第一篇:齿轮工艺
机床传动机构齿轮工艺分析
一、工艺的定义
工艺是劳动者利用生产工具对各种原材料、半成品进行增值加工或处理,最终使之成为制成品的方法与过程。制定工艺的原则是:技术上的先进和经济上的合理。由于不同的工厂的设备生产能力、精度以及工人熟练程度等因素都大不相同,所以对于同一种产品而言,不同的工厂制定的工艺可能是不同的;甚至同一个工厂在不同的时期做的工艺也可能不同。
机械加工工艺,是指利用传统机械加工的方法,按照图纸的图样和尺寸,使毛坯的形状、尺寸、相对位置和性质成为合格零件的全过程,加工工艺是工人进行加工前所需要做的工作,避免在加工过程中发生加工失误,造成经济损失。
机械加工工艺流程是工件或者零件制造加工的步骤,采用机械加工的方法,直接改变毛坯的形状、尺寸和表面质量等,使其成为零件的过程称为机械加工工艺流程。比如一个普通零件的加工工艺流程是粗加工-精加工-装配-检验-包装,就是个加工的笼统的流程。
机械加工工艺就是在流程的基础上,改变生产对象的形状、尺寸、相对位置和性质等,使其成为成品或半成品,是每个步骤,每个流程的详细说明,比如,上面说的,粗加工可能包括毛坯制造,打磨等等,精加工可能分为车,钳工,铣床,等等,每个步骤就要有详细的数据了,比如粗糙度要达到多少,公差要达到多少。
在生产过程中,凡是改变生产对象的形状、尺寸、位置和性质等,使其成为成品或者半成品的过程称为工艺过程。它是生产过程的主要部分。工艺过程又可分为铸造、锻造、冲压、焊接、机械加工、装配等工艺过程,机械制造工艺过程一般是指零件的机械加工工艺过程和机器的装配工艺过程的总和,其他过程则称为辅助过程,例如运输、保管、动力供应、设备维修等。工艺过程又是由一个或若干个顺序排列的工序组成的,一个工序由有若干个工步组成。
二、变速齿轮加工工艺
2.1齿轮常用材料及其力学性能
齿轮的轮齿在传动过程中要传递力矩而承受弯曲、冲击等载荷。通过一段时间的使用,轮齿还会发生齿面磨损、齿面点蚀、表面咬合和齿面塑性变形等情况而造成精度丧失,产生振动和噪声等故障。齿轮的工作条件不同,轮齿的破坏形式也不同。选取齿轮材料时,除考虑齿轮工作条件外,还应考虑齿轮的结构形状、生产数量、制造成本和材料货源等因素。一般应满足下列几个基本要求:(1)轮齿表面层要有足够的硬度和耐磨性。(2)对于承受交变载荷和冲击载荷的齿轮,基体要有足够的抗弯强度与韧性。
/ 4
(3)要有良好的工艺性,即要易于切削加工和热处理性能好。
2.2、常用齿形加工方法
齿轮齿形的加工方法,有无切屑加工和切削加工两大类。无切屑加工方法有: 热轧、冷挤、模锻、精密铸造和粉末冶金等。切削加工方法可分为成形法和展成法两种,其加工精度及适用范围 齿轮的加工工艺流程: 粗车,精车,插齿,滚齿,倒棱(磨棱)(倒角),清洗,渗碳淬火,磨内孔端面(磨内孔),(磨另一端面),磨齿,清洗,强化喷丸,清洗,成品检查 直齿(包括斜齿 锥齿轮加工方法(1)刨齿
直齿锥齿轮刨齿有展成法和仿形法两种。展成法刨直齿锥齿轮,用上下两个刨刀。刨刀有两个运动:一是刨刀的直线切削往复运动;二是刨刀随摇台的平面回转运动,刀具与被加工锥齿轮的运动关系,相当于一个平顶或平面齿轮的齿与被加工锥齿轮的啮合。刀具展成切齿循环一次,加工出一个齿,被加工锥齿轮分度后,加工第二个齿。
斜齿锥齿轮刨齿,与上述直齿锥齿轮展成法刨齿相似。不同之处是:刨刀的切削运动往复直线不和摇台回转轴线相交,而是和斜齿锥齿轮的工艺圆相切。仿形法刨齿,用上下两个刨刀,刨刀有三个运动,一是切削往复直线运动,二是切削进给运动,三是随进给运动而产生上下刨刀夹角变化的圆平面回转运动。被加工齿轮则固定不动。切削进给运动把刨刀的溜板与仿形模板相联,使仿形曲线与进给回转圆心构成一个直线族齿曲面,刨刀尖在直线族齿曲面上往复切削,刨出齿面。一次仿形循环,刨出一个齿,被加工锥齿轮分度,再刨另一个齿。(2)圆拉刀铣齿 属成形法,适用于较小模数锥齿轮的大批量生产。一种齿轮需要一种专用圆拉刀,圆拉刀连续转动,同时沿齿槽方向移动,一个刀齿铣出一个齿槽截面齿形。圆拉刀转动到缺口处,被加工锥齿轮分度,同时圆拉刀退刀,进行下一个齿槽加工。
(3)双刀盘铣齿
用铣刀刃旋转切削,代替刨刀往复切削。生产效率高,适用于中小模数锥齿轮加工,加工原理与展成法刨齿基本相同,并且类似于大平面砂轮磨齿,加工齿面宽度与刀盘直径有关。
双刀盘有两种结构形式 第一种刀盘结构形式类似片(盘状)铣刀,第二种刀盘结构类似端铣刀,第一种刀盘切齿,刀刃旋转面与被加工锥齿轮的齿面相切,第二种刀盘切齿,刀刃旋转面与被加工锥齿轮的成形齿面只有一点相切,齿向是鼓形齿。
(4)成形刀具铣齿
铣刀有片(盘状)铣刀和指形铣刀两类,前者适用于中小模数的锥齿轮加工,后者适用于大中模数的锥齿轮加工。铣齿方法有单面法和双面法两种,前者一个
/ 4
齿槽的左右两侧齿面要分别两次铣成,后者一个齿槽的左右两侧齿面可一次铣成,铣齿时,铣刀切削沿齿槽方向进给,一个齿槽铣完后,被加工锥齿轮分度,再铣另一个齿槽。锥齿轮的齿槽形状沿其齿宽按比例变化,成形法铣齿无法做到这一点,只能加工出近似齿形。(5)磨齿
与双刀盘铣齿中第二种刀盘铣齿方法相同,是用砂轮代替刀盘精加工齿面的一种方法,加工齿向是鼓形齿。2.3齿轮加工工艺过程分析 2.3.1基准的选择
对于齿轮加工基准的选择常因齿轮的结构形状不同而有所差异。带轴齿轮主要采用顶点孔定位;对于空心轴,则在中心内孔钻出后,用两端孔口的斜面定位;孔径大时则采用锥堵。顶点定位的精度高,且能作到基准重合和统一。对带孔齿轮在齿面加工时常采用以下两种定位、夹紧方式。
(1)以内孔和端面定位 这种定位方式是以工件内孔定位,确定定位位置,再以端面作为 轴向定位基准,并对着端面夹紧。这样可使定位基准、设计基准、装配基准和测量基准重合,定位精度高,适合于批量生产。但对于夹具的制造精度要求较高。(2)以外圆和端面定位 当工件和加剧心轴的配合间隙较大时,采用千分表校正外圆以确定中心的位置,并以端面进行轴向定位,从另一端面夹紧。这种定位方式因每个工件都要校正,故生产率低;同时对齿坯的内、外圆同轴要求高,而对夹具精度要求不高,故适用于单件、小批生产。
综上所述,为了减少定位误差,提高齿轮加工精度,在加工时应满足以下要求: 1)应选择基准重合、统一的定位方式; 2)内孔定位时,配合间隙应近可能减少;
3)定位端面与定位孔或外圆应在一次装夹中加工出来,以保证垂直度要求。2.3.2齿轮毛坯的加工
齿面加工前的齿轮毛坯加工,在整个齿轮加工过程中占有很重要的地位。因为齿面加工和检测所用的基准必须在此阶段加工出来,同时齿坯加工所占工时的比例较大,无论从提高生产率,还是从保证齿轮的加工质量,都必须重视齿轮毛坯的加工。
在齿轮图样的技术要求中,如果规定以分度圆选齿厚的减薄量来测定齿侧间隙时,应注意齿顶圆的精度要求,因为齿厚的检测是以齿顶圆为测量基准的。齿顶圆精度太低,必然使测量出的齿厚无法正确反映出齿侧间隙的大小,所以,在这一加工过程中应注意以下三个问题:
