第一篇:济南市区域自动气象站数据质量控制研究
济南市区域自动气象站数据质量控制研究
摘要:区域自动气象站数据质量控制是项重要工作。数据质量控制主要分为自动质量控制(QC0)和人机交互质量控制(QC1)两个级别。自动质量控制是在数据处理入库前进行,人机交互质量控制是在QC0处理后对数据库中的数据进行。自动质量控制包括阈值检查和格式检查,人机交互质量控制包括阈值检查、序列突变检查、一致性检查、空间质量控制。经过质量控制,保证了区域自动气象站数据的准确,提高了对外服务的水平。
关键词:区域自动气象站;数据质量控制;实时处理监测系统
中图分类号:TP311文献标识码:A文章编号:1009-3044(2011)24-6037-02
Jinan Region of Automatic Weather Station Data Quality Control
ZHANG Ning, REN Dan, RAN Gui-ping
(Jinan Bureau of Meteorology, Changqing District, Bureau of Meteorology, Ji'nan 250002, China)
Abstract: Automatic Weather Station Data Quality Control is an important work.Data quality control consists of automatic quality control(QC0)and interactive quality control(QC1)two levels.Automatic quality control is carried out before storage in Database.Quality control of human-computer interaction is carried out after the data storage.After quality control, ensured the accuracy of automatic weather station data and improved the level of meteorological services.Key words: automatic weather station;data quality control;real-time processing and monitoring system
气象观测资料的质量对气象服务及相关领域的研究具有重要影响。气象资料的质量控制是气象资料处理中一项十分重要的工作,又是一项难度很大需要深入研究的技术工作,WMO十分重视该项工作,并做过许多指导意见[1-3],北欧各国也在气象资料的控制中作了大量研究[4-5]。本文就济南市气象局区域自动气象站建设中数据质量控制进行了深入研究和分析。济南市区域自动气象站建设及原始观测数据情况
1.1 济南市区域自动气象站建设及数据传输网络情况
济南市自2003年建立第一个区域自动气象站以来,现在已经完成78个自动站的安装并投入业务运行。区域自动气象站分布于六个县、市(区)。自动气象站站点的资料通过GPRS无线网络传输到数据中心服务器,服务器既接公网,又接气象局内部网络。气象局内部广域网实现计算机之间数据的内部交换。图1为济南市区域自动气象站站点分布图。
1.2 区域自动气象站数据存储情况
区域自动气象站采集的数据传输到数据中心服务器后,除以文本的格式存储外,还将数据存储到数据库中。区域自动站各个气象要素数据存在一个表中,每采集一次数据存储一条记录,原始数据没有经过质量控制。区域自动气象站数据质量控制技术
2.1 区域自动气象站观测资料的特点
区域自动气象站的选址要经过气象专家认真调研,考虑站点分布、地形、周围环境、视野等,以达到观测数据能充分代表一定天气尺度天气现象的要求。区域自动气象站主要是要具有监测中小尺度天气现象的能力,测站分布较密,很难保障所有测站点都满足视野开阔无障碍物的环境要求。区域自动气象站是自动观测的,有些测站在环境恶劣的地区,其设备要经受长期风吹、日照、雨淋、沙尘侵蚀,动物昆虫损毁、甚至人为破坏等。由于以上原因,雨量观测数据出现错误数据的几率很高。
2.2 观测数据质量控制流程
观测数据质量控制为站点级质量控制,以一个观测时次的数据为单位,进行观测数据的质量检验。济南市气象局通过建立质量控制实时监测处理系统,将经过检验的数据转存到新的数据库中。观测数据质量控制主要分为自动质量控制(QC0)和人机交互质量(QC1)控制两个级别。自动质量控制是在数据处理入库前进行,人机交互质量控制是在QC0处理后对数据库中的数据进行的人工控制,控制流程见图2。
2.3 QC0:自动质量控制
自动质量控制在数据处理入库前进行,对明显错误的数据直接剔除掉,使其不能进入新的数据库中,同时将有问题的数据情况详细记录到问题数据表中,以备人工查验。自动质量控制包括阈值检查和格式检查。
阈值检查又称极值检查,是根据要素的气候特征,对其出现的范围作出判断。有两类极端值用于范围检查中,一是异常值(u或U),一是物理上不可能出现的值(i或I)。假定要素x的历史最小值和最大值分别为r和R,一般来说,有:im =rm-△
rt-(rt-1h+rt+1h)/2>200(mm)
2.4.3 一致性检查
一致性检查是利用不同变数间的物理联系,通过一个变量的观测值,判断另一个变量同时刻的观测值是否可信。一致性检查可以检查出确定性错误,也可以检查出可能性错误。例如3h降水和 6h降水,若r3h>r6h,则必有一个数据是错误的。在雨量数据中,所比较的要素主要有:雨量与总云量,雨量与相对湿度,雨量与能见度等天气现象。
2.4.4 空间质量控制
2.4.4.1 空间内插法检查
空间内插的一个重要目标就是估计空间变量的变异函数,变异函数建立的关键是对初始条件的假定和方法运用的理解。有很多研究人员利用温度、降水以及土壤湿度等气象观测数据在不同的时空尺度内设计了各种数值实验,对各种常见的插值方法做了不同的比较和分析研究[7-12],我们在雨量检查中使用的是反距离加权法。
反距离加权法是最常用的空间差值法之一,基于地理学第一定律―相似相近原理.其计算公式如下:,其中z是估计值,是第i(i=1,2,..,n)个样本,Di是距离,P是距离的幂,它显著影响内插的结果.国内外许多学者运用距离平方反比法进行内插.此法简单易行.2.4.4.2 Madsen-Allerup方法
Madsen-Allerup方法是Madsen和Allerup两人发展的一种空间质量控制方法。基本原理是基于某一空间范围内要素的空间分布是均一的假设,利用周围若干台站同时刻观测值的中值和75%、25%分位值,计算统计量Tit,Tit =(Xitqt ,25=0时(周围台站降水均很小),若Xit/Σ Xit > 0.60及Xit > 4时,则认为要素记录日期错。
2.4.5人机交互处理方式
实时监测处理程序经QC0方法对数据库中的数据进行检查后,对有问题的数据和台站进行标志,并自动启动报警功能。值班员根据标志说明,根据不同情况采取以下三种措施。
1)对于确定有问题的数据直接将其删除,保证资料的准确性。并做好日志。
2)对于经人机交互判断后没有问题的数据保留使用。
3)对于暂时不能判断的数据先进行标志保留,待查明后再决定是否使用。小结
在区域自动气象站的建设和数据使用中,数据质量控制一直是一个重要问题。观测数据质量控制采用自动质量控制(QC0)和人机交互质量控制(QC1)两个级别。质量控制过程在数据的处理中完成。观测数据处理程序具有实时监测和报警功能。经质量控制后的观测数据在历年汛期气象服务中特别是对市政府的服务中发挥了重要作用,取得了很好的服务效果。
参考文献:
[1] World Meteorological Organization.CBS/OPAG-IOS/ET AWS-3/Doe.4(1)[M].Guidelines on Quality Control Procedures for Data from Automatic Weather Stations,2004.[2] World Meteorological Organization.Guide to Meteorological Instruments and Methods of Observation[M].WMO-No.8,1996.[3] World Meteorological Organization.Guide on GDPS[M].WMO-No.305,1993.[4] Rissanen P,Jacobsson C,Madsen H,et al.Nordic methods for quality control of climate data[R].DNMI-Report 2000,No.10/2000 KLIMA.[5] Vejen F,Jacobsson C,Fredriksson U,et al.Quality control of meteorological observations automatic methods used in the Nordic countries[R].Climate Report,2002.No.8/2002 KLIMA.[6] 熊安元.北欧气象观测数据的质量控制[J].气象科技,2003,31(5):314-320.[7] Sadahiro Y.Accuracy of areal interpolation:A comparison of alternative methods[J].J Geogra Syst,1999,1(4):323-346.[8] Zimmerman D,Pavlik C,Ruggles A,et al.An Experimental Comparison of Ordinary and Universal Krigingand Inverse DistanceWeighting[J].MathematicalGeology,1999,31(4):375-390.[9] Tabios G Q,Salas J D,A comparative analysis of techniques for spatial interpolation of precipitation[J].Water Resources Bulletin,1985,21(3):365-380.[10] 李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展,2000,15(3),260-265.[11] 苏志侠,程麟生.两种客观分析方法的比较:逐步订正和最优内插[J].高原气象,1994,13(2):194-205.[12] 姜友谊,黎晓.数字地面模型内插法的优劣分析[J].西安科技学院学报,2001,21(3):213-216.注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文
第二篇:自动气象站数据质量控制软件的应用(版权见资料说明)
自动气象站数据质量控制软件的应用
(文章已发表,请不要做为投稿使用!只能做为纯业务参考学习用)
摘要
自动气象站单轨运行后,自动站原始数据的质量控制越来越重要。本文通过对Z文件、分钟数据文件、地温、逐日数据维护、J文件等异常数据进行分析处理,介绍数据质量控制软件的应用方法和经验,对测报人员进行异常数据处理、提高测报业务质量很有益处。
关键词:自动气象站,数据,质量控制,应用。引言
自动气象站数据质量控制软件(AWSDataQC)能处理地面常规数据Z文件,分钟数据P、T、U、W、R文件,逐分钟地面数据RTD文件及辐射H和I文件,功能强大,既可作为地面气象测报业务系统软件的组成部分,又可作为一个完整的独立软件单独运行。因数据质量控制软件是在OSSMO 2004 3.0.13以后版本才推出的,测报人员对软件的使用方法和操作要点不太熟悉,本文重点介绍软件在异常数据处理等方面的应用。参数设置
质量控制软件在安装后的默认数据路径是D:OSSMO 2004,如果数据路径参数设置不正确就会导致数据保存时无法存盘,表现为弹出的验证口令对话框中没有管理员信息。如果OSSMO 2004软件不是安装在D:OSSMO 2004中,就必须进行参数设置,其设置方法是点击“工具”中的“选项”将数据路径设置为D:OSSMO 2004即可。参数设置后不能立即生效,必须关闭软件再次进入时参数设置才会生效,设置的参数保存在OSSMO 2004SysConfigQCUserOpt.ini文件中。异常数据处理
Z文件是正点地面气象要素数据文件,由自动站监控软件在正点时自动卸载数据产生,Z文件3.1 Z文件数据异常处理 中的数据保存在采集器中,数据异常的机率较小,当Z文件遭到破坏或数据异常而逐分钟地面数据RTD文件正常时,可从RTD文件中导入数据对Z文件中的异常数据进行处理。步聚如下:
1)点击“文件”-“打开”-选择要处理的Z文件。
2)选择要对Z文件中进行替换处理的异常数据。所选的异常数据单元格可以是一行、一列或任意一个区域:点击固定列的某一单元格,即可选择该单元格所在的行,按下鼠标左键拖动,还可同时选择多行;点击固定行的某一单元格,即可选择该单元格所在的列,按下鼠标左键拖动,也可同时选择多列。
3)点击“文件”-“数据导入”,在引入文件路径中选择RTD文件所在的目录,RTD文件一般保存在OSSMO 2004RestoreData目录下(可从自动站监控软件的“系统参数”-“选项”-“数据备份路径”中查看RTD文件的保存路径),选择正确的路径后,表格中的“是否存在”会变为“有”,点击“确定”按钮就可实现RTD备份数据的导入。
4)检查数据无误后保存Z文件。测报人员在实际操作中使用直接点击“保存”按钮的方法不能保存修改后的数据文件,应使用文件的“另存为”功能,同时要在弹出的另存为对话框中把文件类型改为“所有文件(*.*)”,不修改文件类型会导致自动保存为TXT文本文件。在实际工作中牵涉到需直接对原始数据进行修改操作时一定要养成备份的习惯,虽然在默认参数设置下会自动形成BAK备份文件,仍建议台站进行手工备份,避免数据替换出错后造成更大损失。
3.2 分钟数据文件数据异常处理
分钟数据文件数据异常的替换处理方法与Z文件类似。只是第一步操作中要打开的是根据需要选择分钟气压P文件、气温T文件、温度U文件、风向风速W文件,降水R文件。在R文件的导入操作中有时会出现数据错位等异常情况,这时不能使用区域选择批量导入的方法,而要直接打开RTD文件查看分钟雨量情况,再进行处理。
3.3 地温等异常数据的处理
地温等要素没有单独的分钟数据文件,但所有气象要素在RTD文件都保存有,对这类要素的异常数据处理也是打开Z文件,在Z文件中选择该要素的异常数据区域再导入RTD文件,导入过程是:首先检查正点前10分钟内是否有该要素数据,把最接近正点的数据替换为Z文件正点数据,无数据时再检查正点后10分钟内数据,把最接近正点的数据替换为Z文件正点数据。这样处理能最大程度地减少数据的缺测率,也是中国局地面测报综合技术解答中要求优先使用的方法。当自动导入功能失效时我们可以在质量控制软件中手工打开RTD文件进行处理。
3.4 逐日数据维护异常数据处理
逐日数据维护中是对B文件进行处理。B文件的数据读取流程:读取逐日数据时首先检查B文件当天是否有数据,无数据则直接从Z文件中读取,有数据则比较B、Z文件是否一致,不一致就会弹出“数据替换”对话框供值班员选择处理。绝大部分B文件器测项目异常是与Z文件数据异常相联系的,因为B文件的器测项目数据就是在进入逐日数据维护中并保存时自动形成的,所以处理这类问题时一般要用数据质量控制软件来检查Z文件中的相关数据是否正常,处理好Z文件的异常数据后B文件中的问题也就好处理了。注意B文件中保存的分钟降水数据是从R文件中读取的,如果牵涉到分钟降水数据异常,我们要检查的是R文件数据。
3.5 J文件异常数据处理
分钟报表J文件是由分钟数据文件形成的(降水数据是从已维护处理过的B文件中读取),如果在B转A(J)文件后发现J文件有数据异常,我们需要检查原始的分钟数据文件是否正确,按照前面介绍的分钟数据文件导入方法进行处理后,再次进行B转A(J)操作后就可形成正确的J文件。4 其它功能
数据质量控制还包括自动站与人工站A文件比较、要素曲线、雨量查询、大风查询等实用功能,A文件比较功能在并轨运行期间方便台站及时发现自动站存在的问题,通过比较能发现大部分人工站误读数的问题。“要素曲线”能生成逼真的拆线图和直方图,通过要素曲线的变化,可以较直观的判断出错误的要素值。数据质量控制软件自带完整的帮助文件,雨量、大风查询功能在软件操作手册中已有详细说明,不再详述。结语
从目前自动气象站运行情况看,对数据进行质量控制非常必要,测报人员需要掌握数据控制软件的使用方法,特别是异常数据的分析处理方法以及需要注意的细节问题,希望本文对测报人员在日常工作中进行异常数据处理有所帮助。
第三篇:区域自动气象站站点选取分析
区域自动气象站站点选取分析
摘要:本文结合伊春地区的地理特点,根据多年积累的建站经验,分析区域自动气象站建站选址的重要性,为今后建设区域站提供更好的借鉴和帮助。
关键词:区域站;选址
中图分类号:P412.1文献标识码:A
引言
随着气象现代化业务的飞速扩展,区域自动气象站(简称区域站)成为大气监测的重要组成部分,区域站的站点选取成为基层常规业务工作质量的重要保证条件,如何做好区域站的站点选取显得尤为重要。站点选址重要条件
根据伊春市多年的区域自动气象站建设经验,本文从GPS信号、电源保障、地形交通、站点布局等几个方面介绍山区区域自动气象站站点选取的重要性。
1.1 GPS信号
区域站的建立解决了无人值守的问题,但在大部分地区,没有有线的通信辅助,依然不能解决山区的区域站气象数据的传输问题。为了保证数据信息及时准确的传到中心站,采用了移动公司提供的以GPRS为主、SMS短信为辅的无线传输方式,由于采用的是无线传输,这就要求必须保证GPRS和SMS无线信号的稳定性。对站点进行GPS信号强度及稳定性测试,如果测试GPS信号较弱或者信号稳定度差,可对移动基站进行信号调试,调试后仍不能解决GPS信号质量问题,需要另行选址。
1.2 电源保障
区域站能正常工作,良好的电源系统起到了重要保障作用。
区域站太阳能电池板的受光照角度,影响了采集器内蓄电池的充电质量。要做到风杆上的太阳能电池板没有山脚、建筑物、及其它植物的遮挡,要充分保证电池板的受光照角度,以保证蓄电池的电量。
移动基站电源系统的保障。移动公司的基站设在偏僻的林场所里,这里经常停电,虽然有蓄电池做后备电源,但续航能力不强,放电时间短,特别是遇到雷雨天,经常导致基站无法正常工作,故障明显增加;基站偏僻,路途曲折,移动工作人员发电维护不及时,从而不能保证基站设备上电工作,使气象实况不能在规定的时间内传送到中心站和国家局。有时中心站收不到区域站部分时段的资料,以为是气象采集设备出现故障,持续一段时间后,中心站正常接收同时把故障后的资料补传过来,这种情况大多是由移动信号中断引起的。所以,要充分考虑到移动基站工作的可靠性,即移动信号的强弱和工作稳定性,避免区域站资料不能及时正常上传中心站。
1.3 地形交通
区域站的地理位置非常重要,站址建设要选在合理的地方。地形、植被、防雷等诸多因素对气象采集设备的影响都要考虑,有的站点位置四周空旷,很容易受到雷击,应严格按照《自动气象站场室防雷技术规范》(QX30-2004)的要求,做好区域站防雷工作;有的站点设在了低洼地方,雨量筒或者采集器容易受到较大雨水的浸泡或者淹没,对设备造成损坏;有的站点四周长满了高大植物或者是庄家,植物叶片和泥土很容易堵塞雨量筒,从而影响降水的采集。有些站点建在偏僻的山沟里,交通不便利,当地人口还稀少,对设备看护也不方便,这些不仅制约设备维修和维护的效率,还增加了维修和维护的成本,更不能保证资料及时采集和上传。
1.4 站点布局
区域站建设参量很多,但地理坐标(经纬度)的准确性特别关键,错误的地理坐标,等于提供了虚假信息,这样对国民生产及防灾减灾都可能带来不必要的经济损失或者人员伤亡,要求实际测量的站点坐标参数与中心站地图一定要相吻合。
区域站站点密度的加大,增强了防灾减灾的能力,但不科学的站点选址会出现站点重复建设、部门交叉等系列资源浪费现象。如气象、防火、水文、水务等部门都有无人自动气象站,且站点相对集中,甚至出现同一地方建有多套无人自动气象站,布局严重失衡,造成资源和财产浪费。
今后可采取网格布点的方式,以其具有的均匀性、易共享性的显著特点建站选址,这样既避免重复建设,又能形成气象资源统一化、规模化、共享化,真正起到防灾减灾的联动作用。结语
上述就是多年来从事区域站建设和维修工作的心得体会和经验,希望对建设区域自动气象站站点有借鉴作用。
作者简介:贺敬(1973-),女,黑龙江省五常县人,齐齐哈尔大学,本科生,高级工程师。
第四篇:紫金县区域自动气象站建设及运行情况
紫金县区域自动气象站建设及运行情况
摘要:紫金县区域自动气象站是广东省推广建设的地面自动监测系统,是该县现代化综合气象观测系统的重要组成部分。本文主要介绍了紫金县区域气象观测网的建设及运行情况,分析了站网运行维护中存在的问题并提出相应的对策,旨在提高突发性灾害性天气的应急观测能力和预警能力,更好地服务地方经济。
关键词:紫金;区域自动站;建设
中图分类号: P411 文献标识码:A 文章编号: 1674-0432(2014)-10-82-1
随着气象科技的发展和气象观测能力的提高,决策气象服务对地方防灾减灾工作起到越来越重要的作用。而区域自动气象站时空分辨率强、所获取资料准确度高,使我国地面观测网对各种天气系统特别是灾害性天气系统的监测能力大大加强。紫金县区域自动气象站的广泛建设和使用,为提高天气预报准确度、精细化水平、提升灾害性天气预警能力都提供了重要保障,为政府决策提供了科学依据。区域自动气象站网的建设及运行情况
1.1 紫金县地理状况
紫金县位于广东省中东部、河源市东南部,地形以山地、丘陵为主,属亚热带季风气候,境内矿产、地热等资源甚为丰富。近几十年灾害性天气系统的发生对紫金工农业、林业等领域都产生不同程度的影响,区域自动气象站的逐步建立,对紫金县短时临近预报、决策服务有更加科学的指导意义,为紫金县防灾减灾做出了不可磨灭的贡献。
1.2 区域自动气象站网布局
紫金县气象局在充分考虑当地气候概况、地理环境、工农业布局、防灾重点地段等基础上,选择四周开阔、通信流畅、便于维护维修的地点建站,目前紫金县已建成以紫金遥测站为主中心站、18个乡(镇)站为分站的站网,整套系统与河源雷达、探空、地面等探测设备一起形成多圈层、高密度监测网,时刻监视紫金的风云变幻,大大提升了灾害性天气监测预警能力。
1.3 设备构成
区域站监测设备的选型立足当前、兼顾长远, 选择了长春气象仪器厂的DYYZⅡ型自动气象站设备。该设备每5分钟自动无线传输一次降雨量、风向风速及空气温度观测资料,维护简单,无人值守,具有远程实时监控和可扩展性,为业务发展需要和监测项目增加预留了扩展空间。
1.4 运行情况
紫金县区域自动站网经建设、校准、升级维护以及资料质量控制,目前各站点资料准确性高、可靠性强,资料易备份,仪器设备易维护。气温、降雨量、风向风速数据实现了自动监测、无线传输,并通过自动站处理软件、WEB等方式监控和发布,形成一个多功能、现代化、开放式的监测网。存在的问题
2.1 探测设备、环境难保护
目前各站都是建在乡(镇)政府或学校内,难以保证四周探测环境的变化不影响数据质量,且监测仪器无专人看管,亟待建立长效机制,保护好探测环境和监测仪器,以确保数据的准确性和代表性。
2.2 备件配备不足
站网运行以来,只能做到在县局备份部分配件(通常只有一套备件)。然而仪器常在突发恶劣天气时出故障,有时不止一套设备发生故障,而此时又急需监测设备正常运行,为天气预报和决策服务提供数据,关键时刻没有发挥应有作用。应配备一定比例的备件,以保障及时更换和修复故障仪器。
2.3 维修技术力量薄弱
虽然站网建设发展速度很快,但技术保障没有及时跟上,尤其县局受人员不足和技术能力限制,无专职负责人员,且区域站布局分散、数量多,出现故障后维修人员难以及时到达现场。建议每个台站配备固定的或兼职维护维修小组,多组织培训学习,熟悉自动站原理和运行情况,总结维修经验,不断提升维护能力。
2.4 数据传输通道保障
各站通过GPRS数据通信传输数据,传输质量会受通信网络状态影响。近几年通过与通信运营商协商,对基站的信道资源进行优化以后,通信传输质量得到提高。在选址建站时,要充分考虑通信传输这一因素,以提高资料传输质量。
2.5 仪器校准、维护和数据质量控制有待加强
个别站点不能及时校准和维护,造成监测数据失真,应加强仪器校准、维护和数据质量控制,以提高数据的准确性。建议
区域自动站数量多,分布零散,要保证整个站网的良好运行,必须科学管理, 明确职责,形成完善的站网运行保障系统。上级保障部门对下级进行统一调配和管理,制定规范化故障处理流程,统筹安排好各级仪器备份工作,按规定对设备定期检定,确保站网正常、稳定和精确运行。结语
紫金县区域气象站观测网建设虽然已经初步完成并取得阶段性成果,但还是有待继续完善。要保障区域站的正常稳定运行,需上下联动,健全保障机制体系,提高业务管理效率,加强维护人员的技术培训。正常稳定的区域站网运行,可有效促进灾害性天气预警能力提升,为政府决策提供了科学依据,促进经济社会健康发展。
参考文献
[1] 山义昌,王善芳,郑学山,等.自动气象站资料在人工影响天气作用中的应用[J].山东气象,2008(01):7-10.[2] 林英.我国自动站建设发展迅速[N].北京:光明日报,2003-08-17.[3] 胡玉峰.自动气象站原理与测量方法[M].北京:气象出版社,2004.[4] 张霭琛.现代气象观测[M].北京:北京大学出版社,2007.作者简介:唐宁琳,广东省紫金县气象局,技术员,研究方向:大气探测;李波:广东省紫金县气象局,助理工程师,研究方向:天气气候;郝建平:广东省河源市气象局,助理工程师,研究方向:天气气候;郑金新:本科学历,广东省河源市气象局,助理工程师,研究方向:大气探测。
第五篇:区域自动气象站保障工作调研对策
目前,我省区域站已基本建设完毕,其维护维修、现场标校、实验室校准和备件采购及储备等技术保障工作随之而来。为保障区域站正常运转,充分发挥现代化建设的业务效益,从2007年下半年开始,我们利用业务巡检、参加会议、现场维修、举办培训班等机会,组织维修、供应、计量检定等岗位的专业技术人员,通过与兄弟省市研讨、咨询中国气象局专家、实地查看区
域站情况,以及征求基层台站人员意见等形式,对区域站的技术保障工作进行了调研。在学习实践科学发展观活动中,我们结合前期调研的情况,组织技术人员对区域自动气象站的保障工作进行了进一步研讨,结合对中国气象局现代气象业务体系的学习和认识,我们认为当前以台站为主、省级为辅的区域站保障办法比较可行。
一、区域站技术保障工作现状
截止2008年底,全省已建成区域自动气象观测站(简称区域站)1345个,其中约80%为2005-2006年建设完成的,现在已陆续进入标校、维护维修期。我省区域站网建设由省局统一规划,各市气象局采取自筹经费、争取地方财政投入等形式自行组织完成,设备选型、采购、合同签署均由建设单位承担。
(一)维护维修以厂家为主。
由于区域站建设合同一般约定售后服务期限为2年,因此,目前,区域站的维修维护主要由供应商负责。各市气象局一般在业务科或气象台指定1名同志负责(或兼职)技术保障工作,承担区域站管理或技术指导。各县气象局(台、站)负责本行政区域内区域站的管理和技术保障业务,一般限于不定期巡视设备,对发现的设备故障与供应商联系后由供应商远程指导排除,或由供应商直接派员赴现场解决。
(二)备件储备工作刚刚起步。
区域站作为一种集成度较高的自动观测设备,备份部分采集器、传感器十分必要。由于在站网建设过程中资金投入较大,且目前大多数区域站尚未出保修期,而区域站采集器、传感器价格较高,因此,目前绝大多数台站尚未进行备件的储备,各市气象局一般也未统筹安排全区区域站备件储备工作,仅有少数单位考虑在下一步工作中逐步配备部分备件。
(三)计量检定工作尚未开展。
根据业务管理有关规定,区域站标定期限规定为2年。目前,绝大多数区域站使用时间未超过2年,采集器、传感器的标定工作还没有开展。
二、区域站技术保障工作需求
在调研中,基层台站普遍反映,区域站技术保障业务如何有效组织实施须尽快提上日程,区域站技术保障工作面临迫切需求。
(一)急需建立省市县三级组织有力、高效的技术保障体系。
区域站网是保证全省气象数据资料准确可靠的基础。由于将来区域站保障工作主要由县级台站承担,省市两级主要发挥协调管理职责,必须建立起分工明确、上下联动、协同配合、发挥各自优势的全省技术保障体系,满足区域站以及其后诸多现代化设备保障时效性的较高要求。尤其基层台站必须建立起专职技术保障人员队伍并保证队伍的相对稳定性,同时配备必需的维护维修现场检定等设备和工具。
(二)急需提高市局技术保障管理水平和基层台站技术保障人员业务能力。
区域站技术保障业务的管理仍未被得到充分重视,管理形式局限于传统模式,管理手段单一,管理效果不明显,尚未建立起切合实际、运转高效的管理机制。同时,基层台站技术保障人员长期依赖供应商造成了业务技术水平不高,急需加强培训和实践经验的积累。
(三)急需建立对基层台站技术保障业务工作稳步投入机制。
区域站网建设完成后,缺乏对站网维持所需费用的必要投入,目前,基层台站设备储备仓库及备件、日常维护维修、计量检定等业务都需要投入,尤其需要建立起对技术保障业务工作稳步投入机制。
三、区域站技术保障工作面临的主要问题
(一)省级技术保障部门无法实现对区域站的保障
1.储备库房。省局在用储备库房建于上世纪七十年代,为地下一层、地上二层的砖混建筑。库房面积约800平方米,目前主仓库地下一层因潮湿等原因已不可用,可用面积仅600平方米,分19间,单间面积较小,且因建成时间较长,主仓库地坪负荷量自下而上依次递减,一层的地坪负荷量最大为2.8 t/m,二层地坪负荷量最大为1.5 t/m;副仓库二、三层也无法承受重载。按有效容积计算,目前仓库储备能力可以存放各要素传感器备件800余套;风杆(要求仓库地坪负荷不低于6 t/m2且必须便于进出库)仅能储备300套左右;采集器整机库容量仅限200套左右。
2.计量检定实验室。省气象计量站实验室始建于 1957年,现设水银气压表、空盒气压表、温度表、湿度计和风仪等五个计量检定实验室,总面积约150平方米,专职检定人员8名。目前,中国气象局尚未配备自动气象站室内检定设备,全省大监自动气象站的检定,是由中国气象局2004年配发的一套现
场标校车来实施的。现场标校设备仍属于传统标定设备,自动化程度低且无法实现批量检定,按检定规程,每站标校时间一般需用36个小时,且现场检定工作对环境条件有一定要求,需主要安排在春、秋季进行。因此,目前人员和标校设备仅能勉强完成每年60个(全省共112个)大监站的现场标校任务。
3.故障维修。目前,省局大探中心承担全省大监站的维护维修保障任务,3名技术人员全年需24小时保持维修热线的畅通,首先通过远程技术指导排除故障,对无法排除的故障,将随时准备赴现场进行维修。从目前技术手段来看,3名同志完成全省大监站的维修保障任务已满负荷,面临较大的压力。
(二)县级技术保障能力与需求有较大差距
目前,县级局(台、站)负责区域站的技术保障任务。通过对东、中、西部县局的调查,每个县局(台、站)负责维护的区域站多少不等,陆路距离最远的大约有40公里,有的区域站建在湖心岛上,需乘船上岛后进行维护维修;还有在山顶建设的区域站,需人力步行携带设备上山维护维修。由于前期多数区域站仍在保修期内,设备运行比较正常,在所了解县局中,有备件储备的仅有2个,绝大多数县局由一人兼职负责区域站的日常维护维修,技术水平较低;同时,县局技术人员均没有计量检定的工作经历,更没有相应的资格证书。
四、区域站技术保障的对策
通过对区域站保障工作的调研,我们认为,若想妥善解决区域站技术保障问题,需从政策层面和技术层面同时采取有效措施,区域站实行实现省、县两级保障,突出市级管理职能,才能确保区域站能够正常运转,保证业务效益的充分发挥。
(一)政策层面的对策
1.国家级业务管理和技术部门需切实做好有关科研工作,加快便携式、价格低的现场标校设备的研发,能够为基层台站统一配备精度高、稳定度强、满足业务需求的标准器,实现量值的可靠传递。
2.加强人才培养,基层台站要适应气象现代化建设迅速发展、对复合型人才需求剧增的实际情况,立足自身人才潜力的挖掘,通过各种有效形式,加快人才培养,使基层逐步建立起一支能够掌握检定、供应、维护维修基本技能的技术保障队伍。
3.省级业务管理单位需对各级单位的职责分工进一步明确,细化职责,科学测算技术保障工作量。省级技术保障单位要加强对基层台站技术人员的培训,同时,要依托现代化通讯网络,探索通过远程视频指导现场维护维修的新技术。
(二)技术层面的对策
1.计量检定。采集器的检定须由各县气象局进行现场检定,即为每个县局配备一套标准信号源,负责其行政范围内区域站采集器的检定,并向省局提供检定原始资料,作为备案和发放检定证的依据。为此,每县局需配备越野车1部,检定设备1套,专业人员1-2人。省局每年按一定比例的站进行抽检,发放检定合格证书,另需配备1-2名抽检人员和至少一套检定设备及车辆,并负责传感器的检定,增设温度、降水、风向风速实验室5个,增加检定人员7名。
2.装备供应。备件供应按“统一计划、集中采购、统一供应、分级管理”的原则,储备分省、市两级,主要备件由省局大探中心储备,部分消耗性、易碎、易损性备件由各县局负责储备,全省区域站备件年储备量应达到:采集器整机1500套,雨量传感器1500套等。省局对加密气象站备件须增设专人进行管理。
3.技术支持和维修维护。按照县级台站维修维护为主、省市级维修为辅的原则,县级负责定期巡视、维护、保养、简单故障的诊断及故障部件更换,市级负责自动站的运行状态监控、通信维护及复杂故障的维修工作,省级负责远程视频诊断、技术指导及疑难故障的维修工作。省局需建立中尺度自动气象站维修检测平台,增加必要的通用维修工具、仪器、仪表和2台技术保障专用车,增加自动气象站技术保障人员3-5人。市局需配专职技术保障人员3-5人,通用、专用仪器设备,维修、测试实验室16-30平方米,技术保障车1-2部。县局(台站)需配备一名专职或两名兼职技术保障人员,一部技术保障工作用车,建立中尺度自动气象站备件仓库,配备通用维修工具。