第一篇:1.1.2 集合间的基本关系教案
1.1.2 集合间的基本关系
教学目标分析:
知识目标:
1、理解集合之间包含与相等的含义,能识别给定集合的子集。
2、在具体情景中,了解空集的含义。
过程与方法:从类比两个实数之间的关系入手,联想两个集合之间的关系,从中学会观察、类比、概括和思维方法。
情感目标:通过直观感知、类比联想和抽象概括,让学生体会数学上的规定要讲逻辑顺序,培养学生有条理地思考的习惯和积极探索创新的意识。重难点分析:
重点:理解子集、真子集、集合相等等。
难点:子集、空集、集合间的关系及应用。互动探究:
一、课堂探究:
1、情境引入——类比引入
思考:实数有相等关系、大小关系,如55,57,53,等等,类比实数之间的关系,可否拓展到集合之间的关系?任给两个集合,你能否发现每组的前后两个集合的相同元素或不同元素吗?这两个集合有什么关系?
注意:这里可关系两个数学思想,分别是特殊到一般的思想,类比思想 探究
一、观察下面几个例子,你能发现两个集合之间的关系吗?(1)A{1,2,3},B{1,2,3,4,5};
(2)设A为新华中学高一(2)班全体女生组成的集合,B为这个班全体学生组成的集合;(3)设C{x|x是两条边相等的三角形},D={x|x是等腰三角形}。
可以发现,在(1)中,集合A中的任何一个元素都是集合B的元素。这时,我们就说集合A与集合B有包含关系。(2)中集合A,B也有类似关系。
2、子集的概念:集合A中任意一个元素都是集合B的元素,记作AB或BA。图示如下符号语言:任意xA,都有xB。读作:A包含于B,或B包含A.当集合A不包含于集合B时,记作:AB
注意:强调子集的记法和读法;
3、关于Venn图:在数学中,我们经常用平面上封闭的曲线的内部代表集合,这种图称为Venn图.这样,上述集合A与B的包含关系可以用右图表示
自然语言:集合A是集合B的子集
集合语言(符号语言):AB 图像语言:上图所示Venn图
注意:强调自然语言、符号语言、图形语言三者之间的转化;
探究
二、对于第(3)个例子,我们已经知道集合C是集合D的子集,那么集合D是集合C的子集吗?
思考:与实数中的结论“ab,且ba,则ab”相类比,你有什么体会?
类比:实数:ab且abab
集合:AB且BAAB
4、集合相等:如果集合A是集合B的子集(AB),且集合B是集合A的子集(BA),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作:AB。
注意:两个集合相等即两个集合的元素完全相同
2例
1、设A{x,x,xy},B{1,x,y},且AB,求实数x,y的值。
探究
三、比较前面3个例子,能得到什么结论?
5、真子集的概念:集合AB,但存在元素xB,且xA,我们称集合A是集合B的真子集,(AB)记作AB或BA。说明:从自然语言、符号语言、图形语言三个方面加以描述。
注意:如果集合A是集合B的真子集,那么集合B中至少有一个元素不属于集合A.探究
四、如何用集合表示方程x10的实数根?
我们知道,方程x10没有实数根,所以,方程x10的实数根组成的集合中没有元素。
6、空集的概念:我们把不含任何元素的集合称为空集,记作,并规定:空集是任何集合的子集,空集是任何非空集合的真子集。请同学们思考并举几个空集的例子
思考:包含关系{a}A与属于关系aA有什么区别?
7、辨析相互关系
注意:请同学们分析以下几个关系的区别(1)与的区别(2)a与{a}的区别(3)0,{0}与 的区别 222
8、集合的性质
(1)反身性:任何一个集合是它本身的子集,AA
(2)传递性:对于集合A,B,C,如果AB,BC,那么AC,思考用Venn图表示 例
2、判断下列说法是否正确:
(1)对于两个集合A、B,设集合A的元素个数为x,集合B的元素个数为y,如果xy,那么集合A是集合B的子集;
(2)对于两个集合A、B,如果集合A中存在一个元素是集合B的元素,那么集合A是集合B的子集;
(3)对于两个集合A、B,如果集合A中存在无数个元素是集合B的元素,那么集合A是集合B的子集;
(4)如果集合A是集合B的子集,那么集合A是集合B的部分元素组成的集合; 例
3、写出集合{a,b}的所有子集,并指出哪些是它的真子集。
探究
五、集合A中有n个元素,请总结出它的子集、真子集、非空子集、非空真子集的个数与n的关系。
总结:子集的个数:2;真子集的个数:21;非空子集的个数:21;非空真子集的个数:22;
二、课堂练习:
教材第7页练习题第1、2、3题 反思总结:
1、本节课你学到了哪些知识点?
2、本节课你学到了哪些思想方法?
3、本节课有哪些注意事项? 课外作业:
(一)教材第44页复习参考题A组第4题,B组第2题; nnnn
第二篇:集合间的基本关系教案
集合间的基本关系教案
本资料为woRD文档,请点击下载地址下载全文下载地址
.1.2
集合间的基本关系
整体设计
教学分析
课本从学生熟悉的集合出发,通过类比实数间的大小关系引入集合间的关系,同时,结合相关内容介绍子集等概念.在安排这部分内容时,课本注重体现逻辑思考的方法,如类比等.值得注意的问题:在集合间的关系教学中,建议重视使用Venn图,这有助于学生通过体会直观图示来理解抽象概念;随着学习的深入,集合符号越来越多,建议教学时引导学生区分一些容易混淆的关系和符号,三维目标
.理解集合之间包含与相等的含义,能识别给定集合的子集,能判断给定集合间的关系,提高利用类比发现新结论的能力.2.在具体情境中,了解空集的含义,掌握并能使用Venn图表达集合的关系,加强学生从具体到抽象的思维能力,树立数形结合的思想.重点难点
.教学重点:理解集合间包含与相等的含义.教学难点:理解空集的含义.w
课时安排
课时
教学过程
导入新课
思路1.实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?
欲知谁正确,让我们一起来观察、研探.思路2.复习元素与集合的关系——属于与不属于的关系,填空:0N;2Q;-1.5R.类比实数的大小关系,如5<7,2≤2,试想集合间是否有类似的“大小”关系呢?∈;
推进新课
新知探究
提出问题
观察下面几个例子:
①A={1,2,3},B={1,2,3,4,5};
②设A为国兴中学高一班男生的全体组成的集合,B为这个班学生的全体组成的集合;
③设c={x|x是两条边相等的三角形},D={x|x是等腰三
;∈)角形};
④E={2,4,6},F={6,4,2}.你能发现两个集合间有什么关系吗?
例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同样是子集,有什么区别?
结合例子④,类比实数中的结论:“若a≤b,且b≤a,则a=b”,在集合中,你发现了什么结论?
按升国旗时,每个班的同学都聚集在一起站在旗杆附近指定的区域内,从楼顶向下看,每位同学是哪个班的,一目了然.试想一下,根据从楼顶向下看的,要想直观表示集合,联想集合还能用什么表示?
试用Venn图表示例子①中集合A和集合B.已知AB,试用Venn图表示集合A和B的关系.任何方程的解都能组成集合,那么x2+1=0的实数根也能组成集合,你能用Venn图表示这个集合吗?
一座房子内没有任何东西,我们称为这座房子是空房子,那么一个集合没有任何元素,应该如何命名呢?
与实数中的结论“若a≥b,且b≥c,则a≥c”相类比,在集合中,你能得出什么结论?
活动:教师从以下方面引导学生:
观察两个集合间元素的特点.从它们含有的元素间的关系来考虑.规定:如果AB,但存在x∈B,且xA,我们称集合A是集合B的真子集,记作AB.实数中的“≤”类比集合中的.把指定位置看成是由封闭曲线围成的,学生看成集合中的元素,从楼顶看到的就是把集合中的元素放在封闭曲线内.教师指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图.封闭曲线可以是矩形也可以是椭圆等等,没有限制.分类讨论:当AB时,AB或A=B.方程x2+1=0没有实数解.空集记为,并规定:空集是任何集合的子集,即
A;空集是任何非空集合的真子集,即
A.类比子集.讨论结果:
①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
③集合c中的元素都在集合D中;
④集合E中的元素都在集合F中.可以发现:对于任意两个集合A,B有下列关系:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.例子①中AB,但有一个元素4∈B,且4A;而例子②中集合E和集合F中的元素完全相同.若AB,且BA,则A=B.可以把集合中元素写在一个封闭曲线的内部来表示集合.如图1121所示表示集合A,如图1122所示表示集合B.图1-1-2-1图1-1-2-2
如图1-1-2-3和图1-1-2-4所示.图1-1-2-3图1-1-2-4
不能.因为方程x2+1=0没有实数解.空集.若AB,Bc,则Ac;若AB,Bc,则Ac.应用示例
思路1
.某工厂生产的产品在重量和长度上都合格时,该产品才合格.若用A表示合格产品的集合,B表示重量合格的产品的集合,c表示长度合格的产品的集合.已知集合A、B、c均不是空集.则下列包含关系哪些成立?
AB,BA,Ac,cA.试用Venn图表示集合A、B、c间的关系.活动:学生思考集合间的关系以及Venn图的表示形式.当集合A中的元素都属于集合B时,则AB成立,否则AB不成立.用相同的方法判断其他包含关系是否成立.教师提示学生以下两点:
重量合格的产品不一定是合格产品,但合格的产品一定重量合格;
长度合格的产品不一定是合格产品,但合格的产品一定长度合格.根据集合A、B、c间的关系来画出Venn图.解:包含关系成立的有:BA,cA.集合A、B、c间的关系用Venn图表示,如图1-1-2-5所示.图1-1-2-5
变式训练
课本P7练习3.点评:本题主要考查集合间的包含关系.其关键是首先明确两集合中的元素具体是什么.判断两个集合A、B之间是否有包含关系的步骤是:先明确集合A、B中的元素,再分析集合A、B中的元素之间的关系,得:当集合A中的元素都属于集合B时,有AB;当集合A中的元素都属于集合B,当集合B中至少有一个元素不属于集合A时,有AB;当集合A中的元素都属于集合B,并且集合B中的元素也都属于集合A时,有A=B;当集合A中至少有一个元素不属于集合B,并且集合B中至少有一个元素也不属于集合A时,有AB,且BA,即集合A、B互不包含.2.写出集合{a,b}的所有子集,并指出哪些是它的真子集.活动:学生思考子集和真子集的定义,教师提示学生空集是任何集合的子集,一个集合不是其本身的真子集.按集合{a,b}的子集所含元素的个数分类讨论.解:集合{a,b}的所有子集为,{a},{b},{a,b}.真子集为,{a},{b}.变式训练
XX山东济宁一模,1
已知集合P={1,2},那么满足QP的集合Q的个数是
A.4
B.3
c.2
D.1
分析:集合P={1,2}含有2个元素,其子集有22=4个,又集合QP,所以集合Q有4个.答案:A
点评:本题主要考查子集和真子集的概念,以及分类讨论的思想.通常按子集中所含元素的个数来写出一个集合的所有子集,这样可以避免重复和遗漏.思考:集合A中含有n个元素,那么集合A有多少个子集?多少个真子集?
解:当n=0时,即空集的子集为,即子集的个数是1=20;
当n=1时,即含有一个元素的集合如{a}的子集为,{a},即子集的个数是2=21;
当n=2时,即含有一个元素的集合如{a,b}的子集为,{a},{b},{a,b},即子集的个数是4=22.集合A中含有n个元素,那么集合A有2n个子集,由于一个集合不是其本身的真子集,所以集合A有个真子集.思路2
.XX上海高考,理1已知集合A={-1,3,2m-1},集合B={3,m2}.若BA,则实数m=_______.活动:先让学生思考BA的含义,根据BA,知集合B中的元素都属于集合A,集合元素的互异性,列出方程求实数m的值.因为BA,所以3∈A,m2∈A.对m2的值分类讨论.解:∵BA,∴3∈A,m2∈A.∴m2=-1或m2=2m-1.解得m=1.∴m=1.答案:1
点评:本题主要考查集合和子集的概念,以及集合元素的互异性.本题容易出现m2=3,其原因是忽视了集合元素的互异性.避免此类错误的方法是解得m的值后,再代入验证.讨论两集合之间关系时,通常依据相关的定义,观察这两个集合元素的关系,转化为解方程或解不等式.变式训练
已知集合m={x|2-x<0},集合N={x|ax=1},若Nm,求实数a的取值范围.分析:集合N是关于x的方程ax=1的解集,集合m={x|x>2}≠,由于Nm,则N=或N≠,要对集合N是否为空集分类讨论.解:由题意得m={x|x>2}≠,则N=或N≠.当N=时,关于x的方程ax=1中无解,则有a=0;
当N≠时,关于x的方程ax=1中有解,则a≠0,此时x=,又∵Nm,∴∈m.∴>2.∴0 活动:学生思考子集的含义,并试着写出子集.按子集中所含元素的个数分类写出子集;由总结当n=0,n=1,n=2,n=3时子集的个数规律,归纳猜想出结论.答案:的子集有:,1个子集; {a}的子集有:、{a},即{a}有2个子集; {a,b}的子集有:、{a}、{b}、{a,b},即{a,b}有4个子集; {a,b,c}的子集有:、{a}、{b}、{c}、{a,b}、{a,c}、{b,c}、{a,b,c},即{a,b,c}有8个子集.由可得:当n=0时,有1=20个子集; 当n=1时,集合m有2=21个子集; 当n=2时,集合m有4=22个子集; 当n=3时,集合m有8=23个子集; 因此含有n个元素的集合m有2n个子集.w ww.xkb1.com 变式训练 已知集合A{2,3,7},且A中至多有一个奇数,则这样的集合A有…… A.3个 B.4个 c.5个 D.6个 分析:对集合A所含元素的个数分类讨论.A=或{2}或{3}或{7}或{2,3}或{2,7}共有6个.答案:D 点评:本题主要考查子集的概念以及分类讨论和归纳推理的能力.集合m中含有n个元素,则集合m有2n个子集,有2n-1个真子集,记住这个结论,可以提高解题速度.写一个集合的子集时,按子集中元素的个数来写不易发生重复和遗漏现象.知能训练 课本P7练习1、2.【补充练习】 .判断正误: 空集没有子集.空集是任何一个集合的真子集.任一集合必有两个或两个以上子集.若BA,那么凡不属于集合A的元素,则必不属于B.分析:关于判断题应确实把握好概念的实质.解:该题的5个命题,只有是正确的,其余全错.对于、来讲,由规定:空集是任何一个集合的子集,且是任一非空集合的真子集.对于来讲,可举反例,空集这一个集合就只有自身一个子集.对于来讲,当x∈B时必有x∈A,则xA时也必有xB.2.集合A={x|-1 A.无限集的真子集是有限集 B.任何一个集合必定有两个子集 c.自然数集是整数集的真子集 D.{1}是质数集的真子集 以下五个式子中,错误的个数为 ①{1}∈{0,1,2} ②{1,-3}={-3,1} ③{0,1,2}{1,0,2} ④∈{0,1,2} ⑤∈{0} A.5 B.2 c.3 D.4 m={x|3 A.am B.am c.{a}∈m D.{a}m 分析:该题要在四个选择肢中找到符合条件的选择肢,必须对概念把握准确,无限集的真子集有可能是无限集,如N是R的真子集,排除A;由于只有一个子集,即它本身,排除B;由于1不是质数,排除D.该题涉及到的是元素与集合,集合与集合的关系.①应是{1}{0,1,2},④应是 {0,1,2},⑤应是 {0}.故错误的有①④⑤.m={x|3 c D 4.判断如下集合A与B之间有怎样的包含或相等关系: A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z}; A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.解:因A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},故A、B都是由奇数构成的,即A=B.因A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},又x=4n=2•2n,在x=2m中,m可以取奇数,也可以取偶数;而在x=4n中,2n只能是偶数.故集合A、B的元素都是偶数.但B中元素是由A中部分元素构成,则有BA.点评:此题是集合中较抽象的题目.要注意其元素的合理寻求.5.已知集合P={x|x2+x-6=0},Q={x|ax+1=0}满足QP,求a所取的一切值.解:因P={x|x2+x-6=0}={2,-3},当a=0时,Q={x|ax+1=0}=,QP成立.又当a≠0时,Q={x|ax+1=0}={},要QP成立,则有=2或=-3,a=或a=.综上所述,a=0或a=或a=.点评:这类题目给的条件中含有字母,一般需分类讨论.本题易漏掉a=0,ax+1=0无解,即Q为空集的情况,而当Q=时,满足QP.6.已知集合A={x∈R|x2-3x+4=0},B={x∈R|=0},要使APB,求满足条件的集合P.解:由A={x∈R|x2-3x+4=0}=,B={x∈R|=0}={-1,1,-4},由APB知集合P非空,且其元素全属于B,即有满足条件的集合P为 {1}或{-1}或{-4}或{-1,1}或{-1,-4}或{1,-4}或{-1,1,-4}.点评:要解决该题,必须确定满足条件的集合P的元素,而做到这点,必须明确A、B,充分把握子集、真子集的概念,准确化简集合是解决问题的首要条件.7.设A={0,1},B={x|xA},则A与B应具有何种关系? 解:因A={0,1},B={x|xA},故x为,{0},{1},{0,1},即{0,1}是B中一元素.故A∈B.点评:注意该题的特殊性,一集合是另一集合的元素.8.集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若BA,求实数m的取值范围; 当x∈Z时,求A的非空真子集个数; 当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.解:当m+1>2m-1即m<2时,B=满足BA.当m+1≤2m-1即m≥2时,要使BA成立,需可得2≤m≤3.综上所得实数m的取值范围m≤3.当x∈Z时,A={-2,-1,0,1,2,3,4,5},所以,A的非空真子集个数为2上标8-2=254.∵x∈R,且A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},又没有元素x使x∈A与x∈B同时成立.则①若B≠即m+1>2m-1,得m<2时满足条件; ②若B≠,则要满足条件有:或解之,得m>4.综上有m<2或m>4.点评:此问题解决要注意:不应忽略;找A中的元素;分类讨论思想的运用.拓展提升 问题:已知AB,且Ac,B={0,1,2,3,4},c={0,2,4,8},则满足上述条件的集合A共有多少个? 活动:学生思考AB,且Ac所表达的含义.AB说明集合A是集合B的子集,即集合A中元素属于集合B,同理有集合A中元素属于集合c.因此集合A中的元素是集合B和集合c的公共元素.思路1:写出由集合B和集合c的公共元素所组成的集合,得满足条件的集合A; 思路2:分析题意,仅求满足条件的集合A的个数,转化为求集合B和集合c的公共元素所组成的集合的子集个数.解法一:因AB,Ac,B={0,1,2,3,4},c={0,2,4,8},由此,满足AB,有:,{0},{1},{2},{3},{4},{0,1},{0,2},{2,3},{2,4},{0,3},{0,4},{1,2},{1,3},{1,4},{3,4},{0,2,4},{0,1,2},{0,1,3},{0,1,4},{1,2,3},{1,2,4},{2,3,4},{0,3,4},{0,1,2,3},{1,2,3,4},{0,1,3,4},{0,2,3},{1,3,4},{0,1,2,4},{0,2,3,4},{0,1,2,3,4},共25=32.又 满 足 Ac的集 合A有:,{0},{2},{4},{8},{0,2},{0,4},{0,8},{2,4},{2,8},{4,8},{0,2,4},{0,2,8},{0,4,8},{2,4,8},{0,2,4,8},共24=16.其中 同 时 满 足 AB,Ac的有 8个:,{0},{2},{4},{0,2},{0,4},{2,4},{0,2,4},实际上到此就可看出,上述解法太繁.解法二:题目只求集合A的个数,而未让说明A的具体元素,故可将问题等价转化为B、c的公共元素组成集合的子集数是多少.显然公共元素有0、2、4,组成集合的子集有23=8.点评:有关集合间关系的问题,常用分类讨论的思想来解决;关于集合的子集个数的结论要熟练掌握,其应用非常广泛.课堂小结 本节课学习了: ①子集、真子集、空集、Venn图等概念; ②能判断存在子集关系的两个集合谁是谁的子集,进一步确定其是否是真子集; ③清楚两个集合包含关系的确定,主要靠其元素与集合关系来说明.作业 课本P11习题1.1A组5.设计感想 本节教学设计注重引导学生通过类比来获得新知,在实际教学中,要留给学生适当的思考时间,使学生自己通过类比得到正确结论.丰富学生的学习方式、改进学生的学习方法是高中数学课程追求的基本理念,学生的数学学习活动不能仅限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、合作交流、阅读自学等都应成为学生学习数学的重要方式. 学案1集合的概念、集合间的基本关系 一.考纲要求:集合及其表示(A) 二.课堂练习 1.已知全集U=R,Z是整数集,集合A={x|x2-x-6≥0,x∈R},则Z∩∁UA中元素的个数为________. 2.已知全集U={1,2,3,4,5,6},集合A={1,2,3,4},B={1,3,5},则∁U(A∩B)=________ 3.已知全集U={1,2,3,4},集合P={1,2},Q={2,3},则P∩(∁UQ)=________. 4.已知集合M={x|x<3},N={x|log2x>1},则M∩N=________ 5.已知集合A={3,2a},B={a,b},且A∩B={2},则A∪B=________ 6.已知集合A={x|x≤1,或x≥3},集合B={x|k<x<k+1,k∈R},若(∁RA)∩B=∅,则k的取值范围是________ 7.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________. 三.问题探讨 问题1.集合的基本概念 1.设P,Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q={1,2,6},则P+Q中元素的个数为________. 2.设P,Q为两个非空实数集合,定义集合P-Q={a|a∈P但a∉Q},若P={a|a是小于10的自然数},Q={b|b是不大于10的正偶数},则P-Q中元素的个数为________. 3.设a,bR,A1,ab,a,B0,b,b,若A=B,求a,b的值。a 问题2.集合间的基本关系 已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,求实数m的取值范围. 四.巩固练习 1.已知集合A={x|x≤1,或x≥3},集合B={x|k<x<k+1,k∈R},若(∁RA)∩B=∅,则k的取值范围是________. 2.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且y=x},则A∩B的元素个数为________ 113.若x∈A,则∈A,就称A是伙伴关系集合,集合M=-1,0,2,1,2,3的所有非空子x 集中,具有伙伴关系的集合个数为________. m2224.设集合A=((x,y)≤(x-2)+y≤m,x,y∈R,)B={(x,y)|2m≤x+y≤2m+1,x,y2∈R},若A∩B≠∅,求实数m的取值范围. 备课资料(1.1.2集合间的基本关系) 备课资料 [备选例题] 【例1】下面的Venn图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A、B、C、D、E分别是哪种图形的集合? 图1-1-2-6 思路分析:结合Venn图,利用平面几何中梯形、平行四边形、菱形、正方形的定义来确定.解:梯形、平行四边形、菱形、正方形都是四边形,故A={四边形};梯形不是平行四边形、菱形、正方形,而菱形、正方形是平行四边形,故B={梯形},C={平行四边形};正方形是菱形,故E={正方形}, 即A={四边形},B={梯形},C={平行四边形},D={菱形},E={正方形}.【例2】2006全国高中数学联赛山东赛区预赛,3设集合A={x||x|2-3|x|+2=0},B={x|(a-2)x=2},则满足BA的a的值共有()A.2个 B.3个 C.4个 D.5个 分析:由已知得A={x||x|=1或|x|=2}={-2,-1,1,2},集合B是关于x的方程(a-2)x=2的解集, ∵BA,∴B=或B≠.当B=时,关于x的方程(a-2)x=2无解,∴a-2=0.∴a=2.当B≠时,关于x的方程(a-2)x=2的解x=∴ 2∈A, a22222=-2或=-1或=1或=2.a2a2a2a2解得a=1或0或4或3,综上所得,a的值共有5个.答案:D 【例3】2005天津高考,文1集合A={x|0≤x<3且x∈N}的真子集的个数是()A.16 B.8 C.7 D.4 分析:A={x|0≤x<3且x∈N}={0,1,2},则A的真子集有23-1=7个.答案:C 【例4】已知集合A={x|1≤x≤3},B={x|(x-1)(x-a)=0},试判断集合B是不是集合A的子集?是否存在实数a使A=B成立? 解析:先在数轴上表示集合A,然后化简集合B,由集合元素的互异性,可知此时应考虑a的取值是否为1,要使集合B成为集合A的子集,集合B的元素在数轴上的对应点必须在集合A对应的线段上,从而确定字母a的分类标准.当a=1时,B={1},所以B是A的子集;当13时,B不是A的子集.综上可知,当1≤a≤3时,B是A的子集.由于集合B最多只有两个元素,而集合A有无数个元素,故不存在实数a,使B=A.点评:分类讨论思想,就是科学合理地划分类别,通过“各个击破”,再求整体解决(即先化整为零,再聚零为整)的策略思想.类别的划分必须满足互斥、无漏、最简的要求,探索划分的数量界限是分类讨论的关键.[思考] (1)空集中没有元素,怎么还是集合?(2)符号“∈”和“”有什么区别? 剖析:(1)疑点是总是对空集这个概念迷惑不解,并产生怀疑的想法.产生这种想法的原因是没有了解建立空集这个概念的背景,其突破方法是通过实例来体会.例如,根据集合元素的性质,方程的解能够组成集合,这个集合叫做方程的解集.对于 1=0,x2+4=0等方程来说,它们的解集x中没有元素.也就是说确实存在没有任何元素的集合,那么如何用数学符号来刻画没有元素的集合呢?为此引进了空集的概念,把不含任何元素的集合叫做空集.这就是建立空集这个概念的背景.由此看出,空集的概念是一个规定.又例如,不等式|x|<0的解集也是不含任何元素,就称不等式|x|<0的解集是空集.(2)难点是经常把这两个符号混淆,其突破方法是准确把握这两个符号的含义及其应用范围,并加以对比.符号∈只能适用于元素与集合之间,其左边只能写元素,其右边只能写集合,说明左边的元素属于右边的集合,表示元素与集合之间的关系,如-1∈Z,1Z;符号只能适用于2集合与集合之间,其左右两边都必须写集合,说明左边的集合是右边集合的子集,表示集合与集合之间的关系,如{1}{1,0},{x|x<0}.(设计者:王立青) 1.1.2集合间的基本关系 数学必修1第一章第二节第1小节《集合间的基本关系》说课稿.一、教学内容分析 集合概念及其理论是近代数学的基石,集合语言是现代数学的基本语言,通过学习、使用集合语言,有利于学生简洁、准确地表达数学内容,高中课程只将集合作为一种语言来学习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.本章集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用.本节课的教学重视过程的教学,因此我选择了启发式教学的教学方式。通过问题情境的设置,层层深入,由具体到抽象,由特殊到一般,帮助学生的逐步提升数学思维。 二、学情分析 本节课是学生进入高中学习的第3节数学课,也是学生正式学习集合语言的第3节课。由于一切对于学生来说都是新的,所以学生的学习兴趣相对来说比较浓厚,有利于学习活动的展开。而集合对于学生来说既熟悉又陌生,熟悉的是在初中就已经使用数轴求简单不等式(组)的解,用图示法表示四边形之间的关系,陌生的是使用集合的语言来描述集合之间的关系。而从具体的实例中抽象出集合之间的包含关系的本质,对于学生是一个挑战。 根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标和教学重、难点如下: 三、教学目标: 知识与技能目标: (1)理解集合之间包含和相等的含义;(2)能识别给定集合的子集;(3)能使用Venn图表达集合之间的包含关系 过程与方法目标: (1)通过复习元素与集合之间的关系,对照实数的相等与不相等的关系联系元素与集合之间的从属关系,探究集合之间的包含和相等关系; (2)初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力; 情感、态度、价值观目标: (1)了解集合的包含、相等关系的含义,感受集合语言在描述客观现实和数学问题中的意义; (2)探索利用直观图示(Venn图)理解抽象概念,体会数形结合的思想。 四、本节课教学的重、难点: 重点:(1)帮助学生由具体到抽象地认识集合与集合之间的关系——子集;(2)如何确定集合之间的关系; 难点:集合关系与其特征性质之间的关系 五、教学过程设计 1.新课的引入——设置问题情境,激发学习兴趣 我们的教学方式,要服务于学生的学习方式。那我们来思考一下,在何种情况下,学生学得最好?我想,当学生感兴趣时;当学生智力遭遇到挑战时;当学生能自主地参与探索和创新时;当学生能够学以致用时;当学生得到鼓励与信任时,他们学得最好。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,这样才能让学生体验到成就感,保持积极的兴奋状态。而集合的语言对于学生来说是陌生的,虽然比较容易理解,但是由于概念多,符号多,学生容易产生厌烦心理,如何让学生长时间兴趣盎然地投入到集合关系的学习中呢?我在整个教学过程中层层设问,不断地向学生提出挑战,以激发学生的学习兴趣。在引入的环节,我设计了下面的问题情境1:元素与集合有“属于”、“不属于”的关系;数与数之间有“相等”、“不相等”的关系;那么集合与集合之间有什么样的关系呢?问题的抛出犹如一石激起千层浪,在这儿,答案并不重要,重要的是学生迫切寻求答案的愿望,激发学生的求知欲。在学生讨论的基础上提出这一节课我们来共同探讨集合之间的基本关系。(板书课题) 2.概念的形成——从特殊到一般、从具体到抽象,从已知到未知 问题情境1的探究: 具体实例1:(1)A={1,2,3};B={1,2,3,4,5};(2)A={菱形},B={平行四边形}(3)A={x| x>2},B={x| x>1};此环节设置了三个具体实例,包含了有限集、无限集、数集(包括不等式)、图形的集合。第一个例子为有限集数集,最为简单直观,对学生初步认识子集,理解子集的概念很有帮助;第二个例子是图形集合且是无限集,需要通过探究图形的性质之间的关系找出集合间的关系;第三个例子是无限数集,基于学生初中阶段已经学习了用数轴表示不等式的解集,启发学生可以通过数形结合的方式来研究集合之间的关系,从而引出Venn图。对第一个例子,借助多媒体演示动画,帮助学生体会“任意”性。使学生在经历直观感知、观察发现的基础上建构子集的概念,并且我在教学的过程中特别注重让学生说,借此来学习运用集合语言进行交流,对于学生的创新意识和创新结果我都给予积极的评价。 3、概念的剖析 (1)A中的元素x与集合B的关系决定了集合A与集合B之间的关系,(2)符号的表示,Venn图的引入及其用Venn图表示集合的方法。 这里引入了许多新的符号,对初学者来说容易混淆,是一个易错点,因此我在这里设置了一个填空小练习: 0 {0},{正方形} {矩形},三角形 {等边三角形} {梯形} {平行四边形},{x|-1 4、概念的深化——集合的相等与真子集 问题情境2:如果集合A是集合B的子集,那么对于任意的xA,有xB;那么对于集合B中的任何一个元素,它与集合A之间又可能是什么关系呢? 具体实例2:(1)、A={x|x<-4或x>2},B={x|x<0或x>1}(2)、A={x|-1 另外,从特殊实例到一般集合,从具体到抽象,对于集合A、B针对问题2我还渗透了分类讨论的思想,也即对于A B,对于任意的xA,有xB,而反过来若对于任意的xB,也有xA,即B A,则A=B;但对于任意的xB,若xA,即BA,则A是B的真子集。 同时还通过具体例子给出了空集的定义并由集合间的基本关系得到了子集的相关性质,进而使学生在能力上有所提升。 例 1、写出集合A={1,2,3}的所有子集,并指出有几个真子集是哪些? 功能:帮助学生认识子集、真子集的构成,认识空集是任何非空集合的真子集,例 2、集合A与集合B之间是什么关系? A={x|x=4k+2,k∈Z} B={x|x=2k,k∈Z } 功能:加深对集合间的包含关系的理解,渗透从特殊到一般的研究方法,提升到对集合的特征性之间的关系的理解,为下一环节做准备,特别容易出错的地方是学生会认为这两个集合相等。 5.概念的提升 用特征性质之间的关系理解集合之间的关系,已经在前面具体实例的分析中逐渐渗透,最后将具体集合间的关系,抽象到两个一般集合间的关系,通过从具体到抽样的研究突破难点。 6.小结 回顾一节课我们留给学生的是什么?我认为更重要的应该是思考问题的方法,因此小结时引导学生从知识和方法两个方面进行反思。第三篇:学案1集合的概念、集合间的基本关系
第四篇:备课资料(1.1.2集合间的基本关系)
第五篇:1.1.2集合间的基本关系说课稿