1)当以齿顶圆作为测量基准时,应严格控制齿顶圆的尺寸精度; 2)保证定位端面和定位孔或外圆间的垂直度;
3)提高齿轮内孔的制造精度,减少与夹具心轴的配合间隙; 2.3.3齿形及齿端加工
/ 4
齿形加工是齿轮加工的关键,其方案的选择取决于多方面的因素,如设备条件、齿轮精度等级、表面粗糙度、硬度等。常用的齿形加工方案在上节已有讲解,在此不再叙述。
齿轮的齿端加工有倒圆、倒尖、倒棱和去毛刺等方式。如图 9-13所示。经倒圆、倒尖后的齿轮在换档时容易进入啮合状态,减少撞击现象。倒棱可除去齿端尖角和毛刺。图9-14是用指状铣刀对齿端进行倒圆的加工示意图。倒圆时,铣刀告诉旋转,并沿圆弧作摆动,加工完一个齿后,工件退离铣刀,经分度再快速向铣刀靠近加工下一个齿的齿端。
齿端加工必须在淬火之前进行,通常都在滚(插)齿之后,剃齿之前安排齿端加工。
2.3.4齿轮加工过程中的热处理要求
在齿轮加工工艺过程中,热处理工序的位置安排十分重要,它直接影响齿轮的力学性能及切削加工性。一般在齿轮加工中进行两种热处理工序,即毛坯热处理和齿形热处理
三、齿轮材料与工艺的选择
这次我们选取的是斜齿轮,因为考虑到是闭式齿轮,而且传动比较大,载荷较大。根据齿轮的工作情况以及寿命要求,疲劳极限以及屈服强度等因素,我们选用45号钢,表面淬火处理,使其硬度达到40~50HRC。根据加工精度要求,我们采用滚齿加工,最后我们进行氮化处理以提高其强度和硬度。表!" # 常用的齿轮材料及其力学性能 齿轮齿形的常用切削方法
齿轮的常用热处理及化学热处理
/ 4
第二篇:塑料齿轮加工工艺及材料简介
塑料齿轮加工工艺及材料简介
打印该信息 添加:不详来源:未知
塑料齿轮正朝着更大的尺寸、更复杂的几何形状、更高强度的方向发展,同时高性能树脂和长玻纤填充的复合材料起到了重要的推动作用。
塑料齿轮在过去的50年里经历了从新型材料到重要的工业材料的一个变化历程。今天它们已经深入到许多不同的应用领域中,如汽车、手表、缝纫机、结构控制设施和导弹等,起到传递扭矩和运动形式的作用。除了现有的应用领域以外,新的、更难加工的齿轮应用领域将不断的出现,这种趋势还在深入发展中。
汽车工业已经成为塑料齿轮发展最快的一大领域,这一成功的变化是令人鼓舞的。汽车制造厂商正努力寻找各种汽车驱动的辅助系统,他们需要的是马达和齿轮等而不是功率、液压或者电缆。这种变化使得塑料齿轮深入应用到很多应用领域,从升降门、座位、跟踪前灯到刹车传动器、电动节气门段、涡轮调解装置等。
塑料动力齿轮的应用进一步拓宽。在一些大尺寸要求的应用领域,塑料齿轮经常用来替代金属齿轮,如使用塑料的洗衣机传动装置等,这改变着齿轮在尺寸上的应用限度。塑料齿轮也应用到其它很多领域,如通风和空调系统(HVAC)的减振驱动器、流动设施中的阀门传动、公共休息室中的自动冲扫器、小型航空器上用的控制表层稳定的动力螺旋器、军用领域中的螺砣仪以及操纵装置。大尺寸、高强度的塑料齿轮
由于塑料齿轮成型上的优势以及可以成型更大、高精度和高强度的特征,这是塑料齿轮得以发展的一个重要原因。早期的塑料齿轮发展趋势一般是跨度小于1英寸,传输能力不超过0.25马力的直齿轮。现在齿轮可以做成许多不同的结构,传输动力一般为2马力,直径范围为4-6英寸。预测到2010年,塑料齿轮成型直径可以达到18英寸,传送能力可以提高到10马力以上。
