第一篇:等差数列复习课教案
等差数列复习课
(一)三维目标
1. 知识与技能:复习等差数列的定义、通项公式、前n项和公式及相关性质.2. 过程与方法:师生共同回忆复习,通过相关例题与练习加深学生的理解.3. 情感与价值:培养学生观察、归纳的能力,培养学生的应用意识.(二)教学重、难点
重点:等差数列相关性质的理解。难点:等差数列相关性质的应用。(三)教学方法
师生共同探讨复习本课时的主要知识点,再通过例题、习题加深学生的应用意识,本节课采用多媒体辅助教学。(四)课时安排 1课时
(五)教具准备 多媒体课件(六)教学过程 Ⅰ知识回顾
1、等差数列定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
2、等差数列的通项公式
如果等差数列an首项是a1,公差是d,则等差数列的通项公式是ana1(n1)d。注意:等差数列的通项公式整理后为annd(a1d),是关于n的一次函数。
3、等差中项
如果a,A,b成等差数列,那么A叫着a与b的等差中项。即:Aab,或 2Aab。
24、等差数列的前n项和公式
等差数列an首项是a1,公差是d,则Sn注意:
1)该公式整理后为snn(a1an)n(n1)d。=na122d2dn(a1)n,是关于n的二次函数,且常数项为0。222)等差数列的前n项和公式推导过程中利用了“倒序相加求和法”。
5、等差数列的判断方法 a)定义法:
对于数列an,若an1and(常数),则数列an是等差数列。b)等差中项法:
对于数列an,若2an1anan2,则数列an是等差数列。
6、等差数列的性质
1.等差数列任意两项间的关系:如果an是等差数列的第n项,am是等差数列的第m项,公差为d,则有anam(nm)d。
2.对于等差数列an,若 nmpq 则,anamapaq。
3.若数列an是等差数列,Sn是其前n项的和,kN,那么Sk,S2kSk,*S3kS2k成公差为n2d的等差数列。
II例题解析
例1:等差数列an中,若a2 = 10,a6= 26,求a14 解:略
练习1:等差数列an中,已知a1=,a2+ a5 =4 3an = 33,则n是()
A.48
B.49
C.50
D.51 例2:在三位正整数的集合中有多少个数是5的倍数?求它们的和。解:略
练习2:等差数列an中, a1a2a324,a18a19a2078,则此数列前20项的和等于()
A.160
B.180
C.200
D.220 例3:已知数列an的前n项和snn23,求 an 解:略
练习3:设等差数列an的前n项和公式是sn(5n23n),求它的通项公式__________ 例4:已知等差数列an , 若a2+ a3 +a10+a11 =36,求a5+ a8 解:略
练习4:已知等差数列an中, a2+a8=8,则该数列前9项和等于()
A.18
B.27
C.36
D.4 5 例5:已知数列 an是等差数列, bn= 3an + 4,证明数列bn 是等差数列。证明:略
2练习5:已知数列an的通项公式anpn3n
(pR)
当p满足什么条件时,数列an是等差数列。III课堂练习见课件
IV课时小结
本节课主要复习了等差数列的概念、等差数列的通项公式与前n项和公式,以及一些相关的性质。掌握等差数列通项公式和前n项和公式;利用性质:掌握等差数列的重要性质;掌握一些比较有效的技巧。V布置作业 课外补充 VI板书设计
第二篇:等差数列复习课教案(公开课)
等差数列复习课
宜良县职业高级中学 董家金
(一)教学目标
1.知识与技能:复习等差数列的定义、通项公式、前n项和公式及相关性质.2.过程与方法:师生共同回忆复习,通过相关例题与练习加深学生的理解.3.情感与价值:培养学生观察、归纳的能力,培养学生的应用意识.(二)教学重、难点
重点:等差数列相关性质的理解。难点:等差数列相关性质的应用。(三)教学方法
师生共同探讨复习本课时的主要知识点,再通过例题、习题加深学生的应用意识,本节课采用多媒体辅助教学。(四)课时安排 1课时
(五)教具准备 多媒体课件(六)教学过程 Ⅰ知识回顾
1、等差数列定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
2、等差数列的通项公式
如果等差数列an首项是a1,公差是d,则等差数列的通项公式是ana1(n1)d。注意:等差数列的通项公式整理后为annd(a1d),是关于n的一次函数。
3、等差中项
如果a,A,b成等差数列,那么A叫着a与b的等差中项。
ab即:A,或 2Aab。
24、等差数列的前n项和公式
等差数列an首项是a1,公差是d,则Sn注意:
d2dn(a1)n,是关于n的二次函数,且常数项为0。222)等差数列的前n项和公式推导过程中利用了“倒序相加求和法”。
n(a1an)n(n1)d。=na1221)该公式整理后为snSnSn1(n2)3)数列an 与 前n项和sn的关系an
(n1)S15、等差数列的判断方法 a)定义法:
对于数列an,若an1and(常数),则数列an是等差数列。b)等差中项法:
对于数列an,若2an1anan2,则数列an是等差数列。
6、等差数列的性质
1.等差数列任意两项间的关系:如果an是等差数列的第n项,am是等差数列的第m项,公差为d,则有anam(nm)d。
2.对于等差数列an,若 nmpq 则,anamapaq。II例题解析
例1:等差数列an中,若a2 = 10,a6= 26,求a14 解:略,a2+ a5 =4an = 33,则n是()
3A.48
B.49
C.50
D.51 例2:在三位正整数的集合中有多少个数是5的倍数?求它们的和。解:略 练习1:等差数列an中,已知a1=
练习2:等差数列an中, a1a2a324,a18a19a2078,则此数列前20项的和等于()
A.160
B.180
C.200
D.220 例3:已知数列an的前n项和snn23,求an 解:略
练习3:设等差数列an的前n项和公式是sn(5n23n),求它的通项公式__________ 例4:已知等差数列an , 若a2+ a3 +a10+a11 =36,求a5+ a8 解:略
练习4:已知等差数列an中, a2+a8=8,则该数列前9项和等于()
A.18
B.27
C.36
D.4 5
III课堂练习(见课件)IV课时小结
本节课主要复习了等差数列的概念、等差数列的通项公式与前n项和公式,以及一些相关的性质。掌握等差数列通项公式和前n项和公式;利用性质:掌握等差数列的重要性质;掌握一些比较有效的技巧。V布置作业(课外补充)VI板书设计
第三篇:等差数列复习教案
等差数列
高考考点:
1.等差数列的通项公式与前n项和公式及应用;
2.等差数列的性质及应用.知识梳理:
1.等差数列的定义:
2.等差中项
3.通项公式
4.前n项和公式
5.等差数列的性质(基本的三条)
典型例题:
一.基本问题
例:在等差数列an中
(1)已知a1533,a45153,求a61
(2)已知S848,S12168,求a1和d
(3)已知a163,求S31
变式:(1)(2008陕西)已知an是等差数列,a1a24,a7a828,则该数列的前10项的和等于()
A.64B.100C.110D.120
(2)(2008广东)记等差数列an的前n项和为Sn,若a1
A.16B.24C.36D.48 1,则S6()S420,2
二.性质的应用
例:(1)若一个等差数列前3项的和为34,最后三项的和为146。,且所有项的和为390,则这个数列有_____项
(2)已知数列an的前m项和是30,前2m项的和是100,则它的前3m项的和是______
(3)设Sn和Tn分别为两个等差数列的前n项和,若对于任意的nN,都有*Sn7n1,则第一个数列的第11项与第二个数列的第11项的比为________ Tn4n27
变式:(1)已知等差数列an中,a3,a15是方程x6x10的两根,则2
_a7a8a9a10a11_____
(2)已知两个等差数列an和bn的前n项和分别为An和Bn,且An5n63,则Bnn3使得
an为整数的正整数n的个数是________ bn
三.等差数列的判定
例:已知数列an的前n项和为Sn且满足an2Sn1Sn(n2),a11
(1)求证:1是等差数列 Sn
(2)求an的表达式
变式:数列an中,a1
an1,an1,求其通项公式 2an1
四.综合应用
例:数列an中,a18,a42,且满足an22an1an,nN *
(1)求数列an的通项公式;
(2)当n为何值时,其前n项和Sn最大?求出最大值;
(3)设Sna1a2an,求Sn
变式:(08四川)设等差数列an的前n项和为Sn,若S410,S515,则a4的最大值是_______
课后作业
1.(09年山东)在等差数列an中,a37,a5a26,则a6______
2.若xy,数列x,a1,a2,y和x,b1,b2,y 各自成等差数列,则
A.a2a1()b2b12433B.C.D.3324
3.集合A1,2,3,4,5,6,从集合A中任选3个不同的元素组成等差数列,这样的等差数列共有()
A.4个B.6个C.10个D.12个
4.(09安徽)已知an为等差数列,a1a3a5105,a2a4a699,以Sn表示an的前n项和,则使得Sn达到最大值的n是()
A.21B.20C.19D.18
5.(10浙江)设a1,d为实数,首项为a1,公差为d的等差数列an的前n项和为Sn,满足S5S6150,则d的取值范围是___________
6.已知数列an中,a13,anan112an(n2,nN*),数列bn满足5
bn1(nN*)an1
(1).求证:数列bn是等差数列
(2).求数列an中的最大项和最小项
第四篇:等差数列复习课(第一课时)
等差数列复习课(第一课时)
濮阳市二高王卓原创 ☆考纲要求:
1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数的关系.☆考情分析:
从近两年的高考试题来看,等差数列的判定,等差数列的通项公式、前n项和公式以及与前n项和有关的最值问题等是高考的热点,题型既有填空题又有解答题,难度中等偏高;客观题突出“小而巧”,主要考查性质的灵活运用及对概念的理解,主观题考查较为全面,在考查基本运算、基本概念的基础上,又注重考查了函数方程、等价转化、分类讨论等思想方法.
☆本节课学习目标:
1理解等差数列的概念。
2掌握等差数列的通项公式。
3等差数列的判定。
4等差数列的简单性质及应用。
☆梳理要点:
1.等差数列的定义
如果一个数列从第____项起,每一项减去它的前一项所得的差等于____________,那么这个数列就叫做等差数列,这个常数叫等差数列的______,通常用字母_____表示.定义的数学表达式为______________(n∈N*).
2.等差中项
若a,A,b成等差数列,则A叫做a与b的________,且A= ________
3.通项公式
等差数列的通项公式为______________.推广形式为______________.。思考:(1)等差数列通项公式能否看作关于n的函数?
(2)若等差数列通项公式是关于n的一次函数,那么数列是不是等差数列?
4.等差数列的性质
对于正整数m,n,p,q,若m+n=p+q,则______________
☆考点突破:
考点一:等差数列基本运算
1.an为等差数列,a72a41,a30,则公差d_____
2.等差数列an中,已知a1030.a2050
1求通项an
221是不是该数列中的项
3.(2009·全国卷Ⅱ)已知等差数列{an}中,a3a7=-16,a4+a6=0,求{an}的通项公式。
【方法技巧】
【反思感悟】
考点二:等差数列的判定与证明
1.若{an}是等差数列,则下列数列中仍为等差数列的个数有 ________个.
①{an+3};②{a2n};③{an+1-an};④{2an};⑤{2an+n}.
ac
2设命题甲为“a,b,c成等差数列”,命题乙为“=2”,那么
bb()
A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件
C.甲是乙的充要条件D.甲是乙的既不充分也不必要条件
121
13.(2010·广州模拟)在数列{an}中,若a1=1,a2==+n∈N*),则该
2an+1anan+2数列的通项an=.3.在数列an中,a11,an1anan1an,求数列an的通项公式
an
5在数列{an}中,a1=1,an+1=2an+2.设bn=-,证明:数列{bn}
n
是等差数列.
【方法技巧】
判断或证明数列{an}为等差数列,这节课常见的方法有以下几种: 1.利用定义:an1and(常数)(n∈N*); 2.利用等差中项:2an1anan2;
3.利用通项公式:
andnc
(d、c为常数),d为公差.当
d≠0时,通项公式an
是关于n的一次函数;d=0时为常函
数,也是等差数列; 【能力提升】
1(2011·郑州模拟)已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=a2n+n-4.(1)求证{an}为等差数列;(2)求{an}的通项公式.
考点三:等差数列的性质
1在等差数列an中,a1a910,则a5_____
a11值为()
2在等差数列an中,若a4a6a8a10a12120则a9
A 14B15C16D17
3如果等差数列{an}中a3+a4+a5=12,那么a1+a2+„+a7=()
A.14B.21C.28D.35 【方法技巧】
【能力提高】
已知数列a1,a2,......a30,其中a1,a2,......a10是首项为1,公差为1的等差数列;
a10,a11,......a20
是公差为d的等差数列;a20,a21,......a30是公差为d的等差数
列(d≠0).
(1)若a20=40,求d;
(2)试写出a30关于d的关系式,并求a30的取值范围
☆课堂总结:
第五篇:等差数列复习学案
友好三中高一数学学案设计人:刘磊组长审核:设计时间:2009-3-1 讲授时间:
等差数列复习
一、学习目标:
1、通过学案能灵活运用通项公式求等差数列的首项、公差、项数、指定项,并通过通项公式再次认识等差数列的性质。
2、通过等差数列的习题培养学生的观察力及归纳推理能力。
3、理论联系实际,激发学生学习积极性。
二、学习重难点:
重点:等差数列的概念,探索并掌握等差数列的通项公式。
难点:等差数列的性质及应用,“等差”的特点。
三、学法指导:
研读学习目标,了解本节重难点,精读教材,查找资料,独立完成学案,通过小组学习解决部分疑难问题,再通过课堂各小组展示及质疑对抗,共同提高,完成学习任务。
四、知识链接:
1.等差数列的通项公式:
3.等差数列的判定方法:
五、学习过程:
问题(1):已知{an}是等差数列.请证明2a5=a3+a7和2a5=a1+a9.问题(2):①证明2an=an-1+an+1(n>1)②证明2an=an-k+an+k(n>k>0)
A1.已知等差数列{an}中,a7﹢a9=16,a4=1,则a12的值是()
A.15B.30C.31D.6
4B2.设{an}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13等于()
A.120B.105C.90D.7
5B3.已知等差数列{an}满足a1+a2+a3+„+a101 =0,则有()
A.a1+a101>0B.a2+a100<0C.a3+a99=0D.a51=5
1A4.已知数列{an}满足an-1+an+1=2an(n≥2),且a1=3,a2=5,则数列的通项公式为.A5.在数列{an}中,若a1=1,an+1= an+2(n≥1),则该数列的通项an=.B6.等差数列{an}中,a1+3a8+a15=120,求2a9-a10
B7.在等差数列{an}中,已知a2+a5+a8=9,a3 a5 a7 =﹣21,求数列{an}的通项公式
六、达标训练:
B1.等差数列{an}中,a2+a5+a8=9,那么关于x的方程x+(a4+a6)x+10=0()
A.无实根B.有两个相等实 C.有两个不等实根D.不能确定有无实根
2B2.等差数列{an}中,已知ak+ak+1+ak+2+ak+4+ak+4=A,则ak-1+ak+5(k≥2)等于
A.AB.A3C.A2A
5D.5A3.在等差数列{an}中,已知am﹣n=A,am+n=B,则am=.A4.已知数列{an}中,若a3+a4+a5+a6+a7=60,则a2+a8=.)(1B5.在等差数列{an}中,若a4+a6+a8+a100+a12=120,求a9-a11。
3B6.在等差数列{an}中,若a4+a6+a8+a100+a12=120,则2a9-a10.七、课堂小结:
八、课后反思: