第一篇:等差数列复习
6.2 等差数列
尊敬的各位评委、各位老师,大家好!我抽签的序号是14号,叫„„,来自高三年级,我说课的题目是“等差数列”复习课的第一课时,我将从教材分析、学情分析、教学目标分析、教法学法分析以及教学设计五个方面来谈谈我对本节课课堂教学的理解。
一、教材分析
以教材为主,充分借助教辅资料进行复习。教材选自人民教育出版社出版的《全日制普通高级中学教科书数学必修5第二章》,教辅资料选自武汉出版社出版的《核按钮》第六章第二节。数列是高中数学的重要内容,又是学习高等数学的基础,是高考的重要考查内容之一。等差数列是在学生学习了数列的有关概念后,对数列的知识进一步深入和拓广,同时也为今后学习等比数列提供了学习对比的依据。它作为最基本的数列模型之一,一直是高考重点考查的对象。多数为中低档题,也有难题。其中选择、填空题“小而巧”,主要以求an,Sn为主,考查运算求解能力、转化与化归、函数与方程等数学思想,注重通性通法的考查。解答题“大而全”,注重题目的综合性与新颖性,突出对逻辑思维能力的考查。
二、学情分析
高三的学生已经系统学习过等差数列,对等差数列的相关知识已有一定的认识和了解,但是不少学生在大量的整合复习中,有许多的知识点已经遗忘,尤其对于我所任教的班级是该年级最后层次的学生,还有大部分的学生在初学时根本没有掌握相关的内容,因此本节作为等差数列复习的第一课时,更加注重对基础知识的复习,将知识点与考点相结合,教学内容的设置上做到由简入难,在教学过程中注重引导、启发、探究,进一步促进学生思维能力的发展以及知识网络的建构。
三、教学目标分析
基于以上对教材和学情的认识,根据数学课程标准的有关概念以及考纲要求,考虑到学生已有的认识结构和心理特征,我确定了以下的三维教学目标:知识与技能,过程与方法,情感、态度与价值观。
知识与技能:通过课前练习卷设置的作业以及以问题为媒介师生互动,引导学生加深对等差数列概念的理解,进一步剖析等差数列的判定方法,促使学生能够判定等差数列;通过对公式的分析和基本量的求解进一步掌握等差数列的通项公式、前n项和公式。
过程与方法:通过学生自主完成课前练习卷,培养学生发现问题,解决问题的能力;通过课堂考点的分析与反思,培养学生具有方程思想、转化与化归的思想;通过课堂小结以及课上小组讨论、回答问题,培养学生归纳总结和语言表达能力。
情感、态度与价值观:通过课前练习卷的完成,促使学生发现自己存在的问题,并分析解决问题,从而培养学生善于发现、分析的能力;通过课堂练习,体验高考题,并顺利解答,增强学生的自信心,树立良好的学习心态。
本节课的教学重点是理解等差数列的概念;掌握等差数列的通项公式、前n项和公式以及等差中项公式;能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题。由于等差数列的判定方法有多种,学生难以用恰当的方法去证明或判断一个数列是否为等差数列,所以教学难点就自然落在等差数列的判定上。
四、教法学法分析
为了突出重点,突破难点,抓住关键,使学生达到本节课的教学目标,我再从教法和学法上谈谈我的设计思路。
教法分析:作为复习课由于涉及的知识点比较多课堂容量比较大,教法上我主要以讲授式为主并结合任务驱动式(课前要求学生完成练习卷,了解本节课的学习提纲,课堂学习具有目的性,让学生在完成“任务”的过程中,培养分析问题、解决问题的能力)等多种教学方法进行教学,引导学生在学习过程中主动建构知识网络;其次在教学中采用多媒体,可以极大提高学生的学习兴趣,强化学生感观的刺激,加大课堂的信息容量,使教学目标更加完美的体现。
学法分析:学法上采用自主、合作、探究法,增强学生学习的积极主动性和课堂融入性;其次通过对变式的练习,达到举一反三,加深对知识的掌握与理解,使学法得到迁移。
五、教学设计
下面我对第五部分的教学设计进行详细展开:我的整个教学过程分为六个部分:考纲解读、考点梳理、典例分析、高考链接、要点扫描、作业。
(一)考纲解读 首先是介绍课标以及考纲中对等差数列的要求,为我们的复习提供指南,促使学生在复习中具有目的性,并了解自己的薄弱环节,加强应对措施。
(二)考点梳理与典例结合 为了避免大量的知识点复习造成学生学习的疲惫感,提高学习效率,在具体的操作中,我将考点梳理与典例结合进行教学。以典例类型作为知识点引导的线索,并立即将知识点应用于典例,更加符合学生学习的特点,有利于学生对知识的掌握。鉴于学生的接受能力,本节课主要解决两种典型例题。
类型一:等差数列基本量的计算
主要涉及到以下几个知识点:等差数列的定义、等差数列的通项公式、等差中项以及等差数列的前n项和公式。
首先是等差数列的定义,通过填空以及着重号的形式加强学生对概念关键点的认识,强化概念本质的掌握;有了定义,自然而然就引导学生思考回忆,如何通过定义给出的通项公式,教师适时展示通项公式的推导过程“累加法”(这是该章节中一种重要的方法,为后续的学习做铺垫),并引导学生分析公式的特点,进一步得到其推广公式,为了加强对公式的理解和应用,设置比较简单的口答练习,通过练习进一步总结公式的变形有哪些。
等差中项的引入是对特殊的等差数列的进一步深化认识,为后续的三个数成等差数列的设法以及等差中项法判断数列为等差数列作铺垫,起着承前启后的作用。
最后是前n项和公式,引导学生分析公式的特点,展示公式的推导过程,指出“倒序相加法”是一种重要的求和方法,并及时通过比较简单的口答练习,熟悉公式。
例1及练习的设置主要是为了加强学生对公式的掌握和灵活应用,通过反思归纳加深对“等差数列基本量的计算”这类题型解答的认识和体会。
1.等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的_____都等于同一个______,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。简记为:____________=d或____________=d。
2.等差数列的通项公式:若an是等差数列,则其通项公式为:____________,其推导方法是____________,推广:anam_______。
练习:在等差数列an中,(1)已知a12,d1,求an;(2)已知a1015,a1510,求d。
3.等差中项:由三个数a,A,b组成的等差数列可以看成最简单的等差数列,这时A叫做a与b的__________,可用式子A=___________表示。
推广:若an是等差数列,则an,an1,an2满足的关系式:_________ 4.等差数列的前n项和公式:Sn __________=__________,推导方法是__________ 练习:在等差数列an中,(1)(2)已知Sn120,a13,d2,已知a15,a1535,求S15;求n。
例1 在等差数列an中,(1)已知a1533,a45153,求an;
(2)已知a610,S55,求Sn;
(3)已知前3项和为12,前3项积为48,且d0,求a1 思考:通过上述例题的解答,给你怎样的启发?
练一练:已知等差数列an满足:a37,a5a726,an的前n项和为Sn,求an及Sn。
类型二:等差数列的判定与证明
通过设置问题“一个数列是等差数列才能用上述的通项公式、求和公式,以及相关性质解题,使问题简化,那么怎样的数列才是等差数列呢?如何判断一个数列是否为等差数列?”,引导学生思考等差数列的判定方法,主要有四种:定义法、等差中项法、通项公式法以及前n项和公式法。其中前两种方法学生比较容易理解,为了加深对后两种方法的理解,引导学生分析这个等价条件的互推过程,比如an是等差数列,则它的通项公式通过变形可以整理成关于n的降幂形式,即anpnq的形式,然后再展示由公式推导出该数列为等差数列的证明过程,帮助学生理解。
例2主要是为了检验学生对知识点的掌握情况,通过例题的讲解,熟悉利用定义法证明或判定一个数列为等差数列的解题步骤,加深对等差数列通项公式的认识,指出四种方法的使用情况,强调在证明中通常采用定义法和等差中项法。学生会使用求和公式Snn(a1an),但是却没有去证明过它对应的数列是2等差数列,因此设置了探究题,该题视课堂教学的实际情况进行教学,若时间有限则作为课后探究题完成,有一定难度。
(1)定义法:an1and(常数)(nN) an是等差数列;
(2)等差中项法:2an1anan2(nN) an是等差数列;
(3)通项公式法:anpnq(p,q为常数)(nN) an是等差数列;
其中p=________,q=________。
(4)前n项和公式法:SnAn2Bn(A,B为常数)(nN)an是等差数列。
其中A=________,B=________。
例2 已知数列an的通项公式为anpn2qn(p,qR,且p,q为常数)。
(1)当p和q满足什么条件时,数列an是等差数列?
(2)求证:对任意实数p和q,数列an1an是等差数列。
说明:这四种方法都可以判断一个数列是否为等差数列,但是证明一个数列是等差数列只能用前两种方法,做客观题时可用后两种方法判断数列是否为等差数列。探究: 设数列an的前n项和为Sn,若对于所有的正整数n,都有Snn(a1an),证明2an是等差数列。
(三)课堂练习——高考链接
通过练习可以反馈学生对知识点的掌握情况,其中1、2题是对公式的应用,加强学生对公式的理解与掌握;第3题则是利用等差中项判定数列是否为等差数列,检验学生是否理解这类方法的本质,考查学生分析问题、解决问题的能力;
4、5题是基于教辅资料中没有设置利用通项公式法、前n项和公式法判断数列为等差数列,并借助性质求解的题,因而通过4、5题使学生体会借助公式法解题的简便与快捷。第6题一是考查通项公式法判断数列为等差数列,二是为下节课学习等差数列的前n项的绝对值之和做铺垫。
1、(2013·贵州六校联考)等差数列an的前n项和为Sn,已知a58,S36,则a9
()
A.8
B.12
C.16
D.24
2、(2013·德阳二诊)在等差数列an中,若a1a44,a2a75,则a11a14________。
2223、已知正项数列an中,a11,a22,2anan1an1(n2),则a6________。
4、已知数列an的前n项和为Snn22n(nN),则a8a5________。
5、已知数列an的通项公式为an3n1,则S10________。
6、(2013·河南三市第二次调研)设数列an的通项公式为an2n10,则a1a2a3a15________。
(四)课堂小结——要点扫描
列出提纲,引导学生回顾本节课所学的知识,要求学生能够用自己的语言,总结心得体会,以及每个知识点中的关键点和注意事项。
一个定义: 两个公式: 四种判定方法: 一种思想:
(五)作业布置
本节课所布置的作业有两类题:基础自测与课时作业主要是为了巩固学生对知识点的理解和掌握,加强对公式的使用,属于基础题,难度不大。合作探究题既是对课堂练习6的延伸,又为下节课的教学做铺垫,能够加强学生之间的合作交流,激发学生学习的兴趣。
核按钮基础自测,课时作业1,2,5,6,7 合作探究:课时作业11题
第二篇:等差数列复习教案
等差数列
高考考点:
1.等差数列的通项公式与前n项和公式及应用;
2.等差数列的性质及应用.知识梳理:
1.等差数列的定义:
2.等差中项
3.通项公式
4.前n项和公式
5.等差数列的性质(基本的三条)
典型例题:
一.基本问题
例:在等差数列an中
(1)已知a1533,a45153,求a61
(2)已知S848,S12168,求a1和d
(3)已知a163,求S31
变式:(1)(2008陕西)已知an是等差数列,a1a24,a7a828,则该数列的前10项的和等于()
A.64B.100C.110D.120
(2)(2008广东)记等差数列an的前n项和为Sn,若a1
A.16B.24C.36D.48 1,则S6()S420,2
二.性质的应用
例:(1)若一个等差数列前3项的和为34,最后三项的和为146。,且所有项的和为390,则这个数列有_____项
(2)已知数列an的前m项和是30,前2m项的和是100,则它的前3m项的和是______
(3)设Sn和Tn分别为两个等差数列的前n项和,若对于任意的nN,都有*Sn7n1,则第一个数列的第11项与第二个数列的第11项的比为________ Tn4n27
变式:(1)已知等差数列an中,a3,a15是方程x6x10的两根,则2
_a7a8a9a10a11_____
(2)已知两个等差数列an和bn的前n项和分别为An和Bn,且An5n63,则Bnn3使得
an为整数的正整数n的个数是________ bn
三.等差数列的判定
例:已知数列an的前n项和为Sn且满足an2Sn1Sn(n2),a11
(1)求证:1是等差数列 Sn
(2)求an的表达式
变式:数列an中,a1
an1,an1,求其通项公式 2an1
四.综合应用
例:数列an中,a18,a42,且满足an22an1an,nN *
