第一篇:高中数学新课程创新教学设计案例50篇 16 直线与平面平行[最终版]
直线与平面平行
教材分析
直线与平面平行是在研究了空间直线与直线平行的基础上进行的,它是直线与直线平行的拓广,也是为今后学习习近平面与平面平行作准备.在直线与平面的三种位置关系中,平行关系占有重要地位,是今后学习的必备知识.所以直线与平面平行的判定定理和性质定理是这节的重点,难点是如何解决好直线与直线平行、直线与平面平行相互联系的问题.突破难点的关键是直线与直线平行和直线与平面平行的相互转化.
教学目标
1.了解空间直线和平面的位置关系,理解和掌握直线与平面平行的判定定理和性质定理,进一步熟悉反证法的实质及其证题步骤.
2.通过探究线面平行的定义、判定、性质及其应用,进一步培养学生观察、发现问题的能力和空间想象能力.
3.培养学生的逻辑思维和合情推理能力,进而使其养成实事求是的学习态度.
任务分析
这节的主要任务是直线与平面平行的判定定理、性质定理的发现与归纳,证明与应用.学习时,要引导学生观察实物模型,分析生活中的实例,进而发现、归纳出数学事实,并在此基础上分析和探索定理的论证过程,区分判定定理和性质定理的条件和结论,理解定理的实质和直线与平面平行的判定.在运用性质时,要引导学生完成对“过直线———作平面———得交线———直线与直线平行”这一过程的理解和掌握.
教学设计
一、问题情境
教室内吊在半空的日光灯管、斜靠在墙边的拖把把柄,都可以看作直线的一部分,这些直线与地平面有何位置关系?
二、建立模型 [问题一]
1.空间中的直线与平面有几种位置关系? 学生讨论,得出结论: 直线与平面平行、直线与平面相交(学生可能说出直线与平面垂直的情况,教师可作解释)及直线在平面内.
2.在上述三种位置中,直线与平面的公共点的个数各是多少? 学生讨论,得出相关定义:
若直线a与平面α没有公共点,则称直线与平面α平行,记作a∥α.若直线a与平面α有且只有一个公共点,则称直线a与平面α相交.当直线a与平面α平行或相交时均称直线a不在平面α内(或称直线a在平面α外).若直线a与平面α有两个公共点,依据公理1,知直线a上所有点都在平面α内,此时称直线a在平面α内.
3.如何对直线与平面的位置关系的进行分类? 学生讨论,得出结论:
方法1:按直线与平面公共点的个数分:
[探 索]
直线与平面平行、相交的画法.
教师用直尺、纸板演示,引导学生说明画法.
1.画直线在平面内时,要把表示直线的线段画在表示平面的平行四边形内部,如图16-1.
2.画直线与平面相交时要画出交点,如图16-2.
3.画直线与平面平行时,一般要把表示直线的线段画在表示平面的平行四边形外,并使它与平行四边形的一组对边或平面内的一条直平行,如图16-3.
[问题二]
1.如何判定直线与平面平行?教师演示:(1)教师先将直尺放在黑板内,然后慢慢平移到平面外.
(2)观察教室的门,然后教师转动的门的一条门边给人平行于墙面的感觉. 学生讨论,归纳和总结,形成判定定理.
定理 如果不在平面内的一条直线与平面内的一条直线平行,那么这条直线和这个平面平行.
已知:aα,bα,a∥b.
求证:a∥α. 分析:要证明直线与平面平行,根据定义,只要证明直线与平面没有公共点,这时可考虑使用反证法.
证明:假设a不平行于α,由a若A
α,得a∩α=A.若A∈b,则与已知a∥b矛盾;b,则a与b是异面直线,与a∥b矛盾.所以假设不成立,故a∥α.
总结:此定理有三个条件,(1)aα,(2)bα,(3)a∥b.三个条件缺少一个就不能推出a∥α这一结论.此定理可归纳为“若线线平行,则线面平行”.
2.当直线与平面平行时,直线与平面内的直线有什么位置关系?是否平行?
教师演示:教师先让直尺平行于讲桌面,再将纸板经过直尺,慢慢绕直尺旋转使纸板与桌面相交.
学生讨论得出:直尺平行于纸板与桌面的交线. 师生共同归纳和总结,形成性质定理.
定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和两平面的交线平行.
已知:l∥a,l求证:l∥m. β,α∩β=m.
证明:因为l∥α,所以l∩α=内,且没有公共点,所以l∥m.
总结:此定理的条件有三个:(1)l∥α,即线面平行.(2)lβ,即过线作面.,又因为mα,所以l∩m=,由于l,m都在β(3)β∩α=m,即面面相交.
三个条件缺一不可,此定理可简记为“若线面平行,则线与交线平行”.
三、解释应用 [例 题] 1.已知:如图16-5,空间四边形ABCD,E,F分别是AB,AD的中点.求证:EF∥平面BCD.
证明:连接BD,在△ABD中,因为E,F分别是AB,AD的中点,所以EF∥BD.
又因为BD是平面ABD与平面BCD的交线,EF∥平面BCD,所以EF∥平面BCD. 2.求证:如果过一个平面内一点的直线平行于与该平面平行的一条直线,则这条直线在这个平面内.
已知:l∥α,点P∈α,P∈m,m∥l(如图16-6). 求证;mα.
证明:设l与P确定的平面为β,且α∩β=m′,则l∥m′.又知l∥m,m∩m′=P,由平行公理可知,m与m′重合.所以m
α.
[练习]
1.已知:如图16-7,长方体AC′.求证:B′D′∥平面ABCD.
2.如图16-8,一个长方体木块ABCD-A1B1C1D1,如果要经过平面A1C1内一点P和棱BC将木块锯开,那么应该怎样画线?
四、拓展延伸
1.教室内吊在半空中的日光灯管平行于地面,也平行于教室的一墙面,试探讨它和这个墙面与地面的交线之间有什么样的位置关系?
2.已知:如图16-9,正方形ABCD和正方形ABEF不在同一平面内,点M,N分别是对角线AC,BF上的点.问:当M,N 满足什么条件时,MN∥平面BCE.
3.如果三个平面两两相交于三条直线,那么这三条直线有怎样的位置关系.
点 评
这篇案例从学生身边的实例出发,引导学生抽象出直线与平面平行、相交的定义,又通过演示,总结和归纳出直线与平面平行的判定及性质定理,整个过程都把学科理论和学生面临的实际生活结合起来,使学生能较好地理解和把握学科知识.同时,培养了学生的探索创新能力和实践能力,激发了学生的学习兴趣.
第二篇:高中数学新课程创新教学设计案例50篇 18 直线与平面垂直
直线与平面垂直
教材分析
直线与平面垂直是在研究了直线与直线垂直、直线与平面平行、平面与平面平行的基础上进行的.它是直线与直线垂直的延伸,是学习习近平面与平面垂直以及有关距离、空间角、多面体、旋转体的基础.这节内容的学习可完善知识结构,并对进一步培养学生观察、发现问题的能力和空间想象能力,起着十分重要的作用.
直线与平面垂直的定义、判定定理、性质定理是这节课的重点.
学习直线与平面垂直的性质定理时,应该注意引导学生把直线和直线的关系问题有目的地转化为直线与平面的关系问题,这是这节课的难点.
教学目标
1.掌握直线与直线垂直,直线与平面垂直的定义,以及直线与平面垂直的判定与性质. 2.通过探索线面垂直的定义、判定定理和性质定理及其证明,进一步培养学生观察问题、发现问题的能力和空间想象、计算能力,并且加强对思维能力的训练.
3.激发学生的学习兴趣,培养学生不断发现、探索新知的精神,渗透事物间相互转化和理论联系实际的辩证唯物主义观点,并通过图形的立体美,对称美,培养教学审美意识.
任务分析
因为判定定理的证明有一定的难度,所以教材作为探索与研究来处理.又因为定理的论证层次多,构图复杂,辅助线多,运用平面几何的知识多,所以这节课的难点是判定定理的证明.突破难点的方法是充分运用实物模型演示,以具体形象思维支持逻辑思维.
教学设计
一、问题情境
上海的标志性建筑———东方明珠电视塔的中轴线垂直于地面,在这一点上,它与比萨斜塔完全不同.那么,直线与平面垂直如何定义和判定,又有什么性质呢?这将是本节课要研究的问题.
二、建立模型
我们先来研究空间中两条直线的垂直问题. 在平面内,如果两条直线互相垂直,则它们一定相交.在空间中,两条互相垂直相交的直线中,如果固定其中一条,让另一条平移到空间的某一个位置,就可能与固定的直线没有公共点,这时两条直线不会相交,也不会在同一平面内(为什么),我们同样称它们相互垂直.下面我们给出空间任意两条直线互相垂直的一般定义.
如果两条直线相交于一点或经过平移后相交于一点,并且交角为直角,则称这两条直线互相垂直.
有了直线与直线垂直的概念,我们就可以利用直线与直线垂直来定义直线与平面垂直了.
[问 题]
1.什么叫直线与平面垂直?
教师演示:如图,直线l是线段AB的中垂线.固定线段AB,让l保持与AB垂直并绕直线AB在空间旋转.
教师让学生讨论:(1)直线l的轨迹是怎样的图形?(2)如何定义直线与平面垂直?
教师明晰:(1)线段AB所有垂直平分线构成的集合是一个平面.
(2)如果一条直线(AB)和一个平面(α)相交于点O,并且和这个平面内过交点O的任何直线都垂直,我们就说这条直线和这个平面互相垂直,这条直线叫作平面的垂线,这个平面叫作直线的垂面.交点叫作垂足.垂线上任一点到垂足间的线段,叫作这点到这个平面的垂线段.垂线段的长度叫作这个点到平面的距离.
2.如图18-2,直线l⊥平面α,直线m
α,问l与m的关系怎样.
学生讨论后,得出结论:如果一条直线垂直于一个平面,那么它就和平面内的任意一条直线垂直.
3.怎么画直线与平面垂直?
学生讨论后,教师总结:画直线和平面垂直时,通常要把直线画成和表示平面的平行四边形的一边垂直,如图18-2.
4.如何判断直线与平面垂直?
教师引导:根据定义判定直线与平面垂直是困难的,如何用尽可能少的线线垂直来判定线面垂直呢?
学生讨论后,教师总结.
(1)因为两条相交直线确定一平面,所以只要直线和平面内的两条相交直线垂直,就可以判定直线和平面垂直.
(2)两条平行直线也确定一平面,直线和这两条平行直线垂直,不能判定直线就和平面垂直(教师作演示说明).于是,归纳出直线和平面垂直的判定定理.
定理 如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直. 推论 如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面. 如图18-3,如果直线l∥m,l⊥平面α,则l垂直于平面α内任意两条相交直线,如a,b.根据空间两直线垂直的定义,易知m⊥a,m⊥b,所以m⊥α.
让学生总结:判定直线与平面垂直的方法.
(1)定 义.(2)判定定理.(3)推 论.
4.在平面几何中,同垂直于一条直线的两条直线平行,那么,在空间几何中,又有什么类似的结论呢? 学生讨论后,得出结论:同垂直于一个平面的两条直线平行.于是有直线和平面垂直的性质.
定理 如果两条直线垂直于同一个平面,那么这两条直线平行. 已知:如图18-4,直线l⊥平面α,直线m⊥平面α,垂足分别为A,B.
求证:l∥m.
证明:假设直线m不与直线l平行.过直线m与平面α的交点B,作直线m′∥l,由直线与平面垂直的判定定理的推论可知,m′⊥α.设m和m′确定的平面为β,α与β的交线为a,因为直线m和m′都垂直于平面α,所以直线m和m′都垂直于交线a.因为在同一平面内,通过直线上一点并与已知直线垂直的直线有且仅有一条,所以直线m和m′必重合,即l∥m.
三、解释应用 [例 题]
1.过一点和已知平面垂直的直线只有一条.已知:平面α和一点P(如图18-5).求证:过点P与α垂直的直线只有一条.
证明:不论点P在α外或内,设PA⊥α,垂足为A(或P).如果过点P,除直线PA⊥α外,还有一条直线PB⊥α,设PA,PB确定的平面为β,且α∩β=a,于是在平面β内过点P有两条直线PA,PB垂直于交线a,这是不可能的.所以过点P与α垂直的直线只有一条. 2.如图18-6,有一根旗杆AB高8m,它的顶端A挂着两条长10m的绳子.拉紧绳子,并把它的下端放在地面上的两点C,D(和旗杆脚不在同一条直线上).如果这两点都和旗杆脚B的距离是6m,那么旗杆就和地面垂直,为什么?
解:在△ABC和△ABD中,因为AB=8m,BC=BD=6m,AC=AD=10m,所以AB2+BC2=82+62=102=AC2,AB2+BD2=62+82=102=AD2.
所以∠ABC=∠ABD=90°,即AB⊥BC,AB⊥BD. 又知B,C,D三点不共线,所以AB⊥平面BCD,即旗杆和地面垂直.
3.已知:直线l⊥平面α,垂足为A,直线AP⊥l(如图18-7). 求证:AP在α内.
证明:设AP与l确定的平面为β.如果AP不在α内,则可设α与β相交于直线AM,因为l⊥α,AMα,所以l⊥AM.又已知AP⊥l,于是在平面β内,过点A有两条直线垂直于l.这是不可能的,所以AP一定在α内.
[练习] 1.已知:如图18-8,在平面α内有PA=PC,PB=PD.求证:PO⊥α.
ABCD,O是它对角线的交点,点P在α外,且
2.已知:空间四边形ABCD中,AB=AC,DB=DC,求证:BC⊥AD.
3.已知两个平行平面中,有一个平面与一条已知直线垂直,问:另一平面与已知直线的位置关系怎样?
四、拓展延伸
1.如图18-9所示,在空间,如果直线m,n都是线段AA′的垂直平分线,设m,n确定的平面为α,证明:
(1)在平面α内,通过线段AA′中点B的所有直线都是线段AA′的垂直平分线.(2)线段AA′的任一条垂直平分线都在α内.
2.如图18-10(1),如果平面α通过线段AA′的中点O,且垂直于直线AA′,那么平面α叫作线段AA′的垂直平分面(或中垂面),并称点A,A′关于平面α成镜面对称,平面α叫作A,A′的对称平面.
如图18-10(2),如果一个图形F内的所有点关于平面α的对称点构成几何图形F′,则称F,F′关于平面α成镜面对称.F到F′的图形变换称为镜面对称变换.
如果一个图形F通过镜面对称变换后的图形仍是它自身,则这个图形被称为镜面对称图形. 根据以上定义,探索与研究以下问题:(1)线段的中垂面有哪些性质?
(2)你学过的空间图形,有哪些是镜面对称图形?
(3)写一篇研究镜面对称的小论文,探索镜面对称的性质和应用.
点 评
这篇案例设计完整,构思严谨,突出的特点是把学科灰色的理论和鲜活的实际生活相结合,使学生能较好地理解和把握学科知识.同时,这篇案例注意了美育、科学精神和人文精神的渗透,能较好地培养学生的探索创新能力和实践能力,符合新课改精神.
第三篇:高中数学新课程创新教学设计案例50篇 19平面与平面垂直
平面与平面垂直
教材分析
两个平面垂直的判定定理及性质定理是平面与平面位置关系的重要内容.通过这节的学习可以发现:直线与直线垂直、直线与平面垂直及平面与平面垂直的判定和性质定理形成了一套完整的证明体系,而且可以实现利用低维位置关系推导高维位置关系,利用高维位置关系也能推导低维位置关系,充分体现了转化思想在立体几何中的重要地位.这节课的重点是判定定理及性质定理,难点是定理的发现及证明.
教学目标
1.掌握两平面垂直的有关概念,以及两个平面垂直的判定定理和性质定理,能运用概念和定理进行有关计算与证明.
2.培养学生的空间想象能力,逻辑思维能力,知识迁移能力,运用数学知识和数学方法观察、研究现实现象的能力,整理知识、解决问题的能力.
3.通过对实际问题的分析和探究,激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识和乐于探索、勇于创新的科学精神.
任务分析
判定定理证明的难点是画辅助线.为了突破这一难点,可引导学生这样分析:在没有得到判定定理时,只有根据两平面互相垂直的定义来证明,那么,哪个平面与这两个平面都垂直呢?对性质定理的引入,不是采取平铺直叙,而是根据数学定理的教学是由发现与论证这两个过程组成的,所以应把“引出命题”和“猜想”作为本部分的重要活动内容.
教学设计
一、问题情境
1.建筑工人在砌墙时,常用一根铅垂的线吊在墙角上,这是为什么?(为了使墙面与地面垂直)
2.什么叫两个平面垂直?怎样判定两平面垂直,两平面垂直有哪些性质?
二、建立模型
如图19-1,两个平面α,β相交,交线为CD,在CD上任取一点B,过点B分别在α,β内作直线BA和BE,使BA⊥CD,BE⊥CD.于是,直线CD⊥平面ABE.
容易看到,∠ABE为直角时,给我们两平面垂直的印象,于是有定义:
如果两个相交平面的交线与第三个平面垂直,并且这两个平面与第三个平面相交所得的两条交线互相垂直,就称这两个平面互相垂直.
平面α,β互相垂直,记作α⊥β. [问 题]
1.建筑工人在砌墙时,铅垂线在墙面内,墙面与地面就垂直吗?
如图19-1,只要α经过β的垂线BA,则BA⊥β,∴BA⊥BE,∠ABE=Rt∠.依定义,知α⊥β.于是,有判定定理:
定理 如果一个平面经过另一个平面的一条垂线,则两个平面互相垂直.
2.如果交换判定定理中的条件“BA⊥β”和结论“α⊥β”.即是从平面与平面垂直出发,能否推出直线与平面垂直?,也就平面α内满足什么条件的直线才能垂直于平面β呢?让学生用教科书、桌面、笔摆模型.通过模型发现:当α⊥β时,只有在一个平面(如α)内,垂直于两平面交线的直线(如BA)才会垂直于另一个平面(如β).
于是,有定理:
定理 如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.
(先分析命题的条件和结论,然后画出图形,再结合图形,写出已知,求证)已知:如图,α⊥β,α∩β=CD,AB
α,AB⊥CD,求证:AB⊥β.
分析:要证AB⊥β,只需在β内再找一条直线与AB 垂直,但β内没有这样的直线,如何作出这条直线呢?因为α⊥β,所以可根据二面角的定义作出这个二面角的平面角.在平面β内过点B作BE⊥CD.因为AB⊥CD,所以∠ABE是二面角α-CD-β的平面角,并且∠ABE=90°,即AB⊥BE.又因为CD
三、解释应用 [例 题]
1.已知:如图,平面α⊥平面β,在α与β的交线上取线段AB=4cm,AC,BD分别在平面α和平面β内,它们都垂直于交线AB,并且AC=3cm,BD=12cm,求CD长.
β,BE
β,所以AB⊥β.
解:连接BC. 因为AC⊥AB,所以AC⊥β,AC⊥BD. 因为BD⊥AB,所以BD⊥α,BD⊥BC. 所以,△CBD是直角三角形.
在Rt△BAC中,BC==5(cm),在Rt△CBD中,CD==13(cm). 2.已知:在Rt△ABC中,AB=AC=a,AD是斜边BC的高,以AD为折痕使∠BDC折成直角(如图19-4).
求证:(1)平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)∠BAC=60°.
证明:(1)如图19-4(2),因为AD⊥BD,AD⊥DC,所以AD⊥平面BDC. 因为平面ABD和平面ACD都过AD,所以平面ABD⊥平面BDC,平面ACD⊥平面BDC.(2)如图19-4(1),在Rt△BAC中,因为AB=AC=a,所以BC=a,BD=DC=.
如图19-4(2),△BDC是等腰直角三角形,所以BC=BD=2×=a.
得AB=AC=BC.所以∠BAC=60°. [练习]
1.如图19-5,有一个正三棱锥体的零件,P是侧面ACD上一点.问:如何在面ACD上过点P画一条与棱AB垂直的线段?试说明理由.
2.已知:如图19-6,在空间四边形ABCD中,AC=AD,BC=BD,E是CD 的中点. 求证:(1)平面ABE⊥平面BCD.(2)平面ABE⊥平面ACD.
四、拓展延伸
能否将平面几何中的勾股定理推广到立体几何学中去?试写一篇研究性的小论文.
点 评
这篇案例结构完整,构思新颖.案例开始以一个生活中常见的例子引入问题,得到了两平面垂直的定义.还是这个例子,改变了问法又得到了两平面垂直的判定定理.即把学科理论和学生的生活实际相结合,激起了学生探索问题的热情.对性质定理和判定定理的引入和证明也不是平铺直叙,而是充分展现了定理的发现和形成过程.通过学生的认真参与,师生之间的民主交流,培养了学生的主体意识和乐于探索、勇于创新的科学精神.
第四篇:《直线与平面平行的判定》教学设计
直线与平面平行的判定(谢永福)
一、教学目标
1.会找出平行的直线和平面
2.会应用判定定理证明线面平行
3.逐步学会逆向思维
4.归纳证明线线平行的方法:中位线,相似,平行四边形
二、教学重点:应用判定定理证明线面平行(给学生足够时间练习板书)
教学难点:利用中位线作辅助线(详细分析板书)
三、教学方法:讨论式,讲练结合
四、教学过程
(一)引入:课前提醒大家不要翻书。老师拿一本书一支笔(笔稍微斜一点点)问:笔所在直线与书本所在平面什么关系? 老师:有人说平行,有人说相交。其实都有道理,因为平行向下偏一点点肉眼分辨不出来的,那么怎么判断线面平行更可靠呢?这就是这节课咱们要探寻的奥秘。
(二)新课:
1.实例感受:请大家观察门框的一边和门板什么关系?书本封面边缘和书本面什么关系?长方体下底边与上底面什么关系?这三个实例有个共同点,有同学发现了吗?
(10秒后提示:门框对边平行)
所以,可以怎么判断线面平行呢?同桌之间互相讨论一下。
2.定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
(给大家1分钟时间,尝试用符号表示此定理)
画图表示
请大家齐声朗读定理3遍,尝试背诵
练习1:判断正误:
(1)若直线a与平面α内无数条直线平行,则a∥α
(2)若平面外的直线a与平面α内无数条直线平行,则a∥α
练习2:如图,长方体中
(1)与AB平行的平面是?
(2)与平面ABCD平行的直线是?
通过这个练习咱们应该初步感受逆向思维。
练习3:在长方体中,,可得哪条直线平行哪个平面?(同样体现了逆向思维)
3.用定理证明线面平行
例:如图,空间四边形ABCD中,E,F分别是AB,AD的中点。求证:EF∥平面BCD
思考:为什么想到连接BD?
答:因为E是AB中点,故A,B是三角形的顶点;F是AD中点,故A,D是三角形的顶点,所以EF是△ABD的中位线。故连接BD
练习:如图所示,在正方体中,S,E,G分别是,BC,SC的中点,求证:
思考:书本56页练习2如何做辅助线?
备用练习1:大本61页基础小测(只说思路,不用写过程)
备用练习2:如图,长方体中,已知E,F分别为AB,CD的中点,求证(只说思路,不用写过程)
思考:由以上练习总结,证明线线平行的方法有哪些:中位线,平行线分线段成比例,平行四边形
小结:本节课学习了线面平行的判定。还学习了逆向思维,是做立体几何综合问题的利剑。最后学习了证明线面平行,注意板书,做辅助线。如果满分为5颗星,你给自己打几颗星呢?
作业布置:书本56页练习2
五、板书设计:
三个实例 学生板书 | 标题 1.定理: 2.逆向思维 | 3.证明线面平行 例题: | 学生板书 |
六、教学反思:
第五篇:高中数学新课程创新教学设计案例50篇__40-43平面向量
平面向量的数量积
教材分析
两个向量的数量积是中学代数以往内容中从未遇到过的一种新的乘法,它区别于数的乘法.这篇案例从学生熟知的功的概念出发,引出平面向量数量积的概念和性质及其几何意义,介绍向量数量积的运算律及坐标表示.向量的数量积把向量的长度和三角函数联系在一起,这为解决三角形的有关问题提供了方便,特别是能有效解决线段的垂直等问题.这节内容是整个向量部分的重要内容之一,对它的理解与掌握将直接影响向量其他内容的学习.这节内容的教学难点是对平面向量数量积的定义及运算律的理解和对平面向量数量积的应用.
教学目标
1.理解并掌握平面向量的数量积、几何意义和数量积的坐标表示,会初步使用平面向量的数量积来处理有关长度、角度和垂直的问题,掌握向量垂直的条件.
2.通过对数量积的引入和应用,初步体会知识发生、发展的过程和运用过程,培养学生的科学思维习惯.
任务分析
两个向量的数量积从形式和实质上都与数的乘法有区别,这就给理解和掌握这个概念带来了一些困难.在学习时,要充分让学生理解、明白两个向量的数量积是一个数量,而不是向量.两个向量的数量积的值是这两个向量的模与两个向量夹角余弦的乘积,其符号由夹角余弦值的正负而确定.
两向量的数量积“a·b”不同于两实数之积“ab”.
通过实例理解a·b=b·c与a=c的关系,a·b=0与a=0或b=0的关系,以及(a·b)c=a(b·c)与(ab)c=a(bc)的不同.
教学设计
一、问题情景
如图40-1所示,一个力f作用于一个物体,使该物体发生了位移s,如何计算这个力所做的功.由于图示的力f的方向与前进方向有一个夹角θ,真正使物体前进的力是f在物体前进方向上的分力,这个分力与物体位移的乘积才是力f做的功.即力f使物体位移x所做的功W可用下式计算.
W=|s||f|cosθ.
其中|f|cosθ就是f在物体前进方向上的分量,也就是力f在物体前进方向上正射影的数量.
问题:像功这样的数量值,它由力和位移两个向量来确定.我们能否从中得到启发,把“功”看成这两个向量的一种运算的结果呢?
二、建立模型
1.引导学生从“功”的模型中得到如下概念:
已知两个非零向量a与b,把数量|a||b|cosθ叫a与b的数量积(内积),记作a·b=|a||b|cosθ.其中θ是a与b夹角,|a|cosθ(|b|cosθ)叫a在b方向上(b在a方向上)的投影.
规定0与任一向量的数量积为0.
由上述定义可知,两个向量a与b的数量积是一个实数.
说明:向量a与b的夹角θ是指把a,b起点平移到一起所成的夹角,其中0≤θ≤π.当θ=时,称a和b垂直,记作a⊥b.为方便起见,a与b的夹角记作〈a,b〉. 2.引导学生思考讨论
根据向量数量积的定义,可以得出
(1)设e是单位向量,a·e=|a|cos〈a,e〉.(2)设a·b是非零向量,则a⊥b(3)a·a=|a|2,于是|a|=
a·b=0.
.(4)cos〈a,b〉=.(5)|a·b|≤|a||b|(这与实数|ab|=|a||b|不同).
三、解释应用 [例 题]
已知|a|=5,|b|=4,〈a,b〉=120°,求a·b. 解:a·b=|a||b|cos〈a,b〉=5×4×cos120°=-10. [练习]
1.已知|a|=3,b在a上的投影为-2,求:(1)a·b.
(2)a在b上的投影.
2.已知:在△ABC中,a=5,b=8,c=60°,求
四、建立向量数量积的运算律
·.
1.出示问题:从数学的角度考虑,我们希望向量的数量积运算,也能像数量乘法那样满足某些运算律,这样数量积运算才更富有意义.回忆实数的运算律,你能类比和归纳出向量数量积的一些运算律吗?它们成立吗?为什么?
2.运算律及其推导
已知:向量a,b,c和λ∈R,则(1)a·b=b·a(交换律). 证明:左=|a||b|cosθ=右.
(2)(λa)·b=λ(a·b)=a·(λb)(数乘结合律). 证明:设a,b夹角为θ,当λ>0时,λa与b的夹角为θ,∴(λa)·b=(λa)·|b|cosθ=λ|a||b|cosθ=λ(a·b); 当λ<0时,λa与b的夹角为(π-θ),∴(λa)·b=|λa||b|cos(π-θ)=-λ|a||b|(-cosθ)=λ|a||b|cosθ=λ(a·b);
当λ=0时,(λa)·b=0·b=0=λ(a·b). 总之,(λa)·b=λ(a·b); 同理a·(λb)=λ(a·b).(3)(a+b)·c=a·c+b·c(乘法对加法的分配律).
证明:如图40-2,任取一点O,作=a,=b,=c.
∵a+b(即)在c方向上的投影等于a,b在c方向上的投影的和,即
|a+b|cosθ=|a|cosθ1+|b|cosθ2,∴|c||a+b|cosθ=|c|(|a|cosθ1+|b|cosθ2)= |c||a|cosθ1+|c||b|cosθ2=c·a+c·b,∴(a+b)·c=a·c+b·c.
思考:(1)向量的数量积满足结合律,即(a·b)c=a(b·c)吗?(2)向量的数量积满足消去律,即如果a·b=c·b,那么a=c吗?
五、应用与深化 [例 题]
1.对实数a,b,有(a+b)=a+2ab+b,(a+b)(a-b)=a-b.类似地,对任意向量a,b,也有类似结论吗?为什么?
解:类比完全平方和公式与平方差公式,有
(a+b)2=a2+2a·b+b2,(a+b)·(a-b)=a2-b2. 其证明是:(a+b)=(a+b)·(a+b)= a·a+a·b+b·a+b·b= a2+2a·b+b2,2
2(a+b)·(a-b)=a·a-a·b+b·a-b·b= a2-b2. ∴有类似结论.
2.已知|a|=6,|b|=4,〈a,b〉=60°,求(a+2b)·(a-3b). 解:(a+2b)·(a-3b)= a2-3a·b+2b·a-6b2=
|a|-|a||b|cos60°-6|b|=-72.
3.已知|a|=3,|b|=4,且a与b不共线.当k为何值时,(a+kb)⊥(a-kb)? 解:(a+kb)⊥(a-kb),即(a+kb)·(a-kb)=0,即a2-k2b2=0,即9-k2×16=0,k=±. 2
2因此,当k=±时,有(a+kb)⊥(a-kb).
4.已知:正方形ABCD的边长为1,并且=a,=b,=c,求|a+b+c|.
解法1:∵a+b+c=++=2,∴|a+b+c|=2=2.
解法2:|a+b+c|2=(a+b+c)2=a2+b2+c2+2a·b+2a·c+2b·c=1+1+2+2×1×1×cos90°+2×1×
[练习]
1.|a|=4,|b|=3,(2a-3b)·(2a+b)=61,求a与b的夹角θ.
×
+2×1×
×
=8,∴|a+b+c|=2
.
2.在边长为2的正三角形ABC中,求
六、拓展延伸
·+·+·.
1.当向量a,b的夹角为锐角时,你能说明a·b的几何意义吗? 如图40-3,a·b,即以b在a上射影的长和a的长为两邻边的矩形面积(OA=OA1).
2.平行四边形是表示向量加法与减法的几何模型,如图40-4,=-
=+,.试说明平行四边形对角线的长度与两条邻边长度之间的关系.
3.三个单位向量a,b,c有相同终点且a+b+c=0,问:它们的起点连成怎样的三角形?
解法1:如图40-5,∵|a|=|b|=|c|=1,a+b+c=0,∴a+b=-c,∴(a+b)=(-c)2,2∴a2+b2+2a·b=c2,∴2|a|·|b|cos∠AOC=-1,cos∠AOC=,∠AOC=120°. 同理∠BOC=∠AOC=120°,故△AOB,△BOC,△BOC全等,∴AB=AC=BC,即该△ABC为等边三角形.
解法2:如图40-6,.
=c,=-a,=-b,由a+b+c=0,即=+
∵|a|=|b|=1,∴OADB为菱形.
又||=1,∴∠AOB=120°.
同理∠AOC=∠BOC=120°,…
4.在△ABC中,·=·=·,问:O点在△ABC的什么位置?
解:由同理⊥·,=⊥
·,即·(-)=0,即·=0,∴⊥,.故O是△ABC的垂心.
两角和与差的余弦
教材分析
这节内容是在掌握了任意角的三角函数的概念、向量的坐标表示以及向量数量积的坐标表示的基础上,进一步研究用单角的三角函数表示的两角和与差的三角函数.这些内容在高等数学、电功学、力学、机械设计与制造等方面有着广泛的应用,因此要求学生切实学好,并能熟练的应用,以便为今后的学习打下良好的基础. “两角差的余弦公式”在教科书中采用了一种易于教学的推导方法,即先借助于单位圆中的三角函数线,推出α,β,α-β均为锐角时成立.对于α,β为任意角的情况,教材运用向量的知识进行了探究.同时,补充了用向量的方法推导过程中的不严谨之处,这样,两角差的余弦公式便具有了一般性.
这节课的重点是两角差的余弦公式的推导,难点是把公式中的α,β角推广到任意角.
教学目标
1.通过对两角差的余弦公式的探究过程,培养学生通过交流,探索,发现和获得新知识的能力.
2.通过两角差的余弦公式的推导,体会知识的发生、发展的过程和初步的应用过程,培养学生科学的思维方法和勇于探索的科学精神.
3.能正确运用两角差的余弦公式进行简单的三角函数式的化简、求值和恒等式证明.
任务分析
这节内容以问题情景中的问题作为教学的出发点,利用单位圆中的三角函数线和平面向量的数量积的概念推导出结论,并不断补充推导过程中的不严谨之处.推导过程采用了从特殊到一般逐层递进的思维方法,学生易于接受.整个过程始终结合单位圆,以强调其直观性.对于公式中的α和β角要强调其任意性.数学中要注意运用启发式,切忌把结果直接告诉学生,尽量让学生通过观察、思考和探索,自己发现公式,使学生充分体会到成功的喜悦,进一步激发学生的学习兴趣,调动他们学习的积极性,从而使其自觉主动地学习.
教学过程
一、问题情景
我们已经学过诱导公式,如
可以这样来认识以上公式:把角α转动,则所得角α+的正弦、余弦分别等于cosα和-sinα.把角α转动π,则所得角α+π的正弦、余弦分别等于-sinα和-cosα. 由此,使我们想到一个一般性的问题:如果把角α的终边转动β(度或弧度),那么所得角α+β的正弦、余弦如何用α或β的正弦、余弦来表示呢? 出示一个实际问题:
右图41-1是架在小河边的一座吊桥的示意图.吊桥长AB=a(m),A是支点,在河的左岸.点C在河的右岸,地势比A点高.AD表示水平线,∠DAC=α,α为定值.∠CAB=β,β随吊桥的起降而变化.在吊桥起降的过程中,如何确定点B离开水平线AD的高度BE?
由图可知BE=asin(α+β).
我们的问题是:如何用α和β的三角函数来表示sin(α+β).如果α+β为锐角,你能由α,β的正弦、余弦求出sin(α+β)吗?
引导学生分析:事实上,我们在研究三角函数的变形或计算时,经常提出这样的问题:能否用α,β的三角函数去表示α±β的三角函数?为了解决这类问题,本节首先来探索α-β的余弦与α,β的函数关系式.
更一般地说,对于任意角α,β,能不能用α,β的三角函数值把α+β或α-β的三角函数值表示出来呢?
二、建立模型 1.探 究
(1)猜想:cos(α-β)=cosα-cosβ.(2)引导学生通过特例否定这一猜想.
例如,α=60°,β=30°,可以发现,左边=cos(60°-30°)=cos30°=-cos30°=-,右边=cos60°.显然,对任意角α,β,cos(α-β)=cosα-cosβ不成立.
(3)再引导学生从道理上否定这一猜想.
不妨设α,β,α-β均为锐角,则α-β<α,则cos(α-β)>cosα.又cosβ>0,所以cos(α-β)>cosα-cosβ. 2.分析讨论
(1)如何把α,β,α-β角的三角函数值之间建立起关系?要获得相应的表达式需要哪些已学过的知识?
(2)由三角函数线的定义可知,这些角的三角函数值都与单位圆中的某些有向线段有关系,那么,这些有向线段之间是否有关系呢?
3.教师明晰
通过学生的讨论,教师引导学生作出以下推理:
设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.
过点P作PM⊥x轴,垂足为M,那么,OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.
过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是
OM=OB+BM=OB+CP=OAcosα+APsinα= cosβcosα+sinβsinα. 4.提出问题,组织学生讨论
(1)当α,β,α-β为任意角时,上述推导过程还能成立吗?
若要说明此结果是否对任意角α,β都成立,还要做不少推广工作,可引导学生独立思考.
事实上,根据诱导公式,总可以把α,β的三角函数化为(0,)内的三角函数,再根据cos(-β)=cosβ,把α-β的余弦,化为锐角的余弦.因此,三、解释应用
[例 题]
1.求cos15°及cos105°的值.
分析:本题关键是将15°角分成45°与30°的差或者分解成60°与45°的差,再利用两角差的余弦公式即可求解.对于cos105°,可进行类似地处理,cos105°=cos(60°+45°).
2.已知sinα=的值.,α∈(,π),cosβ=-,且β是第三象限的角,求cos(α+β)分析:观察公式Cα+β与本题已知条件应先计算出cosα,cosβ,再代入公式求值.求cosα,cosβ的值可借助于同角三角函数的平方关系,并注意α,β的取值范围来求解.
[练习]
1.(1)求sin75°的值.
(2)求cos75°cos105°+sin75°sin105°的值.(3)化简cos(A+B)cosB+sin(A+B)sinB.(4)求cos215°-sin215°的值.
分析:对于(1),可先用诱导公式化sin75°为cos15°,再用例题1中的结果即可.对于(2),逆向使用公式Cα-β,即可将原式化为cos30°.对于(3),可以把A+B角看成一个整体,去替换Cα-β中的α角,用B角替换β角.
2.(1)求证:cos(-α)=sinα.
(2)已知sinθ=,且θ为第二象限角,求cos(θ-)的值.
(3)已知sin(30°+α)=,60°<α<150°,求cosα.
分析:(1)和(差)公式可看成诱导公式的推广,诱导公式是和(差)公式的特例.(2)在三角函数求值问题中,变角是一种常用的技巧,α=(30°+α)-30°,这样可充分利用题中已知的三角函数值.
3.化简cos(36°+α)cos(α-54°)+sin(36°+α)sin(α-54°).
分析:这里可以把角36°+α与α-54°均看成单角,进而直接运用公式Cα-β,不必将各式展开后再计算.
分析:本题是一道综合题,由于cos(α-β)=cosαcosβ+sinαsinβ,欲求cos(α-β)的值,只须将已知两式平方相加求出cosαcosβ+sinαsinβ即可.
四、拓展延伸
1.由任意角三角函数定义,可知角α,β的终边与单位圆交点的坐标均可用α,β的三角函数表示,即α-β角与导公式Cα-β呢?
教师引导学生分析:在平面直角坐标系xOy内作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则由向量数量积的概念,有
=(cosα,sinα),=(cosβ,sinβ).,两向量的夹角有关,那么能否用向量的有关知识来推·=||||cos(α-β)=cos(α-β).
由向量的数量积的坐标表示,有
·=cosαcosβ+sinαsinβ.
于是,有
cos(α-β)=cosαcosβ+sinαsinβ.
依据向量数量积的概念,角α-β必须符合0≤α-β≤π,即在此条件下,以上推导才是正确的.
由于α,β都是任意角,α-β也是任意角,因此,须研究α-β为任意角时,以上推导是否正确.
当α-β为任意角时,由诱导公式总可以找到一个角θ,θ∈[0,2π),使cosθ=cos(α-β).
若θ∈[0,π],则·=cosθ=cos(α-β);
若θ∈[π,2π],则2π-θ∈[0,π],且 ·=cos(2π-θ)=cosθ=cos(α-β).
于是,对于任意角α,β都有
2.教师提出进一步拓展性问题:本节问题情景中,涉及如何用sinα,sinβ,cosα,cosβ来表示sin(α+β)的问题,试探索与研究sin(α+β)的表达式.
两角和与差的正弦
教材分析
在这节内容中,公式较多,一旦处理不当,将成为学生学习的一种负担.针对这个特点,应充分揭示公式的内在联系,使学生理解公式的形成过程及其使用条件,在公式体系中掌握相关的公式.同时,通过练习使学生能够熟练地运用这些公式.当然,这些公式的基础是两角和差的余弦公式.通过诱导公式sin(-α)=sinα,sinπ(-α)=cosα(α为任意
-(α+β)]角),可以实现正、余弦函数间的转换,也可推广为sin(α+β)=cos[=cos[(-α)-β],sin(α-β)=[
-(α-β)]=cos[(-α)+β].借助于Cα+β和Cα-β即可推导出公式Sα+β和Sα-β.Cα+β,Cα-β,Sα+β和Sα-β四个公式的左边均为两角和与差的正、余弦,右边均为单角α,β的正、余弦形式.不同点为公式Sα+β,Sα-β两边的运算符号相同,Cα+β与Cα-β两边的运算符号相反.Sα+β与Sα-β中右边是两单角异名三角函数的乘积,而Cα-β与Cα+β的右边是两单角同名三角函数的乘积.
任务分析
这节课计划采用启发引导和讲练结合的教学方式,对三角函数中的每一个公式要求学生会推导,会使用,要求不但掌握公式的原形,还应掌握它们的变形公式,会把“asinx+bcosx”类型的三角函数化成一个角的三角函数.在课堂教学中,将采用循序渐进的原则,设计有一定梯度的题目,以利于培养学生通过观察、类比的方法去分析问题和解决问题的能力,培养学生良好的思维习惯.在教学中,及时提醒学生分析、探索、化归、换元、类比等常用的基本方法在三角变换中的作用.这节课的重点是准确、熟练、灵活地运用两角和差的正、余弦公式进行三角函数式的求值、化简和证明,难点是公式的变形使用和逆向使用.
教学目标 1.能用两角差的余弦公式导出两角和的余弦公式,两角和差的正弦公式,并了解各个公式之间的内在联系.
2.能运用两角和差的正、余弦公式进行三角函数式的化简、求值和证明.
3.通过公式的推导过程,培养学生的逻辑思维能力,同时渗透数学中常用的换元、整体代换等思想方法.
教学过程
一、问题情景
如图42-1,为了保持在道路拐弯处的电线杆OB的稳固性,要加一根固定钢丝绳,要求钢丝绳与地面成75°角.已知电线杆的高度为5m,问:至少要准备多长的钢丝绳?
设电线杆与地面接触点为B,顶端为O,钢丝绳与地面接触点为A. 在Rt△AOB中,如果能求出sin75°的值,那么即可求出钢丝绳的长度.75°角可表示成两个特殊角45°与30°的和,那么sin75°的值能否用这两特殊角的三角函数值来表示呢?
二、建立模型 1.探 究
已知cos(α-β)=cosαcosβ+sinαsinβ,则sin(α+β),sin(α-β)中的角及函数名与cos(α+β)和cos(α-β)有何关系? 通过诱导公式可实现正、余弦函数的转换,即sin(α+β)=推导以上公式的方法并不是唯一的,其他推导方法由学生课后自己探索. 3.分析公式的结构特征
Sα+β与Sα-β中两边的加减运算符号相同,右边为α与β角的异名三角函数的乘积.应特别注意公式两边符号的差异.
三、解释应用 [例题一]
已知sinα=-,且α为第四象限角,求sin(-α)cos(+α)的值.
分析:本题主要训练公式Sα-β与Sα+β的使用.
由sinα=-及α为第四象限角,可求出cosα=,再代入公式求值.
[练习一]
分析:1.(1)强调公式的直接运用,寻找所求角与已知角之间的关系,α=(30°+α)-30°,再利用已知条件求出cos(30°+α).
2.应注意三角形的内角之间的关系,C=π-(A+B),再由诱导公式cos(π-α)=-cosα,要求cosC即转化为求-cos(A+B).
3.应注意分析角之间的关系,2β=(α+β)-(α-β),因此,求cos2β还应求出sin(α-β)和cos(α+β).解此题时,先把α+β与α-β看成单角,然后把2β用这两个单角来表示.
4.该题是在已有知识的基础上进一步深化,引导学生分三步进行:(1)求出α+β角的某个三角函数值.(2)确定角的范围.(3)确定角的值.其中,求α+β的某个三角函数值时,应分清是求cos(α-β)还是求sin(α-β).
已知向量的坐标. =(3,4),若将其绕原点旋转45°到′→的位置,求点P′(x′,y′)解:设∠xOP=α,∵|OP|=5,∴cosα=,sinα=.
∵x′=5cos(α+45°)=5(cosαcos45°-sinαsin45°)=-,y′=5sin(α+45°)=5(sinαcos45°+cosαsin45°)=,∴P′ -,.
已知向量=(4,3),若将其绕原点旋转60°,-135°到
1,2的位置,求点P1,P2的坐标.
[例题三]
求下列函数的最大值和最小值.
(1)y=cosx-sinx.
(2)y=3sinx+4cosx.
(3)y=asinx+bcosx,(ab≠0). 注:(1),(2)为一般性问题,是为(3)作铺垫,推导时,要关注解题过程,以便让学生充分理解辅助角φ满足的条件.
(3)解:考查以(a,b)为坐标的点P(a,b),设以OP为终边的一个角为φ,则
[练习三]
求下列函数的最大值和最小值.(1)y=cosx-sinx.
(2)y=sinx-sin(x+)
(3)已知两个电流瞬时值函数式分别是I1=12sin(ωt-45°),I2=10sin(ωt+30°),求合成的正弦波I=I1+I2的函数式.
四、拓展延伸
出示两道延伸性问题,引导学生独立思考,然后师生共同解决.
1.已知三个电流瞬时值的函数式分别为I1=5sinωt,I2=6sin(ωt-60°),I3=10sin(ωt+60°),求它们合成后的电流瞬时值的函数式I=I1+I2+I3,并指出这个函数的振幅、初相和周期.
2.已知点P(x,y),与原点的距离保持不变绕原点旋转θ角到点P′(x′,y′)(如图42-2),求证:
三角形边和角关系的探索
教材分析
初中已研究过解直角三角形,这节所研究的正、余弦定理是解直角三角形知识的延伸与推广,它们都反映了三角形边、角之间的等量关系,并且应用正、余弦定理和三角形内角和定理,可以解斜三角形.正弦定理的推证运用了从特殊到一般的方法,把直角三角形中得到的边角关系式推广到锐角三角形,再推广到钝角三角形,进而得出一般性的结论.余弦定理的推证采用向量的数量积做工具,将向量的长度与三角形的边长、向量的夹角与三角形的内角联系起来.对于正、余弦定理的推论,除了这节课的证法之外,还有其他的一些推证方法.教材中还要求,在证明了正、余弦定理之后,让学生尝试用文字语言叙述两个定理,以便理解其实质.当然,就知识而言,正弦定理有三个等式,可视为三个方程;余弦定理的三个式子也可看成三个方程,每个方程中均有四个量,知道其中任意三个量便可求第四个量.
这节课的重点是正、余弦定理的证明,以及用正、余弦定理解斜三角形,难点是发现定理、推证定理以及用定理解决实际问题.
任务分析
这节内容是在初中对三角形有了初步认识的基础上,进一步研究三角形的边、角之间的等量关系.对正弦定理的推导,教材中采用了从特殊到一般的方法,逐层递进,学生易于接受,而余弦定理的证明采用了向量的方法.应用两个定理解三角形时,要分清它们的使用条件.将正、余弦定理结合起来应用,经常能很好地解决三角形中的有关问题.
教学目标
1.理解正、余弦定理的推证方法,并掌握两个定理. 2.能运用正、余弦定理解斜三角形.
3.理解并初步运用数学建模的思想,结合解三角形的知识,解决生产、生活中的简单问题.
教学设计
一、问题情景
1.A,B两地相距2558m,从A,B两处发出的两束探照灯光照射在上方一架飞机的机身上(如图43-1),问:飞机离两探照灯的距离分别是多少?
2.如图43-2,自动卸货汽车的车厢采用液压机构,设计时应计算油泵顶杆BC的长度.已知车厢的最大仰角为60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平的夹角为6°20′,AC长为1.40m,计算BC的长.(精确到0.01m)
问题:(1)图中涉及怎样的三角形?(2)在三角形中已知什么?求什么?
二、建立模型
1.教师引导学生分析讨论
在问题情景(1)中,已知在△ABC中,∠A=72.3°,∠B=76.5°,AB=2558m.求AC,BC的长.
组织学生讨论如何利用已知条件求出AC,BC的长度.(让学生思考,允许有不同的解法)
结论:如图40-3,作AD⊥BC,垂足为D.由三角函数的定义,知AD=AC·sinC,AD=AB·sinB.
由此可得AC·sinC=AB·sinB.
又由∠A,∠B的度数可求∠C的度数,代入上式即可求出AC的长度,同理可求BC的长度.
教师明晰:
(1)当△ABC为直角三角形时,由正弦函数的定义,得
(2)当△ABC为锐角三角形时,设AB边上的高为CD,根据三角函数的定义,得CD=asinB=bsinA,所以,同理
.(3)当△ABC为钝角三角形时,结论是否仍然成立?引导学生自己推出.(详细给出解答过程)
事实上,当∠A为钝角时,由(2)易知设BC边上的高为CD,则由三角函数的定义,得 CD=asinB=bsin(180°-A).
根据诱导公式,知sin(180°-A)=sinA,.∴asinB=bsinA,即.正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即
.正弦定理指出了任意三角形中三条边与它对应角的正弦之间的一个关系式,描述了任意三角形中边、角之间的一种数量关系.
思考:正弦定理可以解决有关三角形的哪些问题? 2.组织学生讨论问题情景(2)
这一实际问题可化归为:已知△ABC的边AB=1.95,AC=1.4,夹角为6°20′,求BC的长. 组织学生讨论:能用什么方法求出BC?(学生有可能有多种不同的解法)
教师明晰:如果已知三角形的两边和夹角,这个三角形为确定的三角形,那么怎样去计算它的第三边呢?由于涉及边长及夹角的问题,故可以考虑用平面向量的数量积.(也可用两点间的距离公式)
如图,设=a,=b,=c,则c=a-b.
∵|c|2=c·c=(a-b)·(a-b)=a2+b2-2abcosC,∴c=a+b-2abcosC.
同理a2=b2+c2-2bccosA,b2=c2+a2-2accosB. 于是得到以下定理:
余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即
a2=b2+c2-2bccosA,b2=c2+a2-2accosB,c2=a2+b2-2abcosC.
思考:余弦定理可以解决一些怎样的解三角形问题? 3.进一步的问题
勾股定理指出了直角三角形中三边之间的等量关系,余弦定理则指出了一般三角形三边之间的等量关系,那么这两个定理之间存在怎样的关系?如何利用余弦定理来判断三角形是锐角三角形还是钝角三角形?
三、解释应用 [例 题] 2221.(1)已知:在△ABC中,A=32.0°,B=81.8°,a=42.9cm,解三角形.
(2)已知:在△ABC中,a=20cm,b=28cm,A=40°,解三角形.(角精确到1°,边长精确到1cm)
分析:(1)本题为给出三角形的两角和一边解三角形问题,可由三角形内角和定理先求出第三个角,再两次利用正弦定理分别求出另两边.
(2)本题给出了三角形的两边及其中一边的对角,于是可用正弦定理求出b边的对角B的正弦,sinB≈0.8999,但0<B<π,故B角有两个值(如图43-8),从而C角与c边的取值也有两种可能.学生在解题时容易丢掉一组解,应引导学生从图形上寻找漏掉的解.
2.(1)已知:在△ABC中,已知b=60cm,c=34cm,A=41°,解三角形.(角精确到1°,边长精确到1cm)
(2)已知:在△ABC中,a=134.6cm,b=87.8cm,c=161.7cm,解三角形.(角精确到1′).
分析:本例中的(1)题,给出了两边及其夹角,可先用余弦定理求出第三边,求其他两角时既可用余弦定理也可用正弦定理.(2)题给出了三边长,可先用余弦定理求出其中一角,然后同样既可用正弦定理,也可用余弦定理求出其他两角.
3.AB是底部B不可到达的建筑物,A为建筑物的最高点.设计一种测量建筑物高度AB的方法. 分析:由于建筑物的底部B是不可到达的,所以不能直接测量出建筑物的高.由解直角三角形的知识,只要能知道一点C到建筑物顶部A的距离CA,并能测出由点C观察A的仰角,就可以计算出建筑物的高.为了求出CA的长,可选择一条水平基线HG(如图43-9),使H,G,B三点在同一条直线上.在G,H两点用测角仪器测得A的仰角分别为α,β,设CD=a,测角仪器的高为h,则在△ACD中,由正弦定理,得-β),从而可求得AB=AE+h=ACsinα+h=[练习]
1.在△ABC中,已知下列条件,解三角形.(角精确到1°,边长精确到1cm)(1)A=45°,C=30°,c=10cm.(2)A=60°,B=45°,c=20cm.(3)a=20cm,b=11cm,B=30°.(4)c=54cm,b=39cm,c=115°.
2.在△ABC中,已知下列条件,解三角形.(角精确到0.1°,边长精确到0.1cm)(1)a=2.7cm,b=3.696cm,C=82.2°.(2)b=12.9cm,c=15.4cm,A=42.3°.(3)a=7cm,b=10cm,c=6cm.
四、拓展延伸
1.在△ABC中,有正弦定理
+h.,sin(α
这涉及比值的连等式.请探索并研究是一个什么样的量,并加以证明.
2.在△ABC中,已知三边的长为a,b,c,如何判定△ABC的形状? 3.已知:在△ABC中,a=60,b=50,A=38°,求B.(精确到1°)
分析:.∵0°<B<180°,∴B≈31°或B≈149°,但当B≈149°时,A+B=187°,这与A,B为三角形内角矛盾,故B角只能取31°. 由此题与例1中的(2)题的分析可以发现,在已知三角形两边及其一边对角解三角形时,在某些条件下会出现一解或两解的情形,那么会不会出现无解的情形呢?
(1)当A为钝角或直角,必须满足a>b才有解(a≤b无解),并且由sinB=计算B时,只能取锐角,因此,只有一解,如图43-10.
(2)当A为锐角时,①若a>b或a=b,则由sinB=解,如图40-11.
计算B时,只能取锐角的值,因此,只有一②若a<bsinA,则由sinB=,得sinB>1,因此,无解.如图43-12.
③若a=bsinA,则由sinB=,得sinB=1,即B为直角,故只有一解,如图43-13.
④若b>a>bsinA,则sinB<1,故B可取一个锐角和一个钝角的值,如图43-14.
思考:若已知三角形的两角和一边、三边、两边及其夹角来解三角形时,它们的解会是怎样的?