第一篇:高中数学新课程创新教学设计案例50篇 14 平面的基本性质
平面的基本性质
教材分析
这篇案例是在初中平面几何知识的基础上进一步研究平面的基本性质.平面的基本性质是研究立体几何的基本理论基础,这节课既是立体几何的开头课,又是基础课,学生对本节内容理解和掌握得如何,是能否学好立体几何的关键之一.这节课的教学重点是平面的基本性质,难点是平面的基本性质的应用及建立空间概念、正确应用符号语言.
教学目标
1.在引导学生观察思考生活中的实例、实物模型等的基础上,总结和归纳出平面的基本性质,初步学会用数学的眼光去认识和感受现实的三维空间.
2.会用图形语言、文字语言、符号语言准确描述三个公理,能用公理及推论解决有关问题,提高学生的逻辑推理能力.
3.通过画图和识图,逐步培养学生的空间想象能力,使学生在已有的平面图形知识的基础上,建立空间观念.
任务分析
这节课是立体几何学习的基础,但学生空间立体感还不强.为此,教学时要充分联系生活中的实例,如自行车有一个脚撑等,通过实例,使学生尽快形成对空间的正确认识,建立初步的空间观念;在联系实际提出问题和引入概念时,要合理运用教具,如讲解公理1时,可让学生利用手中的直尺去测桌面是不是平的;讲解公理2时可让学生观察教室的墙面的关系等.通过这些方式加强由模型到图形,再由图形返回模型的基本训练,逐步培养学生由图形想象出空间位置关系的能力.当用文字和符号描述对象时,必须紧密联系图形,使抽象与直观结合起来,即在图形的基础上发展其他数学语言.在阐述定义、定理、公式等重要内容时,宜先结合图形,再用文字和符号进行描述,综合运用几种数学语言,使其优势互补,这样,就有可能收到较好的效果,给学生留下较为深刻的印象.
教学设计
一、问题情景
1.利用你手中的直尺,如何判定你课桌的桌面是不是平的. 2.你骑的自行车有一个脚撑就可站稳,为什么?
3.矩形硬纸板的一顶点放在讲台面上,硬纸板与讲台面不重合,能否说这两个平面只有一个公共点?(利用多媒体屏幕呈现问题情景,即在屏幕上出现桌子与直尺、有一个脚撑的自行车、矩形硬纸与讲台面及相应的问题.与现实生活联系紧密的实物通过多媒体给出,能够活跃课堂气氛,激发学生学习兴趣,从而引导学生积极主动的去探究问题)
二、建立模型 1.探究公理(1)问题1的探究
教师提出问题,引发学生思考:
如何用直尺这个工具来判定你的桌面是不是平的呢?
(把直尺放在物体表面的各个方向上,如果直尺的边缘与物体的表面不出现缝隙,就可判断物体表面是平的)
教师点拔:这是判断物体表面是不是平的的一个常用方法.如果物体表面是平的,把直尺边缘无论如何放在平面上,则边缘与平面都没有缝隙,也就是说,如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内.由此,可以归纳出公理1. 公理1 如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(如图14-1).
这时我们说,直线在平面内或平面经过直线.这一性质是平面的主要特征.弯曲的面就不是处处具有这种性质.
教师进一步分析:为了书写的简便,我们把代数中刚学习过的有关集合的符号,引入立体几何中.把点作为基本元素,直线、平面即为“点的集合”,这样:
点A在直线a上,记作A∈a;
点A在直线a外,记作Aa;
点A在平面α内,记作A∈α;
点A在平面α外,记作Aα; 直线a在平面α内,记作aα;
直线a在平面α外,记作aα.
α. 公理1用集合符号表示为:A∈a,B∈a,A∈α,B∈α,则有a例:证明如果一个三角形的两边在一个平面内,那么第三边也在这个平面内. 注意:在分析过程中,一定要强调“要证明直线在平面内,则应该证明什么?条件中有没有,没有如何去创造”.通过这种逆推思路的分析,培养学生良好的思考习惯.
练习:判断下列命题的真假
① 如果一条直线不在平面内,则这条直线与平面没有公共点. ② 过一条直线的平面有无数多个. ③ 与一个平面没有公共点的直线不存在.
④ 如果线段AB在平面α内,则直线AB也在平面内a.(2)问题2的探究
教师提出问题,引发学生思考: 自行车有一个脚撑就可站稳,为什么?
(因为前轮着地点、后轮着地点、脚撑着地点三点在一个平面上,而且为了站稳,前轮着地点、后轮着地点、脚撑着地点三点不共线,因此我们可以推测:过不共线的三点有且只有一个平面)
教师演示:用相交于一点的三根小棍的三个端点作为空间不在一直线上的三个点(如图14-2),当把作为平面的硬纸板放在上面时,这张作为平面的硬纸板不能再“动”了,因为一动就要离开其中的一个点,硬纸板所在平面就不能确定了,正如同刚才的发现:过不共线的三点有且只有一个平面.
公理2 经过不在同一条直线上的三点,有且只有一个平面.(如图14-3)
公理2也可以简单地说成:不共线的三点确定一个平面.
教师演示课件:在空间给定不共线的三点A,B,C(如图14-4),作直线AB,BC,CA,再在直线BC,CA,AB上分别取动点P,Q,R,作直线AP,BQ,CR,让P,Q,R分别在直线BC,CA,AB上运动,我们可以看到这些直线“编织”成一个平面.
教师出示问题:试举出一个应用公理2的实例.(例如,一扇门用两个合页和一把锁就可以固定了)(3)问题3的探究
教师将矩形硬纸板的一顶点放在讲台面上,让学生观察,并同时提出问题:能否说这两个平面只有一个公共点?
(不能,因为平面是无限延展的,所以这两个平面应该有一条经过这公共点的直线)教师点拔:我们只能用有限的模型或图形来表示无限延展的平面,所以我们有时要看模型或图形,但又不能受模型或图形的限制来影响我们对平面的无限延展的了解.这个实例说明了平面具有如下性质.
公理3 如果两个不重合的两个平面有一个公共点,那么它们有且只有一条过这个点的公共直线.(如图14-5)
公理3的数学符号语言: P∈α,P∈βα∩β=a,P∈a.
教师进一步概括:为了简便,以后说到两个平面,如不特别说明,都是指两个不重合的平面.如果两个平面有一条公共直线,则称这两个平面相交.这条公共直线叫作这两个平面的交线.由公理3可见,两个平面如果有一个公共点,那么就有无穷多个公共点,所有公共点在公共直线上,即它们的交线上;交线上的每一个点都是两平面的公共点.
练习:判断下列命题的真假.
①如果两个平面有两个公共点A,B,那么它们就有无数个公共点,并且这些公共点都在直线AB上.
②两个平面的公共点的集合可能是一条线段. 2.推出结论
教师明晰:由于两点确定一条直线,根据公理2容易得出如下推论: 推论1 经过一条直线和直线外的一点,有且只有一个平面.
已知:点A,直线a,Aa.(如图14-6)
求证:过点A和直线a可以确定一个平面.
分析:“确定一个平面”包含两层意思:一是存在,二是唯一.这两层都应证明.(说明:这个证明可以由教师引导学生一起分析完成,但步骤教师一定要板书)证明:存在性.
因为Aa,在a上任取两点B,C,所以过不共线的三点A,B,C有一个平面α.(公理2)因为B∈α,C∈α,所以a∈α.(公理1)
故经过点A和直线a有一个平面α.唯一性.如果经过点A和直线a的平面还有一个平面β,那么A∈β,a
β,因为B∈a,C∈a,所以B∈β,B∈β.(公理1)
故不共线的三点A,B,C既在平面α内又在平面β内. 所以平面α和平面β重合.(公理2)
所以经过点A和直线a有且只有一个平面.有时“有且只有一个平面”,我们也说“确定一个平面”.
类似地可以得出下面两个推论:
推论2 经过两条相交直线,有且只有一个平面.(如图14-7)推论3 经过两条平行直线,有且只有一个平面.(如图14-8)
三、解释应用 [例 题]
两两相交且不过同一点的三条直线必在同一个平面内.(如图14-9)
已知:AB∩AC=A,AB∩BC=B,AC∩BC=C. 求证:直线AB,BC,AC共面. 证法1:因为AB∩AC=A,所以直线AB,AC确定一个平面α.(推论2)因为B∈AB,C∈AC,所以B∈α,C∈α,故BCα.(公理1)
因此,直线AB,BC,CA都在平面α内,即它们共面.
证法2:因为A直线BC,所以过点A和直线BC确定平面α.(推论1)因为A∈α,B∈BC,所以B∈α. 故AB同理ACα,α,所以AB,AC,BC共面.
证法3:因为A,B,C三点不在一条直线上,所以过A,B,C三点可以确定平面α.(公理2)因为A∈α,B∈α,所以AB同理BCα,AC
α.(公理1)
α,所以AB,BC,CA三直线共面.
思考:在这道题中“且不过同一点”这几个字能不能省略,为什么?(不能,如果三条直线两两相交且过同一点,则这三条直线可以不共面)[练习]
1.三角形、梯形是平面图形吗?
2.已知:平面α外有一个△ABC,并且△ABC三条边所在的直线分别与平面α交于三个点P,Q,R.求证P,Q,R三点共线.
四、拓展延伸
1.四条直线两两相交且不过同一点,这四条直线是否一定共面? 2.两个平面最多可以把空间分成几个部分?三个平面呢?四个平面呢?
点 评
这篇案例在教师指导下,从现实生活中选择和确定问题进行研究,以类似科学家探究的方式使学生主动地解决问题,获取知识,应用知识,并在探究过程中充分利用模型、进行数学实验等多种渠道.在问题探究的过程中,学生的空间想象能力、动手能力、解题能力等得到了提高.
这篇案例充分发挥教师的主导作用和学生的主体作用,让学生参与到问题的探究中,让学生成为“演员”,变成主角,成为解决问题的决策者,而教师只是充当配角.这样做不仅激发了学生的学习兴趣,活跃了课堂气氛,还充分发挥了学生的主体意识和主观能动性,能让学生从具体问题的分析过程中得到启发,让学生在互相讨论的过程中学会自己分析转换问题,解决问题.
第二篇:高中数学新课程创新教学设计案例50篇__40-43平面向量
平面向量的数量积
教材分析
两个向量的数量积是中学代数以往内容中从未遇到过的一种新的乘法,它区别于数的乘法.这篇案例从学生熟知的功的概念出发,引出平面向量数量积的概念和性质及其几何意义,介绍向量数量积的运算律及坐标表示.向量的数量积把向量的长度和三角函数联系在一起,这为解决三角形的有关问题提供了方便,特别是能有效解决线段的垂直等问题.这节内容是整个向量部分的重要内容之一,对它的理解与掌握将直接影响向量其他内容的学习.这节内容的教学难点是对平面向量数量积的定义及运算律的理解和对平面向量数量积的应用.
教学目标
1.理解并掌握平面向量的数量积、几何意义和数量积的坐标表示,会初步使用平面向量的数量积来处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
2.通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维习惯.
任务分析
两个向量的数量积从形式和实质上都与数的乘法有区别,这就给理解和掌握这个概念带来了一些困难.在学习时,要充分让学生理解、明白两个向量的数量积是一个数量,而不是向量.两个向量的数量积的值是这两个向量的模与两个向量夹角余弦的乘积,其符号由夹角余弦值的正负而确定.
两向量的数量积“a·b”不同于两实数之积“ab”.
通过实例理解a·b=b·c与a=c的关系,a·b=0与a=0或b=0的关系,以及(a·b)c=a(b·c)与(ab)c=a(bc)的不同.
教学设计
一、问题情景
如图40-1所示,一个力f作用于一个物体,使该物体发生了位移s,如何计算这个力所做的功.由于图示的力f的方向与前进方向有一个夹角θ,真正使物体前进的力是f在物体前进方向上的分力,这个分力与物体位移的乘积才是力f做的功.即力f使物体位移x所做的功W可用下式计算.
W=|s||f|cosθ.
其中|f|cosθ就是f在物体前进方向上的分量,也就是力f在物体前进方向上正射影的数量.
问题:像功这样的数量值,它由力和位移两个向量来确定.我们能否从中得到启发,把“功”看成这两个向量的一种运算的结果呢?
二、建立模型
1.引导学生从“功”的模型中得到如下概念:
已知两个非零向量a与b,把数量|a||b|cosθ叫a与b的数量积(内积),记作a·b=|a||b|cosθ.其中θ是a与b夹角,|a|cosθ(|b|cosθ)叫a在b方向上(b在a方向上)的投影.
规定0与任一向量的数量积为0.
由上述定义可知,两个向量a与b的数量积是一个实数.
说明:向量a与b的夹角θ是指把a,b起点平移到一起所成的夹角,其中0≤θ≤π.当θ=时,称a和b垂直,记作a⊥b.为方便起见,a与b的夹角记作〈a,b〉. 2.引导学生思考讨论
根据向量数量积的定义,可以得出
(1)设e是单位向量,a·e=|a|cos〈a,e〉.(2)设a·b是非零向量,则a⊥b(3)a·a=|a|2,于是|a|=
a·b=0.
.(4)cos〈a,b〉=.(5)|a·b|≤|a||b|(这与实数|ab|=|a||b|不同).
三、解释应用 [例 题]
已知|a|=5,|b|=4,〈a,b〉=120°,求a·b. 解:a·b=|a||b|cos〈a,b〉=5×4×cos120°=-10. [练习]
1.已知|a|=3,b在a上的投影为-2,求:(1)a·b.
(2)a在b上的投影.
2.已知:在△ABC中,a=5,b=8,c=60°,求
四、建立向量数量积的运算律
·.
1.出示问题:从数学的角度考虑,我们希望向量的数量积运算,也能像数量乘法那样满足某些运算律,这样数量积运算才更富有意义.回忆实数的运算律,你能类比和归纳出向量数量积的一些运算律吗?它们成立吗?为什么?
2.运算律及其推导
已知:向量a,b,c和λ∈R,则(1)a·b=b·a(交换律). 证明:左=|a||b|cosθ=右.
(2)(λa)·b=λ(a·b)=a·(λb)(数乘结合律). 证明:设a,b夹角为θ,当λ>0时,λa与b的夹角为θ,∴(λa)·b=(λa)·|b|cosθ=λ|a||b|cosθ=λ(a·b); 当λ<0时,λa与b的夹角为(π-θ),∴(λa)·b=|λa||b|cos(π-θ)=-λ|a||b|(-cosθ)=λ|a||b|cosθ=λ(a·b);
当λ=0时,(λa)·b=0·b=0=λ(a·b). 总之,(λa)·b=λ(a·b); 同理a·(λb)=λ(a·b).(3)(a+b)·c=a·c+b·c(乘法对加法的分配律).
证明:如图40-2,任取一点O,作=a,=b,=c.
∵a+b(即)在c方向上的投影等于a,b在c方向上的投影的和,即
|a+b|cosθ=|a|cosθ1+|b|cosθ2,∴|c||a+b|cosθ=|c|(|a|cosθ1+|b|cosθ2)= |c||a|cosθ1+|c||b|cosθ2=c·a+c·b,∴(a+b)·c=a·c+b·c.
思考:(1)向量的数量积满足结合律,即(a·b)c=a(b·c)吗?(2)向量的数量积满足消去律,即如果a·b=c·b,那么a=c吗?
五、应用与深化 [例 题]
1.对实数a,b,有(a+b)=a+2ab+b,(a+b)(a-b)=a-b.类似地,对任意向量a,b,也有类似结论吗?为什么?
解:类比完全平方和公式与平方差公式,有
(a+b)2=a2+2a·b+b2,(a+b)·(a-b)=a2-b2. 其证明是:(a+b)=(a+b)·(a+b)= a·a+a·b+b·a+b·b= a2+2a·b+b2,2
2(a+b)·(a-b)=a·a-a·b+b·a-b·b= a2-b2. ∴有类似结论.
2.已知|a|=6,|b|=4,〈a,b〉=60°,求(a+2b)·(a-3b). 解:(a+2b)·(a-3b)= a2-3a·b+2b·a-6b2=
|a|-|a||b|cos60°-6|b|=-72.
3.已知|a|=3,|b|=4,且a与b不共线.当k为何值时,(a+kb)⊥(a-kb)? 解:(a+kb)⊥(a-kb),即(a+kb)·(a-kb)=0,即a2-k2b2=0,即9-k2×16=0,k=±. 2
2因此,当k=±时,有(a+kb)⊥(a-kb).
4.已知:正方形ABCD的边长为1,并且=a,=b,=c,求|a+b+c|.
解法1:∵a+b+c=++=2,∴|a+b+c|=2=2.
解法2:|a+b+c|2=(a+b+c)2=a2+b2+c2+2a·b+2a·c+2b·c=1+1+2+2×1×1×cos90°+2×1×
[练习]
1.|a|=4,|b|=3,(2a-3b)·(2a+b)=61,求a与b的夹角θ.
×
+2×1×
×
=8,∴|a+b+c|=2
.
2.在边长为2的正三角形ABC中,求
六、拓展延伸
·+·+·.
1.当向量a,b的夹角为锐角时,你能说明a·b的几何意义吗? 如图40-3,a·b,即以b在a上射影的长和a的长为两邻边的矩形面积(OA=OA1).
2.平行四边形是表示向量加法与减法的几何模型,如图40-4,=-
=+,.试说明平行四边形对角线的长度与两条邻边长度之间的关系.
3.三个单位向量a,b,c有相同终点且a+b+c=0,问:它们的起点连成怎样的三角形?
解法1:如图40-5,∵|a|=|b|=|c|=1,a+b+c=0,∴a+b=-c,∴(a+b)=(-c)2,2∴a2+b2+2a·b=c2,∴2|a|·|b|cos∠AOC=-1,cos∠AOC=,∠AOC=120°. 同理∠BOC=∠AOC=120°,故△AOB,△BOC,△BOC全等,∴AB=AC=BC,即该△ABC为等边三角形.
解法2:如图40-6,.
=c,=-a,=-b,由a+b+c=0,即=+
∵|a|=|b|=1,∴OADB为菱形.
又||=1,∴∠AOB=120°.
同理∠AOC=∠BOC=120°,…
4.在△ABC中,·=·=·,问:O点在△ABC的什么位置?
解:由同理⊥·,=⊥
·,即·(-)=0,即·=0,∴⊥,.故O是△ABC的垂心.
两角和与差的余弦
教材分析
这节内容是在掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进一步研究用单角的三角函数表示的两角和与差的三角函数.这些内容在高等数学、电功学、力学、机械设计与制造等方面有着广泛的应用,因此要求学生切实学好,并能熟练的应用,以便为今后的学习打下良好的基础. “两角差的余弦公式”在教科书中采用了一种易于教学的推导方法,即先借助于单位圆中的三角函数线,推出α,β,α-β均为锐角时成立.对于α,β为任意角的情况,教材运用向量的知识进行了探究.同时,补充了用向量的方法推导过程中的不严谨之处,这样,两角差的余弦公式便具有了一般性.
这节课的重点是两角差的余弦公式的推导,难点是把公式中的α,β角推广到任意角.
教学目标
1.通过对两角差的余弦公式的探究过程,培养学生通过交流,探索,发现和获得新知识的能力.
2.通过两角差的余弦公式的推导,体会知识的发生、发展的过程和初步的应用过程,培养学生科学的思维方法和勇于探索的科学精神.
3.能正确运用两角差的余弦公式进行简单的三角函数式的化简、求值和恒等式证明.
任务分析
这节内容以问题情景中的问题作为教学的出发点,利用单位圆中的三角函数线和平面向量的数量积的概念推导出结论,并不断补充推导过程中的不严谨之处.推导过程采用了从特殊到一般逐层递进的思维方法,学生易于接受.整个过程始终结合单位圆,以强调其直观性.对于公式中的α和β角要强调其任意性.数学中要注意运用启发式,切忌把结果直接告诉学生,尽量让学生通过观察、思考和探索,自己发现公式,使学生充分体会到成功的喜悦,进一步激发学生的学习兴趣,调动他们学习的积极性,从而使其自觉主动地学习.
教学过程
一、问题情景
我们已经学过诱导公式,如
可以这样来认识以上公式:把角α转动,则所得角α+的正弦、余弦分别等于cosα和-sinα.把角α转动π,则所得角α+π的正弦、余弦分别等于-sinα和-cosα. 由此,使我们想到一个一般性的问题:如果把角α的终边转动β(度或弧度),那么所得角α+β的正弦、余弦如何用α或β的正弦、余弦来表示呢? 出示一个实际问题:
右图41-1是架在小河边的一座吊桥的示意图.吊桥长AB=a(m),A是支点,在河的左岸.点C在河的右岸,地势比A点高.AD表示水平线,∠DAC=α,α为定值.∠CAB=β,β随吊桥的起降而变化.在吊桥起降的过程中,如何确定点B离开水平线AD的高度BE?
由图可知BE=asin(α+β).
我们的问题是:如何用α和β的三角函数来表示sin(α+β).如果α+β为锐角,你能由α,β的正弦、余弦求出sin(α+β)吗?
引导学生分析:事实上,我们在研究三角函数的变形或计算时,经常提出这样的问题:能否用α,β的三角函数去表示α±β的三角函数?为了解决这类问题,本节首先来探索α-β的余弦与α,β的函数关系式.
更一般地说,对于任意角α,β,能不能用α,β的三角函数值把α+β或α-β的三角函数值表示出来呢?
二、建立模型 1.探 究
(1)猜想:cos(α-β)=cosα-cosβ.(2)引导学生通过特例否定这一猜想.
例如,α=60°,β=30°,可以发现,左边=cos(60°-30°)=cos30°=-cos30°=-,右边=cos60°.显然,对任意角α,β,cos(α-β)=cosα-cosβ不成立.
(3)再引导学生从道理上否定这一猜想.
不妨设α,β,α-β均为锐角,则α-β<α,则cos(α-β)>cosα.又cosβ>0,所以cos(α-β)>cosα-cosβ. 2.分析讨论
(1)如何把α,β,α-β角的三角函数值之间建立起关系?要获得相应的表达式需要哪些已学过的知识?
(2)由三角函数线的定义可知,这些角的三角函数值都与单位圆中的某些有向线段有关系,那么,这些有向线段之间是否有关系呢?
3.教师明晰
通过学生的讨论,教师引导学生作出以下推理:
设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.
过点P作PM⊥x轴,垂足为M,那么,OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.
过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是
OM=OB+BM=OB+CP=OAcosα+APsinα= cosβcosα+sinβsinα. 4.提出问题,组织学生讨论
(1)当α,β,α-β为任意角时,上述推导过程还能成立吗?
若要说明此结果是否对任意角α,β都成立,还要做不少推广工作,可引导学生独立思考.
事实上,根据诱导公式,总可以把α,β的三角函数化为(0,)内的三角函数,再根据cos(-β)=cosβ,把α-β的余弦,化为锐角的余弦.因此,三、解释应用
[例 题]
1.求cos15°及cos105°的值.
分析:本题关键是将15°角分成45°与30°的差或者分解成60°与45°的差,再利用两角差的余弦公式即可求解.对于cos105°,可进行类似地处理,cos105°=cos(60°+45°).
2.已知sinα=的值.,α∈(,π),cosβ=-,且β是第三象限的角,求cos(α+β)分析:观察公式Cα+β与本题已知条件应先计算出cosα,cosβ,再代入公式求值.求cosα,cosβ的值可借助于同角三角函数的平方关系,并注意α,β的取值范围来求解.
[练习]
1.(1)求sin75°的值.
(2)求cos75°cos105°+sin75°sin105°的值.(3)化简cos(A+B)cosB+sin(A+B)sinB.(4)求cos215°-sin215°的值.
分析:对于(1),可先用诱导公式化sin75°为cos15°,再用例题1中的结果即可.对于(2),逆向使用公式Cα-β,即可将原式化为cos30°.对于(3),可以把A+B角看成一个整体,去替换Cα-β中的α角,用B角替换β角.
2.(1)求证:cos(-α)=sinα.
(2)已知sinθ=,且θ为第二象限角,求cos(θ-)的值.
(3)已知sin(30°+α)=,60°<α<150°,求cosα.
分析:(1)和(差)公式可看成诱导公式的推广,诱导公式是和(差)公式的特例.(2)在三角函数求值问题中,变角是一种常用的技巧,α=(30°+α)-30°,这样可充分利用题中已知的三角函数值.
3.化简cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°).
分析:这里可以把角36°+α与α-54°均看成单角,进而直接运用公式Cα-β,不必将各式展开后再计算.
分析:本题是一道综合题,由于cos(α-β)=cosαcosβ+sinαsinβ,欲求cos(α-β)的值,只须将已知两式平方相加求出cosαcosβ+sinαsinβ即可.
四、拓展延伸
1.由任意角三角函数定义,可知角α,β的终边与单位圆交点的坐标均可用α,β的三角函数表示,即α-β角与导公式Cα-β呢?
教师引导学生分析:在平面直角坐标系xOy内作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则由向量数量积的概念,有
=(cosα,sinα),=(cosβ,sinβ).,两向量的夹角有关,那么能否用向量的有关知识来推·=||||cos(α-β)=cos(α-β).
由向量的数量积的坐标表示,有
·=cosαcosβ+sinαsinβ.
于是,有
cos(α-β)=cosαcosβ+sinαsinβ.
依据向量数量积的概念,角α-β必须符合0≤α-β≤π,即在此条件下,以上推导才是正确的.
由于α,β都是任意角,α-β也是任意角,因此,须研究α-β为任意角时,以上推导是否正确.
当α-β为任意角时,由诱导公式总可以找到一个角θ,θ∈[0,2π),使cosθ=cos(α-β).
若θ∈[0,π],则·=cosθ=cos(α-β);
若θ∈[π,2π],则2π-θ∈[0,π],且 ·=cos(2π-θ)=cosθ=cos(α-β).
于是,对于任意角α,β都有
2.教师提出进一步拓展性问题:本节问题情景中,涉及如何用sinα,sinβ,cosα,cosβ来表示sin(α+β)的问题,试探索与研究sin(α+β)的表达式.
两角和与差的正弦
教材分析
在这节内容中,公式较多,一旦处理不当,将成为学生学习的一种负担.针对这个特点,应充分揭示公式的内在联系,使学生理解公式的形成过程及其使用条件,在公式体系中掌握相关的公式.同时,通过练习使学生能够熟练地运用这些公式.当然,这些公式的基础是两角和差的余弦公式.通过诱导公式sin(-α)=sinα,sinπ(-α)=cosα(α为任意
-(α+β)]角),可以实现正、余弦函数间的转换,也可推广为sin(α+β)=cos[=cos[(-α)-β],sin(α-β)=[
-(α-β)]=cos[(-α)+β].借助于Cα+β和Cα-β即可推导出公式Sα+β和Sα-β.Cα+β,Cα-β,Sα+β和Sα-β四个公式的左边均为两角和与差的正、余弦,右边均为单角α,β的正、余弦形式.不同点为公式Sα+β,Sα-β两边的运算符号相同,Cα+β与Cα-β两边的运算符号相反.Sα+β与Sα-β中右边是两单角异名三角函数的乘积,而Cα-β与Cα+β的右边是两单角同名三角函数的乘积.
任务分析
这节课计划采用启发引导和讲练结合的教学方式,对三角函数中的每一个公式要求学生会推导,会使用,要求不但掌握公式的原形,还应掌握它们的变形公式,会把“asinx+bcosx”类型的三角函数化成一个角的三角函数.在课堂教学中,将采用循序渐进的原则,设计有一定梯度的题目,以利于培养学生通过观察、类比的方法去分析问题和解决问题的能力,培养学生良好的思维习惯.在教学中,及时提醒学生分析、探索、化归、换元、类比等常用的基本方法在三角变换中的作用.这节课的重点是准确、熟练、灵活地运用两角和差的正、余弦公式进行三角函数式的求值、化简和证明,难点是公式的变形使用和逆向使用.
教学目标 1.能用两角差的余弦公式导出两角和的余弦公式,两角和差的正弦公式,并了解各个公式之间的内在联系.
2.能运用两角和差的正、余弦公式进行三角函数式的化简、求值和证明.
3.通过公式的推导过程,培养学生的逻辑思维能力,同时渗透数学中常用的换元、整体代换等思想方法.
教学过程
一、问题情景
如图42-1,为了保持在道路拐弯处的电线杆OB的稳固性,要加一根固定钢丝绳,要求钢丝绳与地面成75°角.已知电线杆的高度为5m,问:至少要准备多长的钢丝绳?
设电线杆与地面接触点为B,顶端为O,钢丝绳与地面接触点为A. 在Rt△AOB中,如果能求出sin75°的值,那么即可求出钢丝绳的长度.75°角可表示成两个特殊角45°与30°的和,那么sin75°的值能否用这两特殊角的三角函数值来表示呢?
二、建立模型 1.探 究
已知cos(α-β)=cosαcosβ+sinαsinβ,则sin(α+β),sin(α-β)中的角及函数名与cos(α+β)和cos(α-β)有何关系? 通过诱导公式可实现正、余弦函数的转换,即sin(α+β)=推导以上公式的方法并不是唯一的,其他推导方法由学生课后自己探索. 3.分析公式的结构特征
Sα+β与Sα-β中两边的加减运算符号相同,右边为α与β角的异名三角函数的乘积.应特别注意公式两边符号的差异.
三、解释应用 [例题一]
已知sinα=-,且α为第四象限角,求sin(-α)cos(+α)的值.
分析:本题主要训练公式Sα-β与Sα+β的使用.
由sinα=-及α为第四象限角,可求出cosα=,再代入公式求值.
[练习一]
分析:1.(1)强调公式的直接运用,寻找所求角与已知角之间的关系,α=(30°+α)-30°,再利用已知条件求出cos(30°+α).
2.应注意三角形的内角之间的关系,C=π-(A+B),再由诱导公式cos(π-α)=-cosα,要求cosC即转化为求-cos(A+B).
3.应注意分析角之间的关系,2β=(α+β)-(α-β),因此,求cos2β还应求出sin(α-β)和cos(α+β).解此题时,先把α+β与α-β看成单角,然后把2β用这两个单角来表示.
4.该题是在已有知识的基础上进一步深化,引导学生分三步进行:(1)求出α+β角的某个三角函数值.(2)确定角的范围.(3)确定角的值.其中,求α+β的某个三角函数值时,应分清是求cos(α-β)还是求sin(α-β).
已知向量的坐标. =(3,4),若将其绕原点旋转45°到′→的位置,求点P′(x′,y′)解:设∠xOP=α,∵|OP|=5,∴cosα=,sinα=.
∵x′=5cos(α+45°)=5(cosαcos45°-sinαsin45°)=-,y′=5sin(α+45°)=5(sinαcos45°+cosαsin45°)=,∴P′ -,.
已知向量=(4,3),若将其绕原点旋转60°,-135°到
1,2的位置,求点P1,P2的坐标.
[例题三]
求下列函数的最大值和最小值.
(1)y=cosx-sinx.
(2)y=3sinx+4cosx.
(3)y=asinx+bcosx,(ab≠0). 注:(1),(2)为一般性问题,是为(3)作铺垫,推导时,要关注解题过程,以便让学生充分理解辅助角φ满足的条件.
(3)解:考查以(a,b)为坐标的点P(a,b),设以OP为终边的一个角为φ,则
[练习三]
求下列函数的最大值和最小值.(1)y=cosx-sinx.
(2)y=sinx-sin(x+)
(3)已知两个电流瞬时值函数式分别是I1=12sin(ωt-45°),I2=10sin(ωt+30°),求合成的正弦波I=I1+I2的函数式.
四、拓展延伸
出示两道延伸性问题,引导学生独立思考,然后师生共同解决.
1.已知三个电流瞬时值的函数式分别为I1=5sinωt,I2=6sin(ωt-60°),I3=10sin(ωt+60°),求它们合成后的电流瞬时值的函数式I=I1+I2+I3,并指出这个函数的振幅、初相和周期.
2.已知点P(x,y),与原点的距离保持不变绕原点旋转θ角到点P′(x′,y′)(如图42-2),求证:
三角形边和角关系的探索
教材分析
初中已研究过解直角三角形,这节所研究的正、余弦定理是解直角三角形知识的延伸与推广,它们都反映了三角形边、角之间的等量关系,并且应用正、余弦定理和三角形内角和定理,可以解斜三角形.正弦定理的推证运用了从特殊到一般的方法,把直角三角形中得到的边角关系式推广到锐角三角形,再推广到钝角三角形,进而得出一般性的结论.余弦定理的推证采用向量的数量积做工具,将向量的长度与三角形的边长、向量的夹角与三角形的内角联系起来.对于正、余弦定理的推论,除了这节课的证法之外,还有其他的一些推证方法.教材中还要求,在证明了正、余弦定理之后,让学生尝试用文字语言叙述两个定理,以便理解其实质.当然,就知识而言,正弦定理有三个等式,可视为三个方程;余弦定理的三个式子也可看成三个方程,每个方程中均有四个量,知道其中任意三个量便可求第四个量.
这节课的重点是正、余弦定理的证明,以及用正、余弦定理解斜三角形,难点是发现定理、推证定理以及用定理解决实际问题.
任务分析
这节内容是在初中对三角形有了初步认识的基础上,进一步研究三角形的边、角之间的等量关系.对正弦定理的推导,教材中采用了从特殊到一般的方法,逐层递进,学生易于接受,而余弦定理的证明采用了向量的方法.应用两个定理解三角形时,要分清它们的使用条件.将正、余弦定理结合起来应用,经常能很好地解决三角形中的有关问题.
教学目标
1.理解正、余弦定理的推证方法,并掌握两个定理. 2.能运用正、余弦定理解斜三角形.
3.理解并初步运用数学建模的思想,结合解三角形的知识,解决生产、生活中的简单问题.
教学设计
一、问题情景
1.A,B两地相距2558m,从A,B两处发出的两束探照灯光照射在上方一架飞机的机身上(如图43-1),问:飞机离两探照灯的距离分别是多少?
2.如图43-2,自动卸货汽车的车厢采用液压机构,设计时应计算油泵顶杆BC的长度.已知车厢的最大仰角为60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平的夹角为6°20′,AC长为1.40m,计算BC的长.(精确到0.01m)
问题:(1)图中涉及怎样的三角形?(2)在三角形中已知什么?求什么?
二、建立模型
1.教师引导学生分析讨论
在问题情景(1)中,已知在△ABC中,∠A=72.3°,∠B=76.5°,AB=2558m.求AC,BC的长.
组织学生讨论如何利用已知条件求出AC,BC的长度.(让学生思考,允许有不同的解法)
结论:如图40-3,作AD⊥BC,垂足为D.由三角函数的定义,知AD=AC·sinC,AD=AB·sinB.
由此可得AC·sinC=AB·sinB.
又由∠A,∠B的度数可求∠C的度数,代入上式即可求出AC的长度,同理可求BC的长度.
教师明晰:
(1)当△ABC为直角三角形时,由正弦函数的定义,得
(2)当△ABC为锐角三角形时,设AB边上的高为CD,根据三角函数的定义,得CD=asinB=bsinA,所以,同理
.(3)当△ABC为钝角三角形时,结论是否仍然成立?引导学生自己推出.(详细给出解答过程)
事实上,当∠A为钝角时,由(2)易知设BC边上的高为CD,则由三角函数的定义,得 CD=asinB=bsin(180°-A).
根据诱导公式,知sin(180°-A)=sinA,.∴asinB=bsinA,即.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即
.正弦定理指出了任意三角形中三条边与它对应角的正弦之间的一个关系式,描述了任意三角形中边、角之间的一种数量关系.
思考:正弦定理可以解决有关三角形的哪些问题? 2.组织学生讨论问题情景(2)
这一实际问题可化归为:已知△ABC的边AB=1.95,AC=1.4,夹角为6°20′,求BC的长. 组织学生讨论:能用什么方法求出BC?(学生有可能有多种不同的解法)
教师明晰:如果已知三角形的两边和夹角,这个三角形为确定的三角形,那么怎样去计算它的第三边呢?由于涉及边长及夹角的问题,故可以考虑用平面向量的数量积.(也可用两点间的距离公式)
如图,设=a,=b,=c,则c=a-b.
∵|c|2=c·c=(a-b)·(a-b)=a2+b2-2abcosC,∴c=a+b-2abcosC.
同理a2=b2+c2-2bccosA,b2=c2+a2-2accosB. 于是得到以下定理:
余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即
a2=b2+c2-2bccosA,b2=c2+a2-2accosB,c2=a2+b2-2abcosC.
思考:余弦定理可以解决一些怎样的解三角形问题? 3.进一步的问题
勾股定理指出了直角三角形中三边之间的等量关系,余弦定理则指出了一般三角形三边之间的等量关系,那么这两个定理之间存在怎样的关系?如何利用余弦定理来判断三角形是锐角三角形还是钝角三角形?
三、解释应用 [例 题] 2221.(1)已知:在△ABC中,A=32.0°,B=81.8°,a=42.9cm,解三角形.
(2)已知:在△ABC中,a=20cm,b=28cm,A=40°,解三角形.(角精确到1°,边长精确到1cm)
分析:(1)本题为给出三角形的两角和一边解三角形问题,可由三角形内角和定理先求出第三个角,再两次利用正弦定理分别求出另两边.
(2)本题给出了三角形的两边及其中一边的对角,于是可用正弦定理求出b边的对角B的正弦,sinB≈0.8999,但0<B<π,故B角有两个值(如图43-8),从而C角与c边的取值也有两种可能.学生在解题时容易丢掉一组解,应引导学生从图形上寻找漏掉的解.
2.(1)已知:在△ABC中,已知b=60cm,c=34cm,A=41°,解三角形.(角精确到1°,边长精确到1cm)
(2)已知:在△ABC中,a=134.6cm,b=87.8cm,c=161.7cm,解三角形.(角精确到1′).
分析:本例中的(1)题,给出了两边及其夹角,可先用余弦定理求出第三边,求其他两角时既可用余弦定理也可用正弦定理.(2)题给出了三边长,可先用余弦定理求出其中一角,然后同样既可用正弦定理,也可用余弦定理求出其他两角.
3.AB是底部B不可到达的建筑物,A为建筑物的最高点.设计一种测量建筑物高度AB的方法. 分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高.由解直角三角形的知识,只要能知道一点C到建筑物顶部A的距离CA,并能测出由点C观察A的仰角,就可以计算出建筑物的高.为了求出CA的长,可选择一条水平基线HG(如图43-9),使H,G,B三点在同一条直线上.在G,H两点用测角仪器测得A的仰角分别为α,β,设CD=a,测角仪器的高为h,则在△ACD中,由正弦定理,得-β),从而可求得AB=AE+h=ACsinα+h=[练习]
1.在△ABC中,已知下列条件,解三角形.(角精确到1°,边长精确到1cm)(1)A=45°,C=30°,c=10cm.(2)A=60°,B=45°,c=20cm.(3)a=20cm,b=11cm,B=30°.(4)c=54cm,b=39cm,c=115°.
2.在△ABC中,已知下列条件,解三角形.(角精确到0.1°,边长精确到0.1cm)(1)a=2.7cm,b=3.696cm,C=82.2°.(2)b=12.9cm,c=15.4cm,A=42.3°.(3)a=7cm,b=10cm,c=6cm.
四、拓展延伸
1.在△ABC中,有正弦定理
+h.,sin(α
这涉及比值的连等式.请探索并研究是一个什么样的量,并加以证明.
2.在△ABC中,已知三边的长为a,b,c,如何判定△ABC的形状? 3.已知:在△ABC中,a=60,b=50,A=38°,求B.(精确到1°)
分析:.∵0°<B<180°,∴B≈31°或B≈149°,但当B≈149°时,A+B=187°,这与A,B为三角形内角矛盾,故B角只能取31°. 由此题与例1中的(2)题的分析可以发现,在已知三角形两边及其一边对角解三角形时,在某些条件下会出现一解或两解的情形,那么会不会出现无解的情形呢?
(1)当A为钝角或直角,必须满足a>b才有解(a≤b无解),并且由sinB=计算B时,只能取锐角,因此,只有一解,如图43-10.
(2)当A为锐角时,①若a>b或a=b,则由sinB=解,如图40-11.
计算B时,只能取锐角的值,因此,只有一②若a<bsinA,则由sinB=,得sinB>1,因此,无解.如图43-12.
③若a=bsinA,则由sinB=,得sinB=1,即B为直角,故只有一解,如图43-13.
④若b>a>bsinA,则sinB<1,故B可取一个锐角和一个钝角的值,如图43-14.
思考:若已知三角形的两角和一边、三边、两边及其夹角来解三角形时,它们的解会是怎样的?
第三篇:高中数学新课程创新教学设计案例50篇 38平面向量的基本定理
平面向量的基本定理
教材分析
平面向量的基本定理是说明同一平面内任一向量都可以表示为两个不共线向量的线性组合,它是平面向量坐标表示的基础,也是平面图形中任一向量都可由某两个不共线向量量化的依据.这节内容以共线向量为基础,通过把一个向量在其他两个向量上的分解,说明了该定理的本质.教学时无须严格证明该定理,只要让学生弄清定理的条件和结论,会用该定理就可以了.
向量的加法、减法、实数与向量的积的混合运算称为向量的线性运算,也叫“向量的初等运算”.由平面向量的基本定理,知任一平面内的直线型图形都可表示为某些向量的线性组合,这样在证明几何命题时,可先把已知和结论表示成向量形式,再通过向量的运算,有时能很容易证明几何命题.因此,向量是数学中证明几何命题的有效工具之一.为降低难度,目前要求用向量表示几何关系,而不要求用向量证明几何命题.
平面向量的基本定理的理解是学习的难点,而应用基本向量表示平面内的某一向量是学习的重点.
教学目标
1.了解平面向量基本定理的条件和结论,会用它来表示平面图形中任一向量,为向量坐标化打下基础.
2.通过对平面向量基本定理的归纳、抽象和概括,体验数学定理的产生、形成过程,提升学生的抽象和概括能力.
3.通过对平面向量基本定理的运用,增强向量的应用意识,进一步体会向量是处理几何问题的强有力的工具之一.
任务分析
这节课是在学生熟悉向量加、减、数乘线性运算的基础上展开的,为了使学生理解和掌握好平面向量的基本定理,教学时,常应用构造式的作图方法,同时采用师生共同操作,增强直观认识,归纳和总结出任意向量与基本向量的线性组合关系,并且通过适当的练习,使学生进一步认识和理解这一基本定理.
教学设计
一、问题情景 1.在ABCD中,(1)已知=a,=b,试用b,b来表示,;
(2)已知=c,=d,试用c,d表示向量,.2.给定平面内任意两个不共线向量e1,e2,试作出向量3e1+2e2,e1-2e2. 3.平面内的任一向量是否都可以用形如λ1e1+λ2e2的向量表示?
二、建立模型 1.学生回答
(1)由向量加法,知=a+b;由向量减法,知=a-b,=a+0·b.
(2)设AC,BD交于点O,由向量加法,知
2.师生总结
以a,b为基本向量,可以表示两对角线的相应向量,还可表示一边对应的向量估计任一向量都可以写成a·b的线性表达.
任意改成另两个不共线向量c,d作基本向量,也可表示其他向量. 3.教师启发,通过了e1+2e2,e1-2e2的作法,让学生感悟通过改变λ1,λ2的值,可以作出许多向量a=λ1e1+λ2e2.在此基础上,可自然形成一个更理性的认识———平面向量的基本定理.
4.教师明晰
如图,设e1,e2是平面内两个不共线的向量,a是这一平面内的任一向量.
在平面内任取一点O,作
=e1,=e2,=a;过点C作平行于直线OB的直线,与直线OA交于M;过点C作平行于直线OA的直线,与直线OB交于N.这时有且只有实数λ1,λ2,使
=λ1e1,=λ2e2.由于
=
+,所以a=λ1e1+λ2e2,也就是说任一向量a都可表示成λ1e1+λ2e2的形式,从而有
平面向量的基本定理 如果e1,e2是一平面内的两个不平行向量,那么该平面内的任一向量a,存在唯一的一对实数λ1,λ2,使a=λ1e1+λ2e2.
我们把不共线向量e1,e2叫作表示这一平面内所有向量的一组基底,有序实数对(λ1,λ2)叫a在基底e1,e2下的坐标.
三、解释应用 [例 题]
1.已知向量e1,e2(如图38-3),求作向量-2.5e1+3e2. 注:可按加法或减法运算进行.
2.如图38-4,解:∵,不共线,=t(t∈R),用,表示.
[练习]
1.已知:不共线向量e1,e2,求作向量a=e1-2e2.
2.已知:不共线向量e1,e2,并且e1-3e2=λ1e1+λ2e2,求实数λ1,λ2. 3.已知:基底{a,b},求实数x,y满足向量等式:3xa+(10-y)b=(4y+7)a+2xb.
4.在△ABC中,=a,=b,点G是△ABC的重心,试用a,b表示.
5.已知:ABCDEF为正六边形,=a,.
=b,试用a,b表示向量6.已知:M是平行四边形ABCD的中心,求证:对于平面上任一点O,都有
.四、拓展延伸
点 评
这篇案例由向量加、减、数乘运算过渡到平面向量的基本定理,引入比较自然,合理,使学生由感性认识上升为理性认识这种既重结果又重过程的教学理念符合新课程标准的精神.同时,有关向量基本定理的应用的例、习题的设计也较有梯度和力度,强化了知识的应用,为提高学生的分析问题和解决问题的能力打下了一定的基础.如果能把多媒体教学等信息技术用于向量的分解,那么会使问题更为直观,进而学生更易于接受.
第四篇:高中数学新课程创新教学设计案例50篇 50 基本不等式
基本不等式:
教材分析
“”的证明学生比较容易理解,学生难理解的是“当且仅当a=b时取„=‟号”的真正数学内涵,所谓“当且仅当”就是“充分必要”.
教学重点是定理及其应用,难点是利用定理求函数的最值问题,进而解决一些实际问题.
教学目标
1.理解两个实数的平方和不小于它们积的2倍这一重要不等式的证明,并能从几何意义的角度去解释,形成数形结合的完美统一.
2.理解两个正数的算术平均数不小于它们的几何平均数定理的证明,及其几何意义,会用这两个重要不等式解决简单的实际应用题.
3.通过定理的证明培养学生的逻辑推理能力,通过定理的应用揭示数学的应用价值.
任务分析
这节内容从实际问题情境展开探讨,“如要围成面积为16m2的一个矩形,所需绳子最短是多少?即设长为x,宽为,则周长为l=2x+2×,求当x取何值时,l最小.”让学生去猜测,去思考,充分调动学生的积极性,激发学生的想象和猜想能力.当学生猜想它应为正方形这一结论时,教师适时引导如何去证明猜想的正确性,激发学生的求知欲望,从而达到由问题到结论的证明,开阔学生的思路,陶冶学生的情操.
教学设计
一、问题情境 教师出示问题,引导学生分析、思考:某工厂要建造一个长方体形无盖贮水池,其容积为4800m,深为3m.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低总造价是多少元?
3二、建立模型
1.通过比较a+b与2ab的大小,引入重要不等式. ∵a2+b2-2ab=(a-b)2,∴当a≠b时,(a-b)>0; 当a=b时,(a-b)2=0.
即(a-b)2≥0,从而有a2+b2≥2ab. 2.结论明晰
定理1 如果a,b∈R,那么a2+b2≥2ab(当且仅当a=b时,取“=”号).
22思考:对于定理1和定理2,当且仅当a=b时取“=”号的具体含义是什么?
三、解释应用 [例 题] 1.已知x,y都是正数,求证:
小结;上述结论是我们用定理求最值的依据,可简述为和为定值积最大,积为定值和最小.
2.设法解决本节课开始提出的问题.
因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价为297600元.
3.0求证:在直径为d的圆内接矩形中,面积最大的是正方形,并且这个正方形的面积等于d. 22.设计一幅宣传画,要求画面面积为4840cm2,画面的宽与高的比为λ(λ<1),画面的上、下各留8cm的空白,左、右各留5cm的空白.问:怎样确定画面的高与宽的尺寸,才能使宣传画所用纸张面积最小?
答:当画面高为88cm、宽为55cm时,所用纸张面积最小.
3.用一段长为L(m)的篱笆围成一个边靠墙的矩形菜园,问:当这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
上述两种解答的答案不同,哪一种方法是错误的,为什么?
四、拓展延伸
点 评
这篇案例由实际问题引入课题,既自然,又能引起学生的兴趣,激发起学生的求知欲望,为本节重点的突破打下良好的基础.由学生已有知识归纳和总结得到这节课的两个定理,使学生易于理解和接受.由典型例题的证明,归纳出一般结论,培养了学生的逻辑推理能力.由练习的变形培养了学生灵活处理问题的能力.对实际问题的解决体现了数学的应用价值.重要不等式灵活变形的使用不仅加深了对推理的理解,同时突破了对本节难点“等号成立的条件”的理解.“拓展延伸”给学生以发挥的空间,启发学生由已知到未知的探索能力. 总之,关注基本不等式与现实的联系是这篇案例的突出特点,“问题驱动式”的设计是这篇案例成功的关键,而“从问题出发构建模型,反过来,又利用建立的模型解决开始的问题”的设计又可以使学生领略到学习数学的成功和胜利喜悦.
第五篇:高中数学新课程创新教学设计案例50篇 19平面与平面垂直
平面与平面垂直
教材分析
两个平面垂直的判定定理及性质定理是平面与平面位置关系的重要内容.通过这节的学习可以发现:直线与直线垂直、直线与平面垂直及平面与平面垂直的判定和性质定理形成了一套完整的证明体系,而且可以实现利用低维位置关系推导高维位置关系,利用高维位置关系也能推导低维位置关系,充分体现了转化思想在立体几何中的重要地位.这节课的重点是判定定理及性质定理,难点是定理的发现及证明.
教学目标
1.掌握两平面垂直的有关概念,以及两个平面垂直的判定定理和性质定理,能运用概念和定理进行有关计算与证明.
2.培养学生的空间想象能力,逻辑思维能力,知识迁移能力,运用数学知识和数学方法观察、研究现实现象的能力,整理知识、解决问题的能力.
3.通过对实际问题的分析和探究,激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识和乐于探索、勇于创新的科学精神.
任务分析
判定定理证明的难点是画辅助线.为了突破这一难点,可引导学生这样分析:在没有得到判定定理时,只有根据两平面互相垂直的定义来证明,那么,哪个平面与这两个平面都垂直呢?对性质定理的引入,不是采取平铺直叙,而是根据数学定理的教学是由发现与论证这两个过程组成的,所以应把“引出命题”和“猜想”作为本部分的重要活动内容.
教学设计
一、问题情境
1.建筑工人在砌墙时,常用一根铅垂的线吊在墙角上,这是为什么?(为了使墙面与地面垂直)
2.什么叫两个平面垂直?怎样判定两平面垂直,两平面垂直有哪些性质?
二、建立模型
如图19-1,两个平面α,β相交,交线为CD,在CD上任取一点B,过点B分别在α,β内作直线BA和BE,使BA⊥CD,BE⊥CD.于是,直线CD⊥平面ABE.
容易看到,∠ABE为直角时,给我们两平面垂直的印象,于是有定义:
如果两个相交平面的交线与第三个平面垂直,并且这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.
平面α,β互相垂直,记作α⊥β. [问 题]
1.建筑工人在砌墙时,铅垂线在墙面内,墙面与地面就垂直吗?
如图19-1,只要α经过β的垂线BA,则BA⊥β,∴BA⊥BE,∠ABE=Rt∠.依定义,知α⊥β.于是,有判定定理:
定理 如果一个平面经过另一个平面的一条垂线,则两个平面互相垂直.
2.如果交换判定定理中的条件“BA⊥β”和结论“α⊥β”.即是从平面与平面垂直出发,能否推出直线与平面垂直?,也就平面α内满足什么条件的直线才能垂直于平面β呢?让学生用教科书、桌面、笔摆模型.通过模型发现:当α⊥β时,只有在一个平面(如α)内,垂直于两平面交线的直线(如BA)才会垂直于另一个平面(如β).
于是,有定理:
定理 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.
(先分析命题的条件和结论,然后画出图形,再结合图形,写出已知,求证)已知:如图,α⊥β,α∩β=CD,AB
α,AB⊥CD,求证:AB⊥β.
分析:要证AB⊥β,只需在β内再找一条直线与AB 垂直,但β内没有这样的直线,如何作出这条直线呢?因为α⊥β,所以可根据二面角的定义作出这个二面角的平面角.在平面β内过点B作BE⊥CD.因为AB⊥CD,所以∠ABE是二面角α-CD-β的平面角,并且∠ABE=90°,即AB⊥BE.又因为CD
三、解释应用 [例 题]
1.已知:如图,平面α⊥平面β,在α与β的交线上取线段AB=4cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3cm,BD=12cm,求CD长.
β,BE
β,所以AB⊥β.
解:连接BC. 因为AC⊥AB,所以AC⊥β,AC⊥BD. 因为BD⊥AB,所以BD⊥α,BD⊥BC. 所以,△CBD是直角三角形.
在Rt△BAC中,BC==5(cm),在Rt△CBD中,CD==13(cm). 2.已知:在Rt△ABC中,AB=AC=a,AD是斜边BC的高,以AD为折痕使∠BDC折成直角(如图19-4).
求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)∠BAC=60°.
证明:(1)如图19-4(2),因为AD⊥BD,AD⊥DC,所以AD⊥平面BDC. 因为平面ABD和平面ACD都过AD,所以平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)如图19-4(1),在Rt△BAC中,因为AB=AC=a,所以BC=a,BD=DC=.
如图19-4(2),△BDC是等腰直角三角形,所以BC=BD=2×=a.
得AB=AC=BC.所以∠BAC=60°. [练习]
1.如图19-5,有一个正三棱锥体的零件,P是侧面ACD上一点.问:如何在面ACD上过点P画一条与棱AB垂直的线段?试说明理由.
2.已知:如图19-6,在空间四边形ABCD中,AC=AD,BC=BD,E是CD 的中点. 求证:(1)平面ABE⊥平面BCD.(2)平面ABE⊥平面ACD.
四、拓展延伸
能否将平面几何中的勾股定理推广到立体几何学中去?试写一篇研究性的小论文.
点 评
这篇案例结构完整,构思新颖.案例开始以一个生活中常见的例子引入问题,得到了两平面垂直的定义.还是这个例子,改变了问法又得到了两平面垂直的判定定理.即把学科理论和学生的生活实际相结合,激起了学生探索问题的热情.对性质定理和判定定理的引入和证明也不是平铺直叙,而是充分展现了定理的发现和形成过程.通过学生的认真参与,师生之间的民主交流,培养了学生的主体意识和乐于探索、勇于创新的科学精神.