中考函数专题复习教案

时间:2019-05-12 23:06:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《中考函数专题复习教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《中考函数专题复习教案》。

第一篇:中考函数专题复习教案

九年级数学 补课教案

3月21日 课题 初中函数专题复习两课时

一、教学目标

1、知识技能:学生构建知识体系;通过解决典型的题目,抓住本章要点;解决易出错的题目,找出错陷阱和错因;联系一次函数、反比例函数、二次函数及一元一次方程、分式方程、一元二次方程等相关知识进行综合运用.2、过程与方法:从知识生成的本质和思想方法的本质养成学习数学的能力;经历观察、思考、交流,熟练、灵活解题.3、情感、态度、价值观:培养学生数形结合的数学思想,提高学生的数学应用意识。

二、教学重难点

1、教学重点:深化理解函数与方程的概念和性质,熟练进行函数的综合应用。

2、教学难点:进一步理解函数与方程的性质和关系,并能熟练进行函数的综合应用。

三、课型课时:复习课,2课时

四、教学工具:多媒体课件、导学案

五、教学方法

六、教学过程设计

函数知识点总结(掌握函数的定义、性质和图像)

(一)平面直角坐标系

1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系

2、各个象限内点的特征: 第一象限:(+,+)点P(x,y),则x>0,y>0; 第二象限:(-,+)点P(x,y),则x<0,y>0; 第三象限:(-,-)点P(x,y),则x<0,y<0; 第四象限:(+,-)点P(x,y),则x>0,y<0;

3、坐标轴上点的坐标特征:

x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0 , 0)。两坐标轴的点不属于任何象限。

4、点的对称特征:已知点P(m,n), 关于x轴的对称点坐标是(m,-n), 横坐标相同,纵坐标反号 关于y轴的对称点坐标是(-m,n)纵坐标相同,横坐标反号 关于原点的对称点坐标是(-m,-n)横,纵坐标都反号

5、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。

6、各象限角平分线上的点的坐标特征:

第一、三象限角平分线上的点横、纵坐标相等。

第二、四象限角平分线上的点横、纵坐标互为相反数。

7、点P(x,y)的几何意义: 点P(x,y)到x轴的距离为 |y|,点P(x,y)到y轴的距离为 |x|。点P(x,y)到坐标原点的距离为

8、两点之间的距离:

X轴上两点为A(x1,0)、B(x2,0)|AB||x2x1| Y轴上两点为C(0,y1)、D(0,y2)|CD|已知A(x1,y1)、B(x2,y2)AB|=

x2y2

|y2y1|

(x2x1)2(y2y1)

29、中点坐标公式:已知A(x1,y1)、B(x2,y2)M为AB的中点

则:M=(x2x1yy1 , 2)2210、点的平移特征: 在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x-a,y); 将点(x,y)向左平移a个单位长度,可以得到对应点(x+a,y); 将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b); 将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。

注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。

(二)函数的基本知识: 基本概念

1、变量:在一个变化过程中可以取不同数值的量。

常量:在一个变化过程中只能取同一数值的量。

2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应

3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。

4、确定函数定义域的方法:

(1)关系式为整式时,函数定义域为全体实数;

(2)关系式含有分式时,分式的分母不等于零;

(3)关系式含有二次根式时,被开放方数大于等于零;

(4)关系式中含有指数为零的式子时,底数不等于零;

(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。

5、函数的图像

一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.

6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。

7、描点法画函数图形的一般步骤

第一步:列表(表中给出一些自变量的值及其对应的函数值);

第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);

第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。

8、函数的表示方法

列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

(三)正比例函数和一次函数

1、正比例函数及性质

一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx(k不为零)① k不为零 ② x指数为1 ③ b取零 当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,•直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.(1)解析式:y=kx(k是常数,k≠0)(2)必过点:(0,0)、(1,k)

(3)走向:k>0时,图像经过一、三象限;k<0时,•图像经过二、四象限(4)增减性:k>0,y随x的增大而增大;k<0,y随x增大而减小(5)倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴

2、一次函数及性质

一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b(k不为零)① k不为零 ②x指数为1 ③ b取任意实数

一次函数y=kx+b的图象是经过(0,b)和(-

b,0)两点的一条直线,我们称它为直k线y=kx+b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

(1)解析式:y=kx+b(k、b是常数,k0)(2)必过点:(0,b)和(-

b,0)k(3)走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限

k0k0直线经过第一、二、三象限 直线经过第一、三、四象限 b0b0k0k0直线经过第二、三、四象限 直线经过第一、二、四象限 b0b0注:y=kx+b中的k,b的作用:

1、k决定着直线的变化趋势

① k>0 直线从左向右是向上的 ② k<0 直线从左向右是向下的

2、b决定着直线与y轴的交点位置

① b>0 直线与y轴的正半轴相交 ② b<0 直线与y轴的负半轴相交

(4)增减性: k>0,y随x的增大而增大;k<0,y随x增大而减小.(5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移: 当b>0时,将直线y=kx的图象向上平移b个单位; 当b<0时,将直线y=kx的图象向下平移b个单位.3、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.注:对于y=kx+b 而言,图象共有以下四种情况:

1、k>0,b>0

2、k>0,b<0

3、k<0,b<0

4、k<0,b>0

4、直线y=kx+b(k≠0)与坐标轴的交点.

(1)直线y=kx与x轴、y轴的交点都是(0,0);

(2)直线y=kx+b与x轴交点坐标为

5、用待定系数法确定函数解析式的一般步骤:

与 y轴交点坐标为(0,b).

(1)根据已知条件写出含有待定系数的函数关系式;

(2)将x、y的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;

(3)解方程得出未知系数的值;

(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.6、两条直线交点坐标的求法:

方法:联立方程组求x、y 例题:已知两直线y=x+6 与y=2x-4交于点P,求P点的坐标?

7、直线y=k1x+b1与y=k2x+b2的位置关系(1)两条直线平行:k1=k2且b1b2(2)两直线相交:k1k2(3)两直线重合:k1=k2且b1=b2平行于轴(或重合)的直线记作

.特别地,轴记作直线

8、正比例函数与一次函数图象之间的关系

一次函数y=kx+b的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).9、一元一次方程与一次函数的关系

任何一元一次方程到可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.10、一次函数与一元一次不等式的关系

任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0(a,b为常数,a≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量的取值范围.11、一次函数与二元一次方程组

(1)以二元一次方程ax+by=c的解为坐标的点组成的图象与一次函数y=图象相同.acx的bba1xb1yc1ac(2)二元一次方程组的解可以看作是两个一次函数y=1x1和

b1b1a2xb2yc2y=a2cx2的图象交点.b2b212、函数应用问题(理论应用 实际应用)

(1)利用图象解题 通过函数图象获取信息,并利用所获取的信息解决简单的实际问题.(2)经营决策问题 函数建模的关键是将实际问题数学化,从而解决最佳方案,最佳策略等问题.建立一次函数模型解决实际问题,就是要从实际问题中抽象出两个变量,再寻求出两个变量之间的关系,构建函数模型,从而利用数学知题.(四)反比例函数

一般地,如果两个变量x、y之间的关系可以表示成y=k/x(k为常数,k≠0)的形式,那么称y是x的反比例函数。

取值范围: ① k ≠ 0;②在一般的情况下 , 自变量 x 的取值范围可以是 不等于0的任意实数;③函数 y 的取值范围也是任意非零实数。反比例函数的图像属于以原点为对称中心的中心对称的双曲线

反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。

反比例函数的性质: 1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。

2.k>0时,函数在x<0和 x>0上同为减函数;k<0时,函数在x<0和x>0上同为增函数。

定义域为x≠0;值域为y≠0。

3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。

4.在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2,则S1=S2=|K| 5.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴

y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。

7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则n2 +4k·m≥(不小于)0。(k/x=mx+n,即mx^2+nx-k=0)

8.反比例函数y=k/x的渐近线:x轴与y轴。

9.反比例函数关于正比例函数y=x,y=-x轴对称,并且关于原点中心对称.(第5点的同义不同表述)

10.反比例上一点m向x、y轴分别做垂线,交于q、w,则矩形mwqo(o为原点)的面积为|k|

11.k值相等的反比例函数重合,k值不相等的反比例函数永不相交。

12.|k|越大,反比例函数的图象离坐标轴的距离越远。

(五)二次函数

二次函数是指未知数的最高次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。

一般式(已知图像上三点或三对、的值,通常选择一般式.)

y=ax^2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(4ac-b^2/4a);

顶点式(已知图像的顶点或对称轴,通常选择顶点式.)

y=a(x+m)^2+k(a≠0,a、m、k为常数)或y=a(x-h)^2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)或(h,k)对称轴为x=-m或x=h,有时题目会指出让你用配方法把一般式化成顶点式;

交点式(已知图像与轴的交点坐标、,通常选用交点式)y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;

抛物线的三要素:开口方向、对称轴、顶点 顶点

抛物线有一个顶点P,坐标为P(-b/2a,4ac-b^2/4a),当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。开口

二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。决定对称轴位置的因素

一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。(左同右异)

c的大小决定抛物线当①时,∴抛物线,与与

轴交点的位置.与

轴有且只有一个交点(0,): ,与

轴交于负半轴.,抛物线经过原点;②轴交于正半轴;③直线与抛物线的交点(1)(2)与(,轴与抛物线轴平行的直线).得交点为(0,).与抛物线

有且只有一个交点(3)抛物线与轴的交点 二次函数程的图像与轴的两个交点的横坐标、,是对应一元二次方的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定:

①有两个交点

抛物线与轴相交;

抛物线与轴相切; ②有一个交点(顶点在轴上)③没有交点抛物线与轴相离.(4)平行于轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是个实数根.(5)一次函数的图像与二次函数的图像的交的两点,由方程组

①方程组有两组不同的解时一个交点;③方程组无解时的解的数目来确定: 与与

有两个交点;②方程组只有一组解时没有交点.与轴两交点为的两个根,故

只有(6)抛物线与轴两交点之间的距离:若抛物线,由于、是方程

七、小结归纳

1、构建知识体系,纳入知识系统

2、复习巩固函数与方程知识,及于其他相关知识的联系.3、进一步理解函数专题知识,熟练解决相关问题.4、补充课本未明确给出的概念及相关题目,拓展知识与能力.八、作业设计

复习卷

九、板书设计

平面直角坐标系 10个注意点

函数的基本知识 图像与性质

正比例函数和一次函数 12性质及考点

反比例函数 12考点及性质

二次函数 三式三要素,交点,与方程关系

十、教学反思

第二篇:中考反比例函数复习

第16课时 反比例函数

(70分)

一、选择题(每题4分,共24分)

1.对于函数y=,下列说法错误的是

(C)

A.它的图象分布在第一、三象限

B.它的图象是中心对称图形

C.当x>0时,y的值随x的增大而增大

D.当x<0时,y的值随x的增大而减小

2.[2017·自贡]一次函数y1=k1x+b和反比例函数y2=(k1k2≠0)的图象如图16-1所示,若y1>y2,则x的取值范围是

(D)

图16-1

A.-2<x<0或x>1

B.-2<x<1

C.x<-2或x>1

D.x<-2或0<x<1

【解析】

观察函数图象可知,当x<-2或0<x<1时,直线y1=k1x+b在反比例函数y2=的图象上方,即若y1>y2,则x的取值范围是x<-2或0<x<1.图16-2

3.[2016·杭州]设函数y=(k≠0,x>0)的图象如图16-2所示,若z=,则z关于x的函数图象可能为

(D)

【解析】

∵y=(k≠0,x>0),∴z==(k≠0,x>0).

∵反比例函数y=(k≠0,x>0)的图象在第一象限内,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.

4.[2016·孝感]“科学用眼,保护视力”是青少年珍爱健康的具体表现.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例.如果500度近视眼镜镜片的焦距为0.2

m,则表示y与x函数关系的图象大致是

(B)

5.[2017·兰州]如图16-3,反比例函数y=(x<0)与一次函数y=x+4的图象交

图16-3

点A,B的横坐标分别为-3,-1,则关于x的不等式<x+4(x<0)的解集为

(B)

A.x<-3

B.-3<x<-1

C.-1

D.x<-3或-1<x<0

6.[2017·潍坊]一次函数y=ax+b与反比例函数y=,其中ab<0,a,b为常数,它们在同一坐标系中的图象可以是

(C)

【解析】

∵ab<0,∴a,b异号.选项A中由一次函数的图象可知a>0,b<0,则a>b,由反比例函数的图象可知a-b<0,即a<b,产生矛盾,故A错误;选项B中由一次函数的图象可知a<0,b>0,则a<b,由反比例函数的图象可知a-b>0,即a>b,产生矛盾,故B错误;选项C中由一次函数的图象可知a>0,b<0,则a>b,由反比例函数的图象可知a-b>0,即a>b,与一次函数一致,故C正确;选项D中由一次函数的图象可知a<0,b<0,则ab>0,这与题设矛盾,故D错误.

二、填空题(每题4分,共24分)

7.[2017·淮安]若反比例函数y=-的图象经过点A(m,3),则m的值是__-2__.

【解析】

把A(m,3)代入y=-,得3=-,解得m=-2.8.[2016·山西]已知(m-1,y1),(m-3,y2)是反比例函数y=(m<0)图象上的两点,则y1__>__y2(选填“>”“<”或“=”).

9.[2017·眉山]已知反比例函数y=,当x<-1时,y的取值范围为__-2<y<0__.

【解析】

当x=-1时,y=-2,∵x<0时,y随x的增大而减小,图象位于第三象限,∴y的取值范围为-2<y<0.10.[2017·菏泽]直线y=kx(k>0)与反比例函数y=的图象交于A(x1,y1)和B(x2,y2)两点,则3x1y2-9x2y1的值为__36__.

【解析】

由图象可知点A(x1,y1),B(x2,y2)关于原点对称,∴x1=-x2,y1=-y2,把A(x1,y1)代入双曲线y=,得x1y1=6,∴3x1y2-9x2y1=-3x1y1+9x1y1

=-18+54=36.11.[2017·漳州]如图16-4,A,B是反比例函数y=上的点,分别过点A,B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为__8__.

图16-4

第11题答图

【解析】

由A,B为反比例函数图象上的两点,利用比例系数k的几何意义,求出矩形ACOG与矩形BEOF的面积,再由阴影DGOF的面积求出空白矩形面积之和.如答图,∵A,B是反比例函数y=图象上的点,∴S矩形ACOG

=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ADFC+S矩形BDGE=6+6-2-2=8.12.[2017·扬州]已知点A是反比例函数y=-的图象上的一个动点,连结OA,若将线段OA绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为__y=__.

图16-5

第12题答图

【解析】

如答图,分别过点A、点B作x轴的垂线,垂足分别为G和H,很容易发现这是一个“K”字型全等三角形,根据反比例函数比例系数k的几何意义可以知道△AOG的面积是1,于是△BOH的面积也始终为1,再结合点B在第一象限的位置,可以知道动点B在反比例函数的图象上,且k=2,所以点B所在图象的函数表达式为y=.三、解答题(共22分)

13.(10分)[2017·常德]如图16-6,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;

(2)若点C(x,y)也在反比例函数y=的图象上,当-3≤x≤-1时,求函数值y的取值范围.

图16-6

解:(1)∵反比例函数y=的图象经过点A(4,m),AB⊥x轴于点B,△AOB的面积为2,∴OB×AB=2,×4×m=2,∴AB=m=1,∴A(4,1),∴k=xy=4,∴反比例函数的表达式为y=,即k=4,m=1;

(2)由(1)知反比例函数为y=.∵k=4>0,∴当-3≤x≤-1时,y随x的增大而减小,∵点C(x,y)也在反比例函数的图象上,∴当

x=-3时,y取最大值,ymax=-;当x=-1时,y取最小值,ymin=-4,∴y的取值范围为-4≤y≤-.14.(12分)[2017·内江]如图16-7,已知A(-4,2),B(n,-4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.

图16-7

(1)求一次函数和反比例函数的表达式;

(2)求△AOB的面积;

(3)观察图象,直接写出不等式kx+b->0的解集.

解:(1)把

A(-4,2)代入y=,得m=2×(-4)=-8,∴反比例函数的表达式为y=-.把B(n,-4)代入y=-,得-4n=-8,解得n=2.把A(-4,2)和B(2,-4)代入y=kx+b,得解得

∴一次函数的表达式为y=-x-2;

(2)在y=-x-2中,令y=0,则x=-2,即直线y=-x-2与x轴交于点

C(-2,0),∴OC=2.∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;

(3)由图可得,不等式kx+b->0的解集为x<-4或0<x<2.(20分)

15.(6分))[2017·威海]如图16-8,正方形ABCD的边长为5,点A的坐标为

(-4,0),点B在y轴上,若反比例函数y=(k≠0)的图象经过点C,则该反比例函数的表达式为

(A)

A.y=

B.y=

C.y=

D.y=

图16-8

第15题答图

【解析】

∵如答图,过点C作CE⊥y轴于E,则△BCE≌△ABO,∴CE=OB=3,BE=AO=4,OE=1,则点C坐标为(3,1),∴k=3,反比例函数表达式为y=.图16-9

16.(6分)[2017·温州]如图16-9,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B和B′分别对应),若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为____.【解析】

由点B在反比例函数上且AB=1,可得OA=k,由对称性质可知OA′=OA=k,∠AOA′=2∠AOD=60°,∴点A′的坐标为,∵点A′在反比例函数上,∴k×k=k,∴k=.17.(8分)[2016·宁波]如图16-10,A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,C是x轴上一点,且AO=AC,则△ABC的面积为__6__.

图16-10

【解析】

设点A的坐标为,点B的坐标为,∵C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A的直线的表达式为y=kx,∴=k·a,解得k=,又∵点B在y=x上,∴=·b,解得=3或=-3(舍去),∴S△ABC=S△AOC-S△OBC=-=9-3=6.(10分)

18.(10分)[2016·湖州]已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.

(1)k的值是__-2__;

(2)如图16-11,该一次函数的图象分别与x轴,y轴交于A,B两点,且与反比例函数y=-的图象交

于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是__3__.

图16-11

【解析】

(1)设点P的坐标为(m,n),则点Q的坐标为(m-1,n+2),代入y=kx+b,得

解得k=-2;

(2)∵BO⊥x轴,CE⊥x轴,∴BO∥CE,∴△AOB∽△AEC.又∵=,∴==.令一次函数y=-2x+b中,x=0,则y=b,∴BO=b,令一次函数y=-2x+b中,y=0,则0=-2x+b,解得x=,即AO=.∵△AOB∽△AEC,且=,∴==.∴AE=AO=b,CE=BO=b,OE=AE-AO=b.∵OE·CE=|-4|=4,即b2=4,解得b=3或-3(舍去).

第三篇:二次函数复习教案

中学美术课水彩画技法教学

摘要:水彩画在中学美术教育中占据着重要的地位,它不仅可以提升中学生的造型能力、色彩能力,同时也可以强化他们的审美素养。这里,笔者将结合自己的教学经验,来谈一谈水彩画技法教学的一点心得,以期大方之家给予批评指正。

关键词:中学美术课;水彩画;技法教学

一、水彩画技法指导

学生在画水彩画之前需要有这样的理念:从整体着眼,从局部入手。在脑海中必须有画面的整体构思与布局,在这个大前提下,再将画面有效地分成若干个小部分,逐一完成。具体过程下面将分条阐述。

(一)画面勾勒轮廓阶段

第一步就是教师指导学生先勾勒出素描稿,整体与局部的分配情况需要合理、恰切。为了提升上色的准确性、恰切性,整个过程需要运用铅笔来完成,并且在素描的过程中,需要有效地表现反光、高光、投影以及明暗交界线等。其中投影、暗部需要淡淡地用铅笔进行标记。这个素描过程至关重要,成为关键的开端。

(二)画面着色阶段

接下来就需要用刷子蘸上清水,在画纸上刷一遍,让水完全浸湿画纸。吃水饱和的画纸,在短时间内,就不会立刻干燥,在这种情况下,才有助于具体干湿画法的实践、运用。

水彩的透明特点需要被全面地观照、审视,主要着色程序是由浅至深,特定物体的受光面需要先画出来,紧接着再对其背光面进行绘画。只有这样才能够有效地表现水彩画的明调与暗调。最后,将特定物体颜色最深的细部完成。可以说水彩的表现方法,通常来说,主要分为干画法、湿画法以及干湿并用法。在中学美术教学中,我们提倡采用干湿并用法,即有的地方使用干画法,而有的地方则采用湿画法。这种方法易于被中学生接受,并且表现力相对较强。再者,我们可以有效利用湿画法来绘画每一个客观物象。

最后就是画面的整理、完善环节。局部独立物象的逐一绘画,这种罗列可能会导致整个画面的融合程度不足,进而容易产生层次方面的误差感,给观赏者一种拼凑的印象。鉴于此,教师必须指导学生进行画面的整体处理,旨在让每一个局部都被统摄到整个画面中去,成为一个部分分割的成分。例如前景特定物象应该是实的,需要在这个物象的主要部位,将轮廓线凸显。而后面的特定物象应该是虚的。较之前者,后者需要淡化其色彩和形体方面的处理,只有这样才能够创设出层次分明、立体感较强的画面效果。如果整个画面色彩显得有些乱,就应该在基调的范围内进行有效整理。如果整个画面较为单调的话,就应该将环境色恰当地融入其中,进而色彩的丰富感就可以被提升。

二、重要注意事项强调

在学生对范画的欣赏、感悟过程中,教师需要对每一张画,它的具体画法、运用色彩等方面进行全面而细致地解读,这样才能使得学生对水彩画的特点、画法有一个整体的了解和体认。同时,需要提醒学生:如果调色过多,就可能丧失水彩画明快、透明的风格特征。而且涂色需要争取一次性完成,至多不可以超过三次,涂色越多,整个画面就会变得更为脏乱。鉴于此,在涂色之前,教师必须讲清楚调色与控制画笔中水分的具体措施,并且让学生全面把握绘画所要使用的工具,只有充分熟悉工具的使用方法,才能谈及具体涂色过程的开展。

需要强化实践教学,即可以将学生带到大自然中去绘画。教师可以一边绘画,一边讲解,在此过程中,将特定物象的具体画法,普遍存在的问题以及解决问题的办法,一一告诉学生。教师的这种示范教学,不仅可以给予学生直观的感受,同时也让学生了解了具体的绘画方法,如何规避不该出现的失误。另外,对于学生的作品不足之处,教师需要给予亲自改正,这种教学方法会让学生的绘画技巧迅速提升的。

另外,教师也可以将水彩画的绘画技巧编成一系列的口诀,这样,学生记忆与掌握水彩画相关技法将会变得事半而功倍。

三、水彩画技法教学示例

这里以水彩风景写生为示例对象。在写生的起初,需要力求一次性完成天空的绘画,当整体基调确定之后,余下的景物色彩需要与之协调搭配。当天空的绘画尚未“风干”之前,需要立刻将远山,抑或者是远树勾画出来。这样就会使得它与天空叠加的部分自然融合,避免了分离之感的产生。这样就契合了远虚近实的绘画要求。

画每一个特定物象之时,需要从左到右刷一遍清水,因为室外的空气是比较干燥的,这样的环境下,如果不刷水,湿画法则难以为继。倒映在水中的树木和房屋需要在画纸湿条件下,立刻涂色,进而产生朦朦胧胧的倒影效果。待画面干了之后,在使用干画法,小心翼翼地在水面上画出几道波纹来,这样房屋和树木的倒影就显得愈加真实生动了。同时,水岸上的物象,需要使用干画法进行绘画,这样就会使得这些物象更为实在、凸显。进而与水中倒影构成鲜明的对比。

画面的主体部分需要着力进行刻画,进而让整个画面具有凝聚力。在让学生充分领悟水彩画技法的同时,还需要让学生懂得艺术地处理画面的空间。最后,也就是对整个画面进行整理,湿画法的缺陷在于使得画面显得很“碎”,因此需要在画面的色彩和层次方面进行整体的调整,这样,整个画面就会变得和谐统一了。

参考文献

第四篇:二次函数复习教案

二次函数复习教案

一、备考策略:

通过研究分析近5年德州中考试题,二次函数中考命题主要有以下特点(1)二次函数的图象和性质,以选择题和填空题为主。

(2)直接考察二次函数表达式的确定的题目不是很多,大多与其他知识点相融合,以解答题居多。

(3)二次函数与方程结合考察以解答题居多,与不等式结合以选择题为主。(4)二次函数图象的平移考察以选择题和填空题为主。(5)二次函数的实际应用,以解答题为主。

二、.命题热点:

(1)二次函数的图象和性质。(2)二次函数表达式的确定。

(3)二次函数与方程和不等式的关系。

(4)抛物线型实际问题在二次函数中的应用。(5)应用二次函数的性质解决最优化问题。

三、教学目标:

1、掌握二次函数的定义、图象及性质。

2、会用待定系数法求二次函数解析式。

3、能运用二次函数解决实际问题。教学重点:

二次函数图象及其性质,并利用二次函数解决实际问题。教学难点:

二次函数性质的灵活运用,能把实际问题转化为二次函数的数学模型。

四、教学过程:

(一)基础知识之自我建构

(二)考点梳理过关

考点一、二次函数的定义 1.什么是二次函数?

2.二次函数的三种基本形式

(1)一般式:y=ax2+bx+c(a,b,c是常数,a≠0);

(2)顶点式:y=a(x-h)2+k(a≠0),由顶点式可以直接写出二次函数的顶点坐标是(h,k);

(3)交点式:y=a(x-x1)(x-x2)(a≠0),其中x1,x2是图象与x轴交点的横坐标.

达标练习1.(2017·百色中考)经过A(4,0),B(-2,0), C(0,3)三点的抛物线解析式是__________.考点二、二次函数的图象和性质

达标练习

2、(2017·衡阳中考)已知函数y=-(x-1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是:y1________y2(填“<”“>”或“=”).考点三、二次函数的图象与系数a,b,c的关系

达标练习

3、(2017·烟台中考)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论: ①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④

B.②④

C.①②③

D.①②③④ 考点四

二次函数图象的平移

达标练习

4、(2017·常德中考)将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()

A.y=2(x-3)2-5 B.y=2(x+3)2+5 C.y=2(x-3)2+5 D.y=2(x+3)2-5 考点五

二次函数与方程和不等式

达标练习5、1.(2017·徐州中考)若函数y=x2-2x+b的图象与坐标轴有三个交点,则b的取值范围是()

A.b<1且b≠0

B.b>1

C.0

D.b<1 【答题关键指导】

二次函数与一元二次方程的关系

(1)二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点,则两个交点的横坐标是一元二次方程ax2+bx+c=0(a≠0)的两个解.(2)二次函数的图象与x轴交点的个数由相应的一元二次方程的根的判别式的符号确定.2、(2017·咸宁中考)如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是____________.考点六

二次函数的实际应用 列二次函数解应用题的两种类型 1.未告知是二次函数

(如求最大利润,最大面积等最优化问题)2.已告知二次函数图象

(如涵洞、桥梁、投篮等抛物型问题)

五、堂清检测

4、六、作业

必做题:

1、选做题:

第五篇:二次函数复习教案

第教学目标

18课时 二次函数(二)

1.理解二次函数与一元二次方程之间的关系;

2.结合方程根的性质、一元二次方程根的判别式,判定抛物线与x轴的交点情况; 3.会利用韦达定理解决有关二次函数的问题。4.会利用二次函数的图象及性质解决有关几何问题。教学重点 二次函数性质的综合运用 教学难点 二次函数性质的综合运用 教法 讲练结合 教学过程

一、知识梳理: 1.二次函数与一元二次方程的关系:

(1)一元二次方程ax2+bx+c=0就是二次函数y=ax2+bx+c当函数值y为0时的情况.

(2)二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数y=ax+bx+c的图象与x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.(3)①当二次函数y=ax2+bx+c的图象与 x轴有两个交点时,则一元二次方程ax2+bx+c=0有两个不相等的实数根,△>0;

②当二次函数y=ax2+bx+c的图象与x轴有一个交点时,则一元二次方程ax2+bx+c=0有两个相等的实数根,△=0;

③当二次函数y=ax2+ bx+c的图象与 x轴没有交点时,则一元二次方程ax2+bx+c=0没有实数根,△<0.2.二次函数的应用:

(1)二次函数常用来解决优化问题,这类问题实际上就是求函数最大(小)值;(2)二次函数的应用包括以下方面:分析和表示不同背景下实际问题中变量之间的二次函数关系;运用二次函数的知识解决实际问题中的最大(小)值.(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;

二、经典考题剖析: 例题1.已知二次函数y=x2-6x+8,求:(1)抛物线与x轴和y轴相交的交点坐标;(2)抛物线的顶点坐标;

(3)画出此抛物线图象,利用图象回答下列问题:

①方程x2-6x+8=0的解是什么?

②x取什么值时,函数值大于0?

③x取什么值时,函数值小于0?

解:(1)由题意,得x2-6x+8=0.则(x-2)(x-4)= 0,x1=2,x2=4.∴与x轴交点为(2,0)和(4,0);当x=0时,y=8.∴抛物线与y轴交点为(0,8);(2)抛物线解析式可化为y=x2-6x+8=(x-3)2-1;

∴抛物线的顶点坐标为(3,-1)

(3)如图所示.①由图象知,x2-6x+8=0的解为x1=2,x2=4.

②当x<2或x>4时,函数值大于0;③当2<x<4时,函数值小于0. 例题

2、已知二次函数yx2(m2)xm1,(1)试说明:不论m取任何实数,这个二次函数的图象必与x轴有两个交点;(2)m为何值时,这两个交点都在原点的左侧?

分析:(1)要说明不论m取任何实数,二次函数yx2(m2)xm1的图象必与x轴有两个交点,只要说明方程x2(m2)xm10有两个不相等的实数根,即△>0.

(2)两个交点都在原点的左侧,也就是方程x2(m2)xm10有两个负实数根,因而必须符合条件①△>0,②x1x20,③x1x20.综合以上条件,可求得m的值的范围.

三、合作交流:

1、若二次函数y=-x+2x+k的部分图象如图所示,关于x的一元二次方程-x+2x+k=0的一个解x1 = 3,则另一个解x2 = _____。

2、抛物线y=kx-7x-7的图象与x轴有交点,则k的取值范围是。

四、中考压轴题赏析:(分组合作)

已知:二次函数yx2(m1)xm的图象交x轴于A(x1,0)、B(x2,0)两点,2交y轴正半轴于点C,且x12x210。2(1)求此二次函数的解析式;

5)的直线与抛物线交于点M、N,与x轴交于点E,2使得点M、N关于点E对称?若存在,求直线MN的解析式;若不存在,说明理由。(2)是否存在过点D(0,-解:(1)∵x1+x2=10,∴(x1+x2)-2x1x2=10,根据根与系数的关系得:x1+x2=m+1, x1x2=m 222∴(m+1)2-2m=10,∴m=3,m=-3,又∵点C在y轴的正半轴上,∴m = 3,∴所求抛物线的解析式为:y=x-4x+3;(2)假设过点D(0,-5)的直线与抛物线交于M(xM,yM)、N(xN,yN)两22点,与x轴交于点E,使得M、N两点关于点E对称.

5设直线MN的解析式:y=kx-,2则有:yM+yN=0,(6分)由 得x-4x+3=kx-,并同类项得x2-(k+4)x+11=0,2移项后

合52∴xM+xN=k+4.

∴52yM+yN=kxM-+kxN-=k(xM+xN)-5=0,即k(k+4)-5=0,∴k=1或k=-5.

当k=-5时,方程x-(k+4)x+11=0的判别式△<0,直线MN与抛物线无交点,2522∴k = 1,3

∴直线MN的解析式为y=x-5,2∴此时直线过一、三、四象限,与抛物线有交点;

∴存在过点D(0,-5)的直线与抛物线交于M,N两点,与x轴交于点E.使得

2M、N两点关于点E对称.

点评:此题巧妙利用了一元二次方程根与系数的关系.在(2)中,将直线与抛物线的交点问题转化为根与系数的关系来解答,考查了同学们的整体思维能力.

五、反思与提高:

1、本节课主要复习了哪些知识,你印象最深的是什么?

2、通过本节课的函数学习,你认为自己还有哪些地方是需要提高的?

六、备考训练:

初中毕业学业考试指南P64 T7 8 9

下载中考函数专题复习教案word格式文档
下载中考函数专题复习教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人教版中考数学专题复习二次函数

    2021年人教版中考数学专题复习二次函数(满分120分;时间:90分钟)一、选择题(本题共计8小题,每题3分,共计24分,)1.在下列函数表达式中,一定为二次函数的是A.y=x+3B.y=ax2+bx+cC.y=t2-2t+......

    人教版中考数学专题复习反比例函数

    2021年人教版中考数学专题复习反比例函数(满分120分;时间:90分钟)一、选择题(本题共计9小题,每题3分,共计27分,)1.若双曲线y=k-1x分布在二、四象限,则k的值可为A.0B.1C.2D.32.下列函数......

    中考复习教案

    2012初三英语总复习教案-数词 2012初三英语总复习教案 数词 【使用教材和授课内容】 义务教育课程标准试验教材(新目标)go for it! 九年级中考专项复习之数词 【教学背景分析......

    二次函数复习教案(五篇)

    如皋市实验初中九年级(下)数学教案 设计:余亚明 2010年12月课题:二次函数的复习【教学目标】 1.理解二次函数的概念,会画二次函数的图象,能从图象上认识其性质。 2.会用待定系数法......

    高三数学教案:函数复习教案[范文大全]

    【摘要】鉴于大家对查字典数学网十分关注,小编在此为大家整理了此文高三数学教案:函数复习教案,供大家参考!本文题目:高三数学教案:函数复习教案2013高中数学精讲精练 第二章 函......

    中考数学复习二次函数试题整理 (1)

    如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(新课程P11)(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析......

    中考数学复习二次函数练习题及答案

    基础达标验收卷一、选择题:1.(2003•大连)抛物线y=(x-2)2+3的对称轴是.A.直线x=-3B.直线x=3C.直线x=-2D.直线x=22.(2004•重庆)二次函数y=ax2+bx+c的图象如图,则点M(b,)在......

    二次函数复习

    二次函数复习(1)教学反思 在二次函数复习这节课中,围绕(1)二次函数的定义(2)二次函数的图像、性质与a、b、c的关系(3)二次函数解析式的求法(4)数形结合这四个知识点进行练习。 下面我要......