(1)求数列an的通项公式;
(2)当n为何值时,其前n项和Sn最大?求出最大值;
(3)设Sna1a2an,求Sn
变式:(08四川)设等差数列an的前n项和为Sn,若S410,S515,则a4的最大值是_______
课后作业
1.(09年山东)在等差数列an中,a37,a5a26,则a6______
2.若xy,数列x,a1,a2,y和x,b1,b2,y 各自成等差数列,则
A.a2a1()b2b12433B.C.D.3324
3.集合A1,2,3,4,5,6,从集合A中任选3个不同的元素组成等差数列,这样的等差数列共有()
A.4个B.6个C.10个D.12个
4.(09安徽)已知an为等差数列,a1a3a5105,a2a4a699,以Sn表示an的前n项和,则使得Sn达到最大值的n是()
A.21B.20C.19D.18
5.(10浙江)设a1,d为实数,首项为a1,公差为d的等差数列an的前n项和为Sn,满足S5S6150,则d的取值范围是___________
6.已知数列an中,a13,anan112an(n2,nN*),数列bn满足5
bn1(nN*)an1
(1).求证:数列bn是等差数列
(2).求数列an中的最大项和最小项
第三篇:等差数列复习学案
友好三中高一数学学案设计人:刘磊组长审核:设计时间:2009-3-1 讲授时间:
等差数列复习
一、学习目标:
1、通过学案能灵活运用通项公式求等差数列的首项、公差、项数、指定项,并通过通项公式再次认识等差数列的性质。
2、通过等差数列的习题培养学生的观察力及归纳推理能力。
3、理论联系实际,激发学生学习积极性。
二、学习重难点:
重点:等差数列的概念,探索并掌握等差数列的通项公式。
难点:等差数列的性质及应用,“等差”的特点。
三、学法指导:
研读学习目标,了解本节重难点,精读教材,查找资料,独立完成学案,通过小组学习解决部分疑难问题,再通过课堂各小组展示及质疑对抗,共同提高,完成学习任务。
四、知识链接:
1.等差数列的通项公式:
3.等差数列的判定方法:
五、学习过程:
问题(1):已知{an}是等差数列.请证明2a5=a3+a7和2a5=a1+a9.问题(2):①证明2an=an-1+an+1(n>1)②证明2an=an-k+an+k(n>k>0)
A1.已知等差数列{an}中,a7﹢a9=16,a4=1,则a12的值是()
A.15B.30C.31D.6
4B2.设{an}是公差为正数的等差数列,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13等于()
A.120B.105C.90D.7
5B3.已知等差数列{an}满足a1+a2+a3+„+a101 =0,则有()
A.a1+a101>0B.a2+a100<0C.a3+a99=0D.a51=5
1A4.已知数列{an}满足an-1+an+1=2an(n≥2),且a1=3,a2=5,则数列的通项公式为.A5.在数列{an}中,若a1=1,an+1= an+2(n≥1),则该数列的通项an=.B6.等差数列{an}中,a1+3a8+a15=120,求2a9-a10
B7.在等差数列{an}中,已知a2+a5+a8=9,a3 a5 a7 =﹣21,求数列{an}的通项公式
六、达标训练:
B1.等差数列{an}中,a2+a5+a8=9,那么关于x的方程x+(a4+a6)x+10=0()
A.无实根B.有两个相等实 C.有两个不等实根D.不能确定有无实根
2B2.等差数列{an}中,已知ak+ak+1+ak+2+ak+4+ak+4=A,则ak-1+ak+5(k≥2)等于
A.AB.A3C.A2A
5D.5A3.在等差数列{an}中,已知am﹣n=A,am+n=B,则am=.A4.已知数列{an}中,若a3+a4+a5+a6+a7=60,则a2+a8=.)(1B5.在等差数列{an}中,若a4+a6+a8+a100+a12=120,求a9-a11。
3B6.在等差数列{an}中,若a4+a6+a8+a100+a12=120,则2a9-a10.七、课堂小结:
八、课后反思:
第四篇:等差数列复习课教案
等差数列复习课
(一)三维目标
1. 知识与技能:复习等差数列的定义、通项公式、前n项和公式及相关性质.2. 过程与方法:师生共同回忆复习,通过相关例题与练习加深学生的理解.3. 情感与价值:培养学生观察、归纳的能力,培养学生的应用意识.(二)教学重、难点
重点:等差数列相关性质的理解。难点:等差数列相关性质的应用。(三)教学方法
师生共同探讨复习本课时的主要知识点,再通过例题、习题加深学生的应用意识,本节课采用多媒体辅助教学。(四)课时安排 1课时
(五)教具准备 多媒体课件(六)教学过程 Ⅰ知识回顾
1、等差数列定义
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
2、等差数列的通项公式
如果等差数列an首项是a1,公差是d,则等差数列的通项公式是ana1(n1)d。注意:等差数列的通项公式整理后为annd(a1d),是关于n的一次函数。
3、等差中项
如果a,A,b成等差数列,那么A叫着a与b的等差中项。即:Aab,或 2Aab。
24、等差数列的前n项和公式
等差数列an首项是a1,公差是d,则Sn注意:
1)该公式整理后为snn(a1an)n(n1)d。=na122d2dn(a1)n,是关于n的二次函数,且常数项为0。222)等差数列的前n项和公式推导过程中利用了“倒序相加求和法”。
5、等差数列的判断方法 a)定义法:
对于数列an,若an1and(常数),则数列an是等差数列。b)等差中项法:
对于数列an,若2an1anan2,则数列an是等差数列。
6、等差数列的性质
1.等差数列任意两项间的关系:如果an是等差数列的第n项,am是等差数列的第m项,公差为d,则有anam(nm)d。
2.对于等差数列an,若 nmpq 则,anamapaq。
3.若数列an是等差数列,Sn是其前n项的和,kN,那么Sk,S2kSk,*S3kS2k成公差为n2d的等差数列。
II例题解析
例1:等差数列an中,若a2 = 10,a6= 26,求a14 解:略
练习1:等差数列an中,已知a1=,a2+ a5 =4 3an = 33,则n是()
A.48
B.49
C.50
D.51 例2:在三位正整数的集合中有多少个数是5的倍数?求它们的和。解:略
练习2:等差数列an中, a1a2a324,a18a19a2078,则此数列前20项的和等于()
A.160
B.180
C.200
D.220 例3:已知数列an的前n项和snn23,求 an 解:略
练习3:设等差数列an的前n项和公式是sn(5n23n),求它的通项公式__________ 例4:已知等差数列an , 若a2+ a3 +a10+a11 =36,求a5+ a8 解:略
练习4:已知等差数列an中, a2+a8=8,则该数列前9项和等于()
A.18
B.27
C.36
D.4 5 例5:已知数列 an是等差数列, bn= 3an + 4,证明数列bn 是等差数列。证明:略
2练习5:已知数列an的通项公式anpn3n
(pR)
当p满足什么条件时,数列an是等差数列。III课堂练习见课件
IV课时小结
本节课主要复习了等差数列的概念、等差数列的通项公式与前n项和公式,以及一些相关的性质。掌握等差数列通项公式和前n项和公式;利用性质:掌握等差数列的重要性质;掌握一些比较有效的技巧。V布置作业 课外补充 VI板书设计
第五篇:等差数列复习课(第一课时)
等差数列复习课(第一课时)
濮阳市二高王卓原创 ☆考纲要求:
1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数的关系.☆考情分析:
从近两年的高考试题来看,等差数列的判定,等差数列的通项公式、前n项和公式以及与前n项和有关的最值问题等是高考的热点,题型既有填空题又有解答题,难度中等偏高;客观题突出“小而巧”,主要考查性质的灵活运用及对概念的理解,主观题考查较为全面,在考查基本运算、基本概念的基础上,又注重考查了函数方程、等价转化、分类讨论等思想方法.
☆本节课学习目标:
1理解等差数列的概念。
2掌握等差数列的通项公式。
3等差数列的判定。
4等差数列的简单性质及应用。
☆梳理要点:
1.等差数列的定义
如果一个数列从第____项起,每一项减去它的前一项所得的差等于____________,那么这个数列就叫做等差数列,这个常数叫等差数列的______,通常用字母_____表示.定义的数学表达式为______________(n∈N*).
2.等差中项
若a,A,b成等差数列,则A叫做a与b的________,且A= ________
3.通项公式
等差数列的通项公式为______________.推广形式为______________.。思考:(1)等差数列通项公式能否看作关于n的函数?
(2)若等差数列通项公式是关于n的一次函数,那么数列是不是等差数列?
4.等差数列的性质
对于正整数m,n,p,q,若m+n=p+q,则______________
☆考点突破:
考点一:等差数列基本运算
1.an为等差数列,a72a41,a30,则公差d_____
2.等差数列an中,已知a1030.a2050
1求通项an
221是不是该数列中的项
3.(2009·全国卷Ⅱ)已知等差数列{an}中,a3a7=-16,a4+a6=0,求{an}的通项公式。
【方法技巧】
【反思感悟】
考点二:等差数列的判定与证明
1.若{an}是等差数列,则下列数列中仍为等差数列的个数有 ________个.
①{an+3};②{a2n};③{an+1-an};④{2an};⑤{2an+n}.
ac
2设命题甲为“a,b,c成等差数列”,命题乙为“=2”,那么
bb()
A.甲是乙的充分不必要条件B.甲是乙的必要不充分条件
C.甲是乙的充要条件D.甲是乙的既不充分也不必要条件
121
13.(2010·广州模拟)在数列{an}中,若a1=1,a2==+n∈N*),则该
2an+1anan+2数列的通项an=.3.在数列an中,a11,an1anan1an,求数列an的通项公式
an
5在数列{an}中,a1=1,an+1=2an+2.设bn=-,证明:数列{bn}
n
是等差数列.
【方法技巧】
判断或证明数列{an}为等差数列,这节课常见的方法有以下几种: 1.利用定义:an1and(常数)(n∈N*); 2.利用等差中项:2an1anan2;
3.利用通项公式:
andnc
(d、c为常数),d为公差.当
d≠0时,通项公式an
是关于n的一次函数;d=0时为常函
数,也是等差数列; 【能力提升】
1(2011·郑州模拟)已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=a2n+n-4.(1)求证{an}为等差数列;(2)求{an}的通项公式.
考点三:等差数列的性质
1在等差数列an中,a1a910,则a5_____
a11值为()
2在等差数列an中,若a4a6a8a10a12120则a9
A 14B15C16D17
3如果等差数列{an}中a3+a4+a5=12,那么a1+a2+„+a7=()
A.14B.21C.28D.35 【方法技巧】
【能力提高】
已知数列a1,a2,......a30,其中a1,a2,......a10是首项为1,公差为1的等差数列;
a10,a11,......a20
是公差为d的等差数列;a20,a21,......a30是公差为d的等差数
列(d≠0).
(1)若a20=40,求d;
(2)试写出a30关于d的关系式,并求a30的取值范围
☆课堂总结: