初中数学教案:七年级数学《代数式的值》教案

时间:2019-05-13 01:13:27下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初中数学教案:七年级数学《代数式的值》教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初中数学教案:七年级数学《代数式的值》教案》。

第一篇:初中数学教案:七年级数学《代数式的值》教案

初中数学教案:七年级数学《代数式的值》教案模板

教学目标

1.使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值; 2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。教学建议

1.重点和难点:正确地求出代数式的值。2.理解代数式的值:

(1)一个代数式的值是由代数式中字母的取值而决定的.所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化.因此在谈代数式的值时,必须指明在什么条件下.如:对于代数式n-2 ;当n=2 时,代数式n-2 的值是0;当n=4 时,代数式n-2 的值是2.

(2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 1/(x-1)中

不能取1,因为x=1 时,分母为零,式于1/(x-1)无意义;如果式子中字母表示长方形的长,那么它必须大于0. 3.求代数式的值的一般步骤:

在代数式的值的概念中,实际也指明了求代数式的值的方法.即一是代入,二是计算.求代数式的值时,一要弄清楚运算符号,二要注意运算顺序.在计算时,要注意按代数式指明的运算进行.

4。求代数式的值时的注意事项:

(1)代数式中的运算符号和具体数字都不能改变。(2)字母在代数式中所处的位置必须搞清楚。(3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。5.本节知识结构:

本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法.6.教学建议

(1)代数式的值是由代数式里的字母所取的值决定的,因此在教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念.

(2)列代数式是由特殊到一般, 而求代数式的值, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想.教学设计示例

代数式的值

(一)教学目标

1使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值; 2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。教学重点和难点

重点和难点:正确地求出代数式的值 课堂教学过程设计

一、从学生原有的认识结构提出问题 1用代数式表示:(投影)(1)a与b的和的平方;(2)a,b两数的平方和;(3)a与b的和的50% 2用语言叙述代数式2n+10的意义

3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球? 若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢? 最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值这就是本节课我们将要学习研究的内容

二、师生共同研究代数式的值的意义

1用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值

2结合上述例题,提出如下几个问题:(1)求代数式2x+10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的? 当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应

(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢? 下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值 解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70

注意:如果代数式中省略乘号,代入后需添上乘号 例2 根据下面a,b的值,求代数式a-b/a 的值(1)a=4,b=12,(2)a=3/2,b=1 解:(1)当a=4,b=12时,a-b/a =4-12/4 =16-3=13;(2)当a=3/2,b=1时,2

22注意(1)如果字母取值是分数,作乘方运算时要加括号;(2)注意书写格式,“当„„时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

三、课堂练习

1(1)当x=2时,求代数式x-1的值;

(2)当x=1/3,y=1/4 时,求代数式x(x-y)的值 2当a=1/2,b=1/3 时,求下列代数式的值:(1)(a+b);

(2)(a-b)

3当x=5,y=3时,求代数式(2x-3y)/(3x+2y)的值

222

答案:1.(1)3;(2)1/36 ; 2.(1)25/26 ;(2)1/36; 3.1/21.

四、师生共同小结

首先,请学生回答下面问题: 1本节课学习了哪些内容? 2求代数式的值应分哪几步? 3在“代入”这一步应注意什么”

其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.

五、作业

当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);

(2)(c-b)/(c+b).代数式的值

(二)教学目标

1.使学生掌握代数式的值的概念,会求代数式的值; 2.培养学生准确地运算能力,并适当地渗透对应的思想. 教学重点和难点

重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式. 难点:正确地求出代数式的值. 课堂教学过程设计

一、从学生原有的认识结构提出问题 1.用代数式表示:(投影)(1)a与b的和的平方;(2)a,b两数的平方和;(3)a与b的和的50%.

2.用语言叙述代数式2n+10的意义.

3.对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打出投影)某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50.我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值.这就是本节课我们将要学习研究的内容.

二、师生共同研究代数式的值的意义

1.用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值.

2.结合上述例题,提出如下几个问题:(1)求代数式2n+10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的? 当教师引导学生说出:“代数式的值是由代数式 里字母的取值的确定而确定的”之后,可用图示帮助 学生加深印象.

然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它应.(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案.(教师板书例题时,应注意格式规范化)例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值. 解:当x=7,y=4,z=0时,x(2x-y+3z)=7×(2×7-4+3×0)=7×(14-4)=70.

注意:如果代数式中省略乘号,代入后需添上乘号.

注意(1)如果字母取值是分数,作乘方运算时要加括号;(2)注意书写格式,“当„„时”的字样不要丢;

(3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数.

最后,请学生总结出求代数值的步骤: ①代入数值

②计算结果

三、课堂练习

1.(1)当x=2时,求代数式x-1的值;

22.填表:(投影)

四、师生共同小结 首先,请学生回答下面问题:

1.本节课学习了哪些内容?2.求代数式的值应分哪几步? 3.在“代入”这一步应注意什么?

其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母,按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.

五、作业

1.当a=2,b=1,c=3时,求下列代数式的值:

2.填表

3.填表

课堂教学设计说明 由于代数式的值是由代数式里的字母所取的值决定的,因此在设计教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念。

第二篇:代数式的值教案

§ 教学目标: 3.3代数式的值

深州旧州中学

赵书华

知识与技能:了解代数式的值的概念,会求代数式的值,会利用求代数式的值解决较简单的实际问题。

过程与方法:在具体情境中感受代数式中的字母表示数的意义,体会由一般到特殊的方法。

情感、态度与价值观:通过例题的讲解培养学生良好的学习习惯和品质,并发展学生数学素质与实际应用能力。教学重难点:

重点:直接代入法求代数式的值。

难点:整体代入法求代数式的值。教学过程:

(一)忆一忆 1 什么是代数式 会列代数式吗?列代数式时需要注意什么?

(二)玩一玩,说一说

1玩一玩:请四个同学来做一个传数的游戏 游戏方法:请第一个同学任意报一个数给第二个同学,第二个同学把这个数加1传给第三个 同学,第三个同学再把听到的数平方后传给第四个同学,第四个同学把听到的数减去1 报出答案。

(1)若一个同学报给第二个同学的数是5,而第四个同学报出的答案是35其结果对吗?(2)若第一个同学报给第二个同学的数是x,则第二个同学报给第三个同学的数是 _________,第三个同学报给第四个同学的数是__________,第四个同学报出的答案是______________.以上过程我们可以用一个图来表示。x →x+1→(x+1)² →(x+1)²-1实际上问题(1)是在用具体的数5来代替最后一个式子(x+1)²–1中的字母x,然后算出结 果(5–1)²–1=35 如果我现在任意报一个数,你能否完成四个人的工作,告诉我答案? 刚才的游戏过程就是:用某个数去代替代数式(x+1)²–1中的x,并按照其中的运算关系计算得出结果。这就是代数式的值。

2.说一说:你能由上面问题说一说什么是代数式的值吗?

用数值代替代数式里的字母,按照代数式中运算关系计算得出的结果,叫做代数式的值。这个过程叫做求代数式的值。

(三)学一学,练一练(直接代入法求代数式的值)1. 学一学

例1:根据下面a、b的值,求代数式a

b的值 a

(1)当a=2,b=-6时,(2)当a=-10,b=4时

解:(1)当a=2,b=-6时,(2)当a=-10,b=4时,a6b=2-

a2a4b=-10-

10a

=2+3

=-10+53 =5 = -9

5师:在今后解决问题的过程中,往往需要根据代数式中字母取值确定代数式的值,你能根据代数式的值的概念找出求代数式的值的方法步骤吗? 学生活动:积极思考,相互讨论,找出方法步骤:

(1)写出条件:解:当„时(2)抄写代数式(3)代入数值(4)计算出结果 练习1:当x=2,Y=1,Z=-3时,求下列各代数式的值。(学生板书)(1)z-y(z-x)

(2)xy-z2(学生板书,老师指点学生找错并强调注意事项)

师:你能从上面的运算过程说一说代数式的值在计算时需要注意哪些问题吗?交流得:注意:①在代数式中原来省略的乘号代入数值时要还原成“×”;②代入负数时要加上括号负数,代入乘方运算时,底数是负数或分数时也要加上括号。

(四)想一想,练一练(整体代入法求代数式的值)例2:若a2+a=0, 求代数式2a2+2a+2007的值

提示:先从a2+a=0中求得a值再代入,无疑的会很麻烦,若把它看做一整体,看求值的式子中是否包含a2+a。若有,把它的值代入即可求值,这种方法也称整体代入法。练习2:当x+y=5,xy=4时,求代数式80(x+y)2 +3xy-11的值。(学生板书)例3:若 x+2y+5的值为7,求代数式 3x+6y+4 的值。

师:解题思想,先变形,然后整体带入。

(五)巩固提高

(课本上练习)

(六)归纳小结:

师:本节课学习了哪些内容?(1)什么叫代数式的值?

(2)求代数式的值的步骤:先代入,后计算.运算时既要分清运算种类,又要注意运算顺序.(3)求代数式的常见方法:直接代入法,整体代入法(4)注意的几个问题:

●解题格式,由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母的取值,把“当„„时”写出来。

●代数式中省略了乘号时,代入数值以后必须添上乘号。

●代入负数时要加上括号负数,代入乘方运算时,底数是负数或分数时也要加上括号。

(七)作业布置:P112 A组1,5

B组1,2

(八)板书设计

§ 3.3代数式的值

一 代数式的值的定义

整体代入法

巩固提高 二 例题

例2

三 小结 直接代入法

练习2

注意1 例1

例3

练习1

(九)课后反思

第三篇:代数式的值教案

代数式的值

教学目标:

知识与技能:理解代数式的值的概念,会求代数式的值,会利用求代数式的值解决较简单的实际问题。

过程与方法:通过求代数式的值的过程,感受代数式中的字母表示数的意义,体会由一般到特殊的方法。

情感、态度与价值观:通过用数值代替代数式中的字母求代数式的值得过程,让学生积极主动参与到课堂中来,培养学生分析问题、解决问题的能力。教学重难点: 重点:求代数式的值。

难点:求代数式的值的过程中,还原运算符号、正确的运算顺序、确保代数式有意义以及如何解决实际应用。教学过程:

(一)激情引入

同学们,今天这节课我们先来玩一个游戏。游戏规则:

老师任意报一个数,第一个同学把这个数乘以2然后传给他后面的同学,第二个同学再把听到的数加上3然后后传给后面同学,第三个同学把听到的数平方之后告诉老师结果。让老师看一看哪一组最快最准。让同学们在游戏中发现,代数式中的字母可以用数字代替求出固定的结果,初步体会从一般到特殊的过程。

师:谁能告诉我我们刚刚这个游戏中的代数式应该怎样表示? 生:(2a3)

设计意图:以游戏的形式引入,激发学生的学习兴趣,为后面的内容作铺垫。

(二)自主学习

认真预习P63页的内容,然后思考: 1,什么是代数式的值?

2,我们刚刚所玩的游戏哪几位同学的结果是2(2a3)2的值?

3,求代数式的值得方法以及求代数式的值得过程中应该注意哪些方面?

设计意图:充分体现学生的主体作用,使学生围绕自学指导自主学习。

(三)小试牛刀

例:据下面给出的x的值,你能求出代数式-2x+9的值吗?

(1)当x=0.5;(2)当x=-2;

师:请两位同学上黑板演练,其余同学独立完成。教师巡视收集错误。优先让学生发现问题并更正,教师补充强调。

设计意图:对自学成果的一个诊断,最大限度暴露出学生的问题,然后加以补充和更真。

(四)合作交流

师:你能从上面的运算过程说一说代数式的值在计算时需要注意哪些问题吗?

以小组为单位相互交流,每一组派代表发言:

交流得:注意:①代入数值后“乘号”要填上;②要按数的运算法则进行运算③如果字母的值是负数、分数,代入时应加上括号④解题格式,由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母的取值,把“当„„时”写出来。

设计意图:活跃学习气氛,由学生自己总结出来,不仅可以提高学生的概括能力,还能使求代数式的值得过程中应该注意的问题更深入脑海。

(五)当堂训练

1,当a=-1,b=-2,c= 时,计算下列代数式的值 ;

(1)-2a+9(2)3b-4(3)-5c-7(4)2a-6b-5c

a2b32,据给出的值,计算代数式

ab 的值

1(1)当a=-4,b=3时;(2)当a=,b=-3时

2设计意图:进一步对学生进行诊断。习题的设计具有一定的层次性。

(五)实际应用

1.移动通信公司开展“全球通”业务,联通公司开展“神州行”业务:“全球通”使用者每月交月租费30元,然后每分钟再交话费0.25元;“神州行”使用者不缴纳月租费,每分钟交话费0.40元,用x表示一月内通话的时间(以分钟计),试用代数式表示两种方式的费用。“全球通”的费用:30+ 0.25x “神州行”的费用: 0.40x 若我每月估计通话时间为300分钟,应选择何种交费方式? 当x=300时,30+ 0.25x=30+0.25×300=105 当x=300时,0.40x=0.40×300=120 若我每月估计通话时间为180分钟,应选择何种交费方式? 若我每月估计通话时间为200分钟,应选择何种交费方式?

设计意图:为本节课的难点之一,引导学生分析得出两种业务的费用(代数式),通话时间不同,相当于代数式中字母取值不同。提高学生分析问题解决问题的能力。

(六)归纳小结: 师:本节课学习了哪些内容?(1)什么叫代数式的值?

(2)求代数式的值的步骤:先代入,后计算.运算时既要分清运算种类,又要注意运算顺序.(3)注意的几个问题:

1,解题格式,由于代数式的值是由代数式中的字母所取的值确定的,所以代入数值前应先指明字母的取值,把“当„„时”写出来。, 2,如果字母的值是负数、分数,代入时应加上括号; 3,代数式中省略了乘号时,代入数值以后必须添上乘号。

4,代数式里的字母可取不同的值,但是所取的数值不能使代数式或它表示的实际问题失去意义。

(七)作业布置:必做:P65 A组2、3、4:; 选做;P65 B组5、6.

第四篇:数学教案-代数式

数学教案-代数式

-----------------------------

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

教学建议

1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,都是代数式.

(3)代数式是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个代数式有几种运算和运算顺序。代数式不含表示关系的符号,如等号、不等号.如,等都是代数式,而,,等都不是代数式.

3.教学难点 分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a

-3)的积。

4.书写代数式的注意事项:

(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.如,应写作 或写作,应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号.(2)代数式中有除法运算时,一般按照分数的写法来写.如: 应写作

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

5.对本节例题的分析:

例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.6.教法建议

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义 难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。教学设计示例

代数式

教学目标

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法.教学重点和难点

重点:用字母表示数的意义

难点:学会用字母表示数及正确地说出代数式所表示的数量关系

课堂教学过程 设计

一、从学生原有的认知结构提出问题

1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)(1)加法交换律 a+b=b+a;

(2)乘法交换律 a·b=b·a;

(3)加法结合律(a+b)+c=a+(b+c);

(4)乘法结合律(ab)c=a(bc);

(5)乘法分配律 a(b+c)=ab+ac

指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

三、讲授新课

1代数式

单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

2举例说明

例1 填空:

(1)每包书有12册,n包书有__________册;

(2)温度由t℃下降到2℃后是_________℃;

(3)棱长是a厘米的正方体的体积是_____立方厘米;

(4)产量由m千克增长10%,就达到_______千克

(此例题用投影给出,学生口答完成)解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m

例2 说出下列代数式的意义:

(1)2a+3(2)2(a+3);(3)(4)a-(5)a2+b2(6)(a+b)2 解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

(3)的意义是c除以ab的商;(4)a-的意义是a减去 的差;

(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

说明:(1)本题应由教师示范来完成;

(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

例3 用代数式表示:

(1)m与n的和除以10的商;

(2)m与5n的差的平方;

(3)x的2倍与y的和;

(4)ν的立方与t的3倍的积

分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

解:(1);(2)(m-5n)2(3)2x+y;(4)3tν3

四、课堂练习

1填空:(投影)

(1)n箱苹果重p千克,每箱重_____千克;(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

(3)底为a,高为h的三角形面积是______;

(4)全校学生人数是x,其中女生占48%,则女生人数是____,男生人数是____

2说出下列代数式的意义:(投影)

(1)2a-3c;(2);(3)ab+1;(4)a2-b2

3用代数式表示:(投影)

(1)x与y的和;(2)x的平方与y的立方的差;

(3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和

五、师生共同小结

首先,提出如下问题:

1本节课学习了哪些内容?2用字母表示数的意义是什么?

3什么叫代数式?

教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

六、作业

1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

3飞机的速度是汽车的40倍,自行车的速度是汽车的,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

4a千克大米的售价是6元,1千克大米售多少元?

5圆的半径是R厘米,它的面积是多少?

6用代数式表示:

(1)长为a,宽为b米的长方形的周长;

(2)宽为b米,长是宽的2倍的长方形的周长;

(3)长是a米,宽是长的 的长方形的周长;

(4)宽为b米,长比宽多2米的长方形的周长

第五篇:代数式初中数学教案(写写帮推荐)

1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。教学建议

1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,都是代数式.

(3)代数式是用基本的运算符号把数、表示数的字母连接而成的式子,一定要弄清一个代数式有几种运算和运算顺序。代数式不含表示关系的符号,如等号、不等号.如,等都是代数式,而,,等都不是代数式.

3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

如:说出代数式7(a-3)的意义。

分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

4.书写代数式的注意事项:

(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.如,应写作 或写作,应写作 或写作 .带分数与字母相乘,应把带分数化成假分数,如 应写成 .数字与数字相乘一般仍用“×”号.(2)代数式中有除法运算时,一般按照分数的写法来写.如: 应写作

(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

5.对本节例题的分析:

例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.6.教法建议

(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比如,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

7.教学重点、难点:

重点:用字母表示数的意义

难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

下载初中数学教案:七年级数学《代数式的值》教案word格式文档
下载初中数学教案:七年级数学《代数式的值》教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    七年级上册《4.3代数式的值》教案 浙教版

    浙江省温州市平阳县鳌江镇第三中学七年级上册《4.3代数式的值》教案 浙教版 教学目标 1使学生掌握代数式的值的概念,会求代数式的值; 2培养学生准确地运算能力,并适当地渗......

    教案求代数式的值

    3.2 代数式的值 做课人 尹圣军 【教学目标】 知识与技能 能解释代数式值的实际意义,了解代数式值的概念. 过程与方法 经历观察、实验、猜想等数学活动的过程,发展合理的推理......

    (教案)5.4代数式的值

    5.4 代数式的值 教学目标 使学生理解代数式的值的概念,会求出代数式的值。 教学重点和难点 重点:代数式的概念及求法;难点:求代数式的值。 教学过程 一 激情引趣,导入新课 考考你......

    七年级数学上册代数式的值(第1课时)教案人教版

    36课时课题: 代数式的值(第2课时)教学目标:一、知识目标:1、会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法2、会利用代数式求值推断代数式所反映的规律3、能理......

    七年级数学整式的加减3.2代数式的值教案华东师大版

    3.2代数式的值 一、教学目标 1.使学生掌握代数式的值的概念,会求代数式的值; 2.培养学生准确地运算能力,并适当地渗透对应的思想. 二、教学重点和难点 重点:当字母取具体数字时,对应......

    七年级数学3.2代数式教案Microsoft Word 文档

    七年级数学3.2代数式教案 一、学习目标: 1. 在具体情景中,进一步理解字母表示数的意义 2.能理解一些简单代数式的实际背景或几何意义,发展符号感。 3.在具体情景中,能求出代数......

    七年级数学上册2.1代数式的值教案(新版)沪科版(新)

    代数式的值 教学目标: 1、了解代数式的值的概念,并会求代数式的值; 2、通过代数式求值,让学生感受抽象的字母与具体的数之间的关系,进而增强符号感。 重点: 求代数式的值。 难点:......

    代数式的值教案[五篇范例]

    2012---2013学年孟津县双语实验学校七年级数学学科教案 3.2.代数式的值 主备人:于莹 辅备人:王青芳 畅现周 孙利 孙青雨 个案人: 时间 10-23 【教学目标】:1.使学生掌握代数式的......