以估算出某些方程的解,但是仅依靠估算来解比较复杂的方程是很困难的.这一点上一节课我们已经体会到.因此,我们还要讨论怎样解方程.因为,方程是含有未知数的等式,为了讨论解方程,我们先来研究等式有什么性质?
二、新授
1.什么是等式?
用等号来表示相等关系的式子叫等式.
例如:m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式,•我们可以用a=b表示一般的等式. 2.探索等式性质.
观察课本图3.1-2,由它你能发现什么规律?
从左往右看,发现如果在平衡的天平的两边都加上同样的量,天平还保持平衡.
从右往左看,是在平衡的天平的两边都减去同样的量,结果天平还是保持平衡.
等式就像平衡的天平,它具有与上面的事实同样的性质.
等的性质1:等式两边都加(或减)同一个数(或式子),结果相等.
例如等式:1+3=4,把这个等式两边都加上5结果仍是等式即1+3+5=4+5,把等式两边都减去5,结果仍是等式,即1+3-5=4-5.
怎样用式子的形式表示这个性质?
如果a=b,那么a±c=b±c.
运用性质1时,•应注意等号两边都加上(或减去)同一个数或同一个整式才能保持 所得结果仍是等式,否则就会破坏相等关系,例如,对于等式3+4=7,•如果左边加上5,右边加上6,那么3+4+5≠7+6.
观察课本图3.1-3,由它你能发现什么规律?
可以发现,如果把平衡的天平两边的量都乘以(或除以)同一个量,天平还保持平衡.
类似可以得到等式性质2:等式两边乘同一个数,或除以同一个不等于0的数,结果仍相等.
怎样用式子的形式表示这个性质?
如果a=b,那么ac=bc.
如果a=b,(c≠0),那么ab=. cc 性质2中仅仅乘以(或除以)同一个数,而不包括整式(含字母的),•要注意与性质1的区别.
运用性质2时,应注意等式两边都乘以(或除以)同一个数,•才能保持所得结果仍是等式,但不能除以0,因为0不能作除数.
例2:利用等式的性质解下列方程:
(1)x+7=26;(2)-5x=20;(3)-
1x-5=4. 3 分析:解方程,就是把方程变形,变为x=a(a是常数)的形式.
在方程x+7=26中,要去掉方程左边的7,因此两边都减去7.
解:(1)根据等式性质1,两边同减7,得: x+7-7=26-7 于是 x=19 我们可以把x=19代入原方程检验,•看看这个值能否使方程的两边相等,•将x=19代入方程x+7=26的左边,得左边=19+7=26=右边,所以x=19是方程x+7=26•的解.
(2)分析:-5x=20中-5x表示-5乘x,其中-5是这个式子-5x的系数,式子x•的系数为1,-x的系数为-1,如何把方程-5x=20转化为x=a形式呢?即把-5x的系数变为1,应把方程两边同除以-5.
解:根据等式性质2,两边都除以-5,得
5x20 55 于是x=-4(3)分析:方程-11x-5=4的左边的-5要去掉,同时还要把-x的系数化为1,如何33去掉-5呢?根据两个互为相反数的和为0,所以应把方程两边都加上5.
解:根据等式性质1,两边都加上5,得-1x-5+5=4+5 32 化简,得-x=9 再根据等式性质2,两边同除以--
1(即乘以-3),得 31x·(-3)=9×(-3)3 于是 x=-27 同学们自己代入原方程检验,看看x=-27是否使方程的两边相等.
3.补充例题:下列方程的解法对不对?如果不对,错在哪里?应当怎样改正?
(1)解方程:x+12=34 解:x+12=34=x+12-12=34-12=x=22(2)解方程-9x+3=6 解:-9x+3-3=6-3 于是-9x=3 所以 x=-3(3)解方程2x1-1= 33 解:两边同乘以3,得2x-1=-1 两边都加上1,得 2x-1+1=-1+1 化简,得 2x=0 两边同除以2,得 x=0 分析:(1)错,解方程是根据等式的两个性质,将方程变形,所以不能用连等号;
(2)错,最后一步是根据等式的性质2,两边同除以-9,即(3)错,两边同乘以3,应得2x-3=-1 两边都加3,得 2x=2 两边同除以2,得 x=1 本题还可以这样解答:
两边都加上1,得 化简,得=
9x31,于是x=-. 9932x1-1+1=-+1 332x2= 3323 两边都除以(或乘以),得x=1 32
三、巩固练习
1.课本第84页练习.
(1)两边同加上5,得x=11,把x=11代入方程左边=11-5=6=右边,所以x=11•是方程的解.
(2)两边同除以0.3,即乘以
10,得x=150,检验略. 33(3)解法1:两边都减去2,得2-化简,得-
1x-2=3-2 41x=1 4 两边同乘以-4,得x=-4 解法2:两边都乘以-4,得-8+x=-12 两边都加上8,得x=-4 检验:将x=-4代入方程,2-2-
1x=3的左边,得: 41×(-4)=2+1=3 4 方程的左右两边相等,所以x=-4是方程的解.
一般采用方法1. 2.补充练习.
回答下列问题:
(1)从a+b=b+c,能否得到a=c,为什么?
(2)从ab=bc能否得到a=c,为什么?
(3)从ac=,能否得到a=c,为什么? bb(4)从a-b=c-b,能否得到a=c,为什么?
(5)从xy=1,能否得到x=
1,为什么? y 解:(1)从a+b=b+c,能得到a=c,根据等式性质1,两边同减去b,就得a=c.
(2)从ab=bc不能得到a=c,因为b是否为0不确定,所以不能根据等式的性质2,•在等式的两边同除以b.
(3)从ac=能得到a=c,根据等式性质2,两边都乘以b. bb(4)从a-b=c-b能得到a=c,根据等式性质1,两边都加b.
(5)从xy=1能得到x=1由xy=1隐含着y≠0,因此根据等式的性质2,在等式两边y都除以y.
四、课堂小结
在学习本节内容时,要注意几个问题:
1.根据等式的两条性质,对等式进行变形必须等式两边同时进行,即:•同时加或减,同时乘或除,不能漏掉一边.
2.等式变形时,两边加、减、乘、除的数或式必须相同. 3.利用性质2进行等式变形时,须注意除以的同一个数不能是0.
五、作业布置
1.课本第85页习题3.1第4、7、8题. 2.思考课本第85习题3.1第10、11题. 3.选用课时作业设计.
课时作业设计
一、填空题.
1.在等式2x-1=4,两边同时________得2x=5. 2.在等式x-23=y-23,两边都_______得x=y. 3.在等式-5x=5y,两边都_______得x=-y. 4.在等式-13x=4的两边都______,得x=______. 5.如果2x-5=6,那么2x=________,x=______,其根据是________. 6.如果-14x=-2y,那么x=________,根据________. 7.在等式34x=-20的两边都______或______得x=________.
二、判断题.(对的打“∨”,错的打“×”)8.由m-1=4,得m=5.()9.由x+1=3,得x=4.()
10.由x3=3,得x=1.()11.由x2=0,得x=2()
12.在等式2x=3中两边都减去2,得x=1.()
三、判断题.
13.下列方程的解是x=2的有(). A.3x-1=2x+1 B.3x+1=2x-1 C.3x+2x-2=0 D.3x-2x+2=0 14.下列各组方程中,解相同的是(). A.x=3与2x=3 B.x=3与2x+6=0 C.x=3与2x-6=0 D.x=3与2x=5
四、用等式的性质求x. 15.(1)x+2=5;(2)3=x-3;(3)x-9=8;
(4)5-y=-16;(5)-3x=15;(6)-
y3-2=10;
(7)3x+4=-13;(8)
23x-1=5.
五、检验下列各小题括号里的数哪个是它前面方程的解. 16.3-2x=9+x(x=2,x=-2). 17.5x-1=2x+3(x=1,x=43). 18.(2x-1)(x+3)=0(x=
12,x=1,x=-3). 19.x2+2x-3=0(x=1,x=-1,x=-3).
第二篇:七年级上数学教案:3.1.2等式的性质
3.1.2等式的性质(2)
教学目标
①进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程
②初步具有解方程中的化归意识;
③培养言必有据的思维能力和良好的思维品质 教学重点
用等式的性质解方程。知识难点
需要两次运用等式的性质,并且有一定的思维顺序 教学过程
一、复习引入
解下列方程:(1)x+7=1.2;(2)x 在学生解答后的讲评中围绕两个问题: 1.每一步的依据分别是什么?
2.求方程的解就是把方程化成什么形式? 这节课继续学习用等式的性质解一元一次方程。
二、探究新知
对于简单的方程,我们通过观察就能选择用等式的哪一条性质来解,下列方程你也能马上做出选择吗?
例1 利用等式的性质解方程:
(1)0.5x-x=3.4(2)x54
233213先让学生对第(1)题进行尝试,然后教师进行引导:
1要把方程0.5x-x=3.4转化为x=a的形式,必须去掉方程左○边的0.5,怎么去?
2要把方程-x=2.9转化为x=a的形式,○必须去掉x前面的“-”号,怎么去? 然后给出解答:
解:两边减0.5,得0.5-x-0.5=3.4-0.5 化简,得
-x=-2.9,、两边同乘-1,得l x=-2.9 小结:(1)这个方程的解答中两次运用了等式的性质(2)解方程的目标是把方程最终化为x=a的形式,在运用性质进行变形时,始终要朝着这个目标去转化.
你能用这种方法解第(2)题吗?
在学生解答后再点评. 解后反思:
①第(2)题能否先在方程的两边同乘“一3”? ②比较这两种方法,你认为哪一种方法更好?为什么? 允许学生在讨论后再回答.
例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布3.5米,儿童服装每套平均用布1.5米.现已做了
80套成人服装,用余下的布还可以做几套儿童服装?
在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗?
解:设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5米,根据题意,得 80x×3.5+1.5x=355.
化简,得 280+1.5x=355,两边减280,得
280+1.5x-280=355-280,化简,得 1.5x=75,两边同除以1.5,得x=50.
答:用余下的布还可以做50套儿童服装.
解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解.也就是把实际问题转化为数学问题.
问题:我们如何才能判别求出的答案50是否正确?
在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程80×3.5+1.5x=355的左边,得80×3.5+1.5×50=280+75=355
方程的左右两边相等,所以x=50是方程的解。
你能检验一下x=-27是不是方程x54的解吗?
三、课堂练习
教科书第73页练习第(3)(4)题。
小聪带了18元钱到文具店买学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解)
建议:采用小组竞赛的方法进行评议
四、课堂小结
建议:①先让学生进行归纳、补充。主要围绕以下几个方面:(1)这节课学习的内容。(2)我有哪些收获?(3)我应该注意什么问题? ②教师对学生的学习情况进行评价。思考题 用等式的性质求x:-2x=-5x+7
五、本课作业
必做题:教科书第73页第4(1)、(2)、(4)题;补充:用等式的性质解方程:①3+4x=17;②4-=3 选做题:教科书第73页第4(3)题,第74页第10题。
1213 4
第三篇:湖北省武汉市为明实验学校七年级数学 3.1.2等式的性质教案 人教新课标版
3.1.2 等式的性质
教学内容
课本第82页至第84页.
教学目标
1.知识与技能
会利用等式的两条性质解方程.
2.过程与方法
利用天平,通过观察、分析得出等式的两条性质. 3.情感态度与价值观
培养学生参与数学活动的自信心、合作交流意识.
重、难点与关键
1.重点:了解等式的概念和等式的两条性质,并能运用这两条性质解方程. 2.难点:由具体实例抽象出等式的性质.
3.关键:了解和掌握等式的两条性质是掌握一元一次方程的解法的关键.
教具准备
投影仪.
教学过程
一、引入新课
我们可以估算出某些方程的解,但是仅依靠估算来解比较复杂的方程是很困难的.这一点上一节课我们已经体会到.因此,我们还要讨论怎样解方程.因为,方程是含有未知数的等式,为了讨论解方程,我们先来研究等式有什么性质?
二、新授
1.什么是等式?
用等号来表示相等关系的式子叫等式.
例如:m+n=n+m,x+2x=3x,3×3+1=5×2,3x+1=5y这样的式子,都是等式,•我们可以用a=b表示一般的等式.
2.探索等式性质.
观察课本图3.1-2,由它你能发现什么规律?
从左往右看,发现如果在平衡的天平的两边都加上同样的量,天平还保持平衡.
从右往左看,是在平衡的天平的两边都减去同样的量,结果天平还是保持平衡.
等式就像平衡的天平,它具有与上面的事实同样的性质.
等的性质1:等式两边都加(或减)同一个数(或式子),结果相等.
例如等式:1+3=4,把这个等式两边都加上5结果仍是等式即1+3+5=4+5,把等式两边都减去5,结果仍是等式,即1+3-5=4-5.
怎样用式子的形式表示这个性质?
如果a=b,那么a±c=b±c.
运用性质1时,•应注意等号两边都加上(或减去)同一个数或同一个整式才能保持
用心
爱心
专心
所得结果仍是等式,否则就会破坏相等关系,例如,对于等式3+4=7,•如果左边加上5,右边加上6,那么3+4+5≠7+6.
观察课本图3.1-3,由它你能发现什么规律?
可以发现,如果把平衡的天平两边的量都乘以(或除以)同一个量,天平还保持平衡.
类似可以得到等式性质2:等式两边乘同一个数,或除以同一个不等于0的数,结果仍相等.
怎样用式子的形式表示这个性质?
如果a=b,那么ac=bc.
如果a=b,(c≠0),那么acbc=.
性质2中仅仅乘以(或除以)同一个数,而不包括整式(含字母的),•要注意与性质1的区别.
运用性质2时,应注意等式两边都乘以(或除以)同一个数,•才能保持所得结果仍是等式,但不能除以0,因为0不能作除数.
例2:利用等式的性质解下列方程:
(1)x+7=26;(2)-5x=20;(3)-13x-5=4.
分析:解方程,就是把方程变形,变为x=a(a是常数)的形式.
在方程x+7=26中,要去掉方程左边的7,因此两边都减去7.
解:(1)根据等式性质1,两边同减7,得: x+7-7=26-7 于是 x=19 我们可以把x=19代入原方程检验,•看看这个值能否使方程的两边相等,•将x=19代入方程x+7=26的左边,得左边=19+7=26=右边,所以x=19是方程x+7=26•的解.
(2)分析:-5x=20中-5x表示-5乘x,其中-5是这个式子-5x的系数,式子x•的系数为1,-x的系数为-1,如何把方程-5x=20转化为x=a形式呢?即把-5x的系数变为1,应把方程两边同除以-5.
解:根据等式性质2,两边都除以-5,得
5x5205
于是x=-4(3)分析:方程-13x-5=4的左边的-5要去掉,同时还要把-
13x的系数化为1,如何去掉-5呢?根据两个互为相反数的和为0,所以应把方程两边都加上5.
解:根据等式性质1,两边都加上5,得-13x-5+5=4+5 化简,得-x=9
用心
爱心
专心
再根据等式性质2,两边同除以--1313(即乘以-3),得
x·(-3)=9×(-3)
于是 x=-27 同学们自己代入原方程检验,看看x=-27是否使方程的两边相等.
3.补充例题:下列方程的解法对不对?如果不对,错在哪里?应当怎样改正?
(1)解方程:x+12=34 解:x+12=34=x+12-12=34-12=x=22(2)解方程-9x+3=6 解:-9x+3-3=6-3 于是-9x=3 所以 x=-3(3)解方程2x3-1=13
解:两边同乘以3,得2x-1=-1 两边都加上1,得 2x-1+1=-1+1 化简,得 2x=0 两边同除以2,得 x=0
分析:(1)错,解方程是根据等式的两个性质,将方程变形,所以不能用连等号;
(2)错,最后一步是根据等式的性质2,两边同除以-9,即(3)错,两边同乘以3,应得2x-3=-1 两边都加3,得 2x=2 两边同除以2,得 x=1 本题还可以这样解答:
两边都加上1,得 化简,得=2x3232x39x939,于是x=-
13.-1+1=-
13+1 =23
两边都除以(或乘以),得x=1
三、巩固练习
1.课本第84页练习.
(1)两边同加上5,得x=11,把x=11代入方程左边=11-5=6=右边,所以x=11•是方程的解.
(2)两边同除以0.3,即乘以
103,得x=150,检验略.
用心
爱心
专心
(3)解法1:两边都减去2,得2-化简,得-1414x-2=3-2 x=1 两边同乘以-4,得x=-4 解法2:两边都乘以-4,得-8+x=-12 两边都加上8,得x=-4 检验:将x=-4代入方程,2-2-1414x=3的左边,得:
×(-4)=2+1=3 方程的左右两边相等,所以x=-4是方程的解.
一般采用方法1. 2.补充练习.
回答下列问题:
(1)从a+b=b+c,能否得到a=c,为什么?
(2)从ab=bc能否得到a=c,为什么?
(3)从abcb=,能否得到a=c,为什么?
(4)从a-b=c-b,能否得到a=c,为什么?
(5)从xy=1,能否得到x=
1y,为什么?
解:(1)从a+b=b+c,能得到a=c,根据等式性质1,两边同减去b,就得a=c.
(2)从ab=bc不能得到a=c,因为b是否为0不确定,所以不能根据等式的性质2,•在等式的两边同除以b.
(3)从ab=cb能得到a=c,根据等式性质2,两边都乘以b.
(4)从a-b=c-b能得到a=c,根据等式性质1,两边都加b.
(5)从xy=1能得到x=都除以y.
四、课堂小结
在学习本节内容时,要注意几个问题:
1.根据等式的两条性质,对等式进行变形必须等式两边同时进行,即:•同时加或减,同时乘或除,不能漏掉一边.
2.等式变形时,两边加、减、乘、除的数或式必须相同.
用心
爱心
专心 1y由xy=1隐含着y≠0,因此根据等式的性质2,在等式两边
3.利用性质2进行等式变形时,须注意除以的同一个数不能是0.
五、作业布置
1.课本第85页习题3.1第4、7、8题. 2.思考课本第85习题3.1第10、11题. 3.选用课时作业设计.
课时作业设计
一、填空题.
1.在等式2x-1=4,两边同时________得2x=5. 2.在等式x-2=y-233,两边都_______得x=y.
3.在等式-5x=5y,两边都_______得x=-y. 4.在等式-13x=4的两边都______,得x=______.
5.如果2x-5=6,那么2x=________,x=______,其根据是________. 6.如果-14x=-2y,那么x=________,根据________.
7.在等式34x=-20的两边都______或______得x=________.
二、判断题.(对的打“∨”,错的打“×”)8.由m-1=4,得m=5.()9.由x+1=3,得x=4.()10.由x3=3,得x=1.
()11.由x2=0,得x=2()
12.在等式2x=3中两边都减去2,得x=1.()
三、判断题.
13.下列方程的解是x=2的有(). A.3x-1=2x+1 B.3x+1=2x-1 C.3x+2x-2=0 D.3x-2x+2=0 14.下列各组方程中,解相同的是(). A.x=3与2x=3 B.x=3与2x+6=0 C.x=3与2x-6=0 D.x=3与2x=5
四、用等式的性质求x.
15.(1)x+2=5;(2)3=x-3;(3)x-9=8;
(4)5-y=-16;(5)-3x=15;(6)-y3-2=10;
用心
爱心
专心 5
(7)3x+4=-13;(8)
23x-1=5.
五、检验下列各小题括号里的数哪个是它前面方程的解. 16.3-2x=9+x(x=2,x=-2). 17.5x-1=2x+3(x=1,x=43).
18.(2x-1)(x+3)=0(x=
12,x=1,x=-3).
19.x2+2x-3=0(x=1,x=-1,x=-3).
答案:
一、1.加1 2.加23 3.除以-5 4.乘-3-12 5.11 5.5 等式性质1 6.8y •等式性质2 7.除以34 乘以-
4803-
二、8.∨ 9.× 10.× 11.× 12.×
三、13.A 14.C
四、15.(1)x=3(2)x=6(3)x=17(4)y=21(5)x=-5(6)y=-36(7)x=-173 •(8)x=9
五、16.x=-2 17.x=4 18.x=132或x=-3 19.x=1或x=-3
用心
爱心
专心 6
第四篇:五年级上册数学《等式的性质》
五年级上册数学《等式的性质》
教学目标:
1、通过天平演示保持平衡的几种变换情况,让学生初步认识等式的基本性质。
2、利用观察天平保持平衡所发现的规律,能直接判断天平发生变化后能否保持平衡。
3、培养学生观察与概括、比较与分析的能力。教学重点:
掌握等式的基本性质。教学难点:
理解并掌握等式的性质,能根据具体情境列出相应的方程。教学方法:
启发式教学;自主探索、观察、归纳、合作学习新知。教学准备:
天平、茶壶、茶杯、墨水、铅笔盒。教学过程
一、创境引趣,激思迁移
1.上节课咱们认识了天平,知道天平的两边重量完全相同时,天平才能保持平衡;并利用天平学会了等式和方程的含义:等号两边完全相等的式子叫等式,含有未知数的等式就是方程。
2.同学们,你们做过天平游戏吗?这节课我们要利用天平一起来探索等式的性质。(板书课题:等式的性质)
二、亲身实践,感知探究
1.出示教材第64页情境图1第一个天平图。
让学生仔细观察图,并说一说:通过图你知道了什么?
让学生自主回答,学生可能会回答:天平的左边放了一把茶壶,右边放了两个茶杯,天平保持平衡;这说明一个茶壶的重量与2个茶杯的重量相等。引导学生小结:
1个茶壶的重量=2个茶杯的重量。追问:
如果设一个茶壶的重量是n克,1个茶杯的重量是b克,能用式子表示吗? 让学生尝试写出:a=2b(师板书)引导学生思考:
如果在天平的两边同时各放上一个茶杯,天平会发生什么变化呢? 先让学生猜一猜,学生可能会猜测出天平仍然平衡。再追问:为什么? 学生可能会说:因为两边加上的重量一样多。
教师先进行实际操作天平验证,让学生观察。再演示这一过程,并明确:两边仍然相等。小结:
实验证明1个茶壶+1个茶杯的质量=3个茶杯的质量。让学生尝试用字母表示这个式子:a+b=2b+b(师板书)提问:
如果两边各放上2个茶杯,还保持平衡吗?两边各放同样的一把茶壶呢? 学生回答后,教师演示,并让学生分别用式子表示:a+2b=2b+2b a+a=2b+a 2.出示教材第64页图2的第一个天平图。
让学生观察现在的天平是什么样的?(平衡)追问:
如果用a表示一个花盆的重量,用b表示一个花瓶的重量,怎样用等式来表示这幅图呢?生尝试写出:a+b=4b 再问:
如果把两边都拿掉1个花瓶,天平还平衡吗?先让学生猜一猜,再演示。学生回答:平衡。让学生尝试用等式表示:a+b-b=4b-b 从图上你能知道什么?(出示教材第64页图2第二个天平图)(1个花盆和3个花瓶同样重。)
3.通过这几个实验,你发现了什么? 引导小结:
平衡的天平两边加上同样的物品,天平还保持平衡。平衡的天平两边减去同样的物品,天平还保持平衡。天平的两边同时加上或减去同样的数量,天平仍然平衡。
你能用一句话来表示你的发现吗?
引导学生归纳等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
4.引导学生通过假设具体的数进行比较验证。
如:假设一个花瓶1千克,那么4个花瓶共4千克;一个花盆3千克,再加一个花瓶也是4千克。把两边同时减去一个花瓶也就是减去1千克,那么两边都剩下3千克。5.猜猜:
除了这样的变化,天平仍保持平衡外,还可以怎么做能使天平保持平衡? 让学生猜测。这里对学生可能有些难度,有些学生的猜测脱离不了等式的性质1。
如:学生猜测天平的两边同时放2个、3个杯子;同时减去一把茶壶等。这时教师一定要及时强调:这都是把等式的两边加上或减去同一个数,并提示学生如果把等式的两边同时乘或除以一个相同的数(O除外),会怎么样呢? 6.出示教材第65页图1的第一个天平图,让学生观察并说明。(一瓶墨水的重量=一盒铅笔盒的重量)
引导学生用a表示墨水的重量,用6表示铅笔盒的重量,写出等式:a=b。猜一猜:左边墨水的数量扩大到原来的2倍,右边铅笔盒的数量也扩大到原来的2倍,天平还保持平衡吗?
学生猜测后,教师进行实际天平操作,验证学生的猜测。多媒体演示变化过程,并引导学生用等式表示:2a=2b。
如果把天平的两边物品的数量分别扩大到原来的3倍、4倍呢?(仍然保持平衡)
7.出示教材第65页图2的第一个天平图,让学生观察并说明知道了什么。(2个排球的质量=6个皮球的质量)
引导学生用a表示排球的重量,用6表示皮球的重量,写出等式:2a=6b。质疑:
如果把两边的球都平均分成2份,各去掉一份,天平还能平衡吗? 学生猜测:平衡。
教师演示,并引导学生用等式a=3b表示。8.通过刚才的试验,你发现了什么? 发现:
平衡的天平两边的物品扩大到原来的相同倍数,天平仍然平衡。平衡的天平两边的物品都缩小到原来的几分之一,天平仍然平衡。你能用一句话总结一下等式的这个性质吗? 归纳小结:
等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。9.为什么等式两边不能除以O?学生交流,汇报:O不能做除数。
三、巩固练习,应用拓展 利用等式的性质填空
1.如果2x-5=9,那么2x =9+()2.如果5=10+x ,那么5x-()=10 3.如果3x =7,那么6x =()4.如果5x =15,那么x =()
先让学生回忆等式的性质,再自主完成填空。
四、课堂小结,反思升华
这节课你学会了什么知识?有哪些收获?(引导总结等式的性质)
五、布置作业,巩固提高:
教材第66页练习十四第4、5题。
六、板书设计:
等式的性质
a=2b a+b=2b+b a=b 2a=2b a+b=4b a+b-b=4b-b 2a=6b a=3b 等式两边加上或减去同一个数,左右两边仍然相等。
等式两边乘同一个数,或除以同一个不为O的数,左右两边仍然相等。
第五篇:人教版七年级上册数学《等式的性质》教学设计专题
《等式的性质》教学设计
【教学目标】
知识技能:体验从具体情境中抽象出数学符号的过程,理解并能用语言表述等式的性质,能用等式的性质解简单的一元一次方程。
数学思考:通过观察视频,结合生活中的体验培养学生探索能力、观察能力、概况能力和应用新知的能力,渗透“化归”的思想。
问题解决:能从不同的角度分析问题和解决问题,体验解决问题方法的多样性,通过小组合作,友人互帮,增强学生团队意识。
情感态度:通过独立完成和小组互助,养成独立思考、合作交流的学习习惯,形成严谨的科学态度。在运用数学知识解决问题的过程中,体会数学的价值,感受成功的喜悦。【教学重点难点】
理解并能用语言表述等式的性质,能用等式的性质解方程。【学生准备】
(1)复习第一节,预习新课
(2)课本,练习本,红笔 【教师准备】
(1)仔细研究教材和课程标准,精心设计教学活动,充分挖掘课程资源。(2)认真备课,设置环节衔接语 【教具】
投影仪,天平,播放笔 【教学过程】
一、情感教育
通过观察对比,1.0136537.8和0.993650.03,让学生体会每天多努力一点,就将成为人生的赢家。厚积薄发,多积累,认真上好每一节课。(通过对比观察,让学生明白一个道理,厚积薄发)
二、引入新课
法国数学家笛卡尔说:“一切问题都可以转化为数学问题;一切数学问题都可以转化为代数问题;一切代数问题都可以转化为方程问题,因此,解决了方程问题,一切问题都将迎刃而解。
名人名言引入,强调方程的重要性,本节内容的重要性。
情景引入,调查学生是否玩过跷跷板,是否喜欢玩,有什么样的体验,谈谈感受;老师追问,怎样保持跷跷板的平衡,如果在平衡后的跷跷板的一侧加物品,要想保持跷跷板的平衡,需要怎么做,引发学生思考。进一步,展示天平,感受天平和跷跷板的共性。激发学生探索的兴趣。接下来,视频引入,观看视频内容,让学生思考,你有哪些发现,收获了哪些知识?
(设计意图:用名人名言引入,强调知识的重要性,生活情境的引入,让学生感受到生活中处处有数学,数学应用于生活。)
三、小组合作,探究新知
活动一:自学课本,结合情景,以小组为单位,讨论并验证你的发现。
活动二:齐读结论,小组互相提问,巩固知识。
活动三:以小组为单位,发现运用等式的性质解题时,需要提醒同学们注意的地方。
师生共同总结,归纳出等式的两条性质:
等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
用数学语言表示为:如果a=b,那么a±c=b±c.
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
用数学语言表示为:如果a=b,那么ac=bc. 如果a=b,(c≠0),那么=.
注意事项:
acbc1、等式两边都要参加运算,并且是作同一种运算。
2、等式两边加或减,乘或除以的数一定是同一个数或同一个式子。
3、等式两边不能都除以0,即0不能作除数或分母.(设计意图:通过自学、小组合作等学习形式让学生学会独立思考和同伴互助,感受团队的力量。用文字语言和数学语言归纳等式的性质,培养学生数学思维,并培养学生归纳能力。)
四、尝试运用
1.我来判断对错:(对的说明根据等式的哪一条性质;错的说出为什么。)
多媒体投
影,出
示
几
个
变
形
题
目,22y33(2)如果xy,那么xaya(1)如果xy,那么xxy5a5a(4)如果xy,那么5x5y(3)如果xy,那么(5)如果xy,那么2x32y3 让学生分析题目对错,并说出利用等式的哪条性质,考察学生对基础知识的掌握情况。并及时调整自己的教学进度。
2.思考:
问题1:怎样才能把方程x+5=21转化为x=a的形式? 问题2:怎样才能把方程3x=27转化为x=a的形式? 问题3:怎样才能把方程2x-1=15转化为x=a的形式? 问题4:解方程的依据和方程结果的形式是?
小组讨论,得出结论:解方程的依据是等式的性质,方程结果变为x=a(a是常数)的形式。
利用2x-1=15当例题,讲解详细的解题过程和解题格式。巩固练习:利用等式的性质解下列方程:
(1)x+7=26;(2)-5x=20;(3)-x-5=4.
分析:解方程,就是把方程变形,变为x=a(a是常数)的形式.
在方程x+7=26中,要去掉方程左边的7,因此两边都减去7.
解:(1)根据等式性质1,两边同减7,得: x+7-7=26-7 于是 x=19 我们可以把x=19代入原方程检验,•看看这个值能否使方程的两边
相等,•将x=19代入方程x+7=26的左边,得左边=19+7=26=右边,所以x=19是方程x+7=26•的解.
(2)分析:-5x=20中-5x表示-5乘x,其中-5是这个式子-5x的系数,式子x•的系数为1,-x的系数为-1,如何把方程-5x=20转化为x=a形式呢?即把-5x的系数变为1,应把方程两边同除以-5.
解:根据等式性质2,两边都除以-5,得
5x20 55 于是x=-4(3)分析:方程-x-5=4的左边的-5要去掉,同时还要把-x的系数化为1,如何去掉-5呢?根据两个互为相反数的和为0,所以应把方程两边都加上5.
解:根据等式性质1,两边都加上5,得-x-5+5=4+5 化简,得-x=9 再根据等式性质2,两边同除以-(即乘以-3),得-x·(-3)=9×(-3)
于是 x=-27 同学们自己代入原方程检验,看看x=-27是否使方程的两边相等.(设计意图:通过不同题型的设计,让学生了解等式的性质运用的多样性和重要性,掌握方程的解法和书写格式)
五、成果展示
题组:(1)0.3x=15(2)5x+4=0(3)x-4=7 ***3
(4)2x-1=7(5)2x=6(6)1-3x=7 一道判断题,加深学生对等式性质2的印象。
(设计意图:利用志勇闯关,出示一组题目,让学生在玩中学,体会学习数学的乐趣,同时巩固本节课的知识)
六、补偿提高
在学习了等式的性质后,小红发现运用等式的性质可以使复杂的等式变得简洁,这使她异常兴奋,于是她随手写了一个等式:3a+b-2=7a+b-2,并开始运用等式性质对这个等式进行变形,其过程如下:
3a+b=7a+b(等式两边同时加上2)
3a=7a(等式两边同时减去b)
3=7(等式两边同时除以a)
变形到此,小红顿时就傻了:居然得出如此等式!于是小红开始检查自己的变形过程,但怎么也找不出错误来。聪明的同学,你能让小红的愁眉在恍然大悟中舒展开来吗?
(设计意图:学以致用,通过审题,找出问题所在,并解决问题)
七、课堂小结
对自己说,有哪些收获?对老师和同学说,还有哪些困惑?与大家分享。
强调: 在学习本节内容时,要注意几个问题:
1.根据等式的两条性质,对等式进行变形必须等式两边同时进行,即:•同时加或减,同时乘或除,不能漏掉一边.
2.等式变形时,两边加、减、乘、除的数或式必须相同.
3.利用性质2进行等式变形时,须注意除以的同一个数不能是0.
(设计意图:通过总结,促使学生回顾本节知识,并形成知识体系,进而达到思维的提升,让学生感受到,收获是多样的,既有知识也有情感,让学生学会合作,学会沟通和交流)
八、布置作业
书面作业:P83习题 3.1的第4题。家庭作业:习题 3.1其他题。(设计意图:巩固本节知识)
教师总结:这节课大家表现非常出色,希望大家保持这种状态,坚持努力。