如何设计出一个齿轮构型,在传送动力最大化的同时让传送错误和噪音最小化,还面临着很多难题。这就对齿轮的同心性、齿形以及其它的特性提出了很高的加工精确要求。某些斜齿轮,可能需要复杂的成型动作来制造最终的产品,其它的齿轮在较厚部分需要使用芯齿来减少收缩。虽然很多成型专家使用了最新的聚合材料、设备和加工技术达到了生产新一代塑料齿轮的能力,但是对于所有的加工者来说,将面临的一个真正的挑战是如何配合制造这种整个高精度产品。
控制的难点
高精度齿轮允许的公差一般很难用美国塑料工业协会(SPI)所说明的“好”来形容。但是今天多数成型专家使用最新的配有加工控制单元的成型机器,在一个复杂的窗口上,控制成型温度的精度、注射压力以及其它的变量来成型精密的齿轮。一些齿轮成型专家使用更先进的方法,他们在型腔里安置温度和压力传感器来提高成型的一致性和重复性。精密齿轮的生产商也需要使用专业的检测设备,如用来控制齿轮质量的双齿侧面的滚动检测器、评估齿轮齿面以及其它特征的电脑控制检测器。但是拥有正确的设备仅仅是个开始。那些试图进入精度齿轮行业的成型商也必须调整他们的成型环境来确保他们生产的齿轮,在每一次注塑、每一次型腔都尽可能的一致。由于在生产精密齿轮的时候,技工的行为往往是决定性的因素,因此他们必须着力于对员工的培训和操作过程的控制。
由于齿轮的尺寸容易受季节性温度变换的影响,甚至打开门让一个叉车通过引起的温度波动都能影响齿轮的尺寸精度,因此模塑厂商需要严格控制成型区的环境条件。其它需要考虑的因素还包括:一个稳定的动力供给,可控制聚合物温度和湿度的适宜干燥设备,配有恒定的气流的冷却单元。有些场合使用自动化技术,通过一个反复的动作,将齿轮从成型的位置移开并放置在传送单元上,达到冷却方式的一致。
重要的成型冷却步骤
高精密零件的加工与一般成型加工的要求相比较,需要注意更多的细节问题以及达到精确测量水平所要求的测量技术。这一工具必须确保每一次成型的腔内成型温度和冷却速率相同。精密齿轮加工中最常见的问题是如何处理齿轮对称性冷却以及各模腔间一致性的问题。
精密齿轮的模具一般不超过4个型腔。由于第一代的模具只生产一个齿轮,很少有具体的说明,轮齿嵌入物经常用来减少二次切削的成本。
精密齿轮应该从齿轮中心位置的一个浇口处注入。多浇口易形成熔合线,改变压力分布和收缩,影响齿轮公差。对于玻纤增强的材料,由于纤维沿着焊接线成放射状排列,使用多浇口时易造成半径的偏心的“碰撞”。
一个成型专家能控制好齿槽处的变形,获得可控的、一致性的、均匀的收缩能力的产品是以良好的设备、成型设计、所用的材料伸展能力以及加工条件为前提的。在成型时,要求精密控制成型表面的温度、注射压力和冷却过程。其它的重要因素还包括壁厚、浇口尺寸和位置、填料类型、用量和方向、流速和成型内应力。
最常见的塑料齿轮是直齿、圆柱形蜗轮和斜齿轮,几乎所有用金属制造的齿轮都可以用塑料来制造。齿轮常用分瓣模腔来成型。斜齿轮加工时由于注射时必须让齿轮或者形成齿的齿轮环进行旋转,所以要求注意其细节。
蜗轮运行时产生的噪音比直齿小,成型后通过旋出型腔或者用多个滑动机构移出。如果使用滑动机构,必须高精确操作,避免在齿轮上出现明显的分缝线。
新工艺和新树脂
更多的先进的塑料齿轮成型方法正在被开发出来。例如二次注射成型法,通过在轮轴和轮齿之间设计一个弹性体的方法,使齿轮运行起来更安静,在齿轮突然停止运转时,能够较好的吸收振动,避免轮齿损坏。轮轴可以被重新模塑上其它材料,可以选择柔韧性更好或者价值更高、自润滑效果更好的复合材料。同时研究了气辅法和注射压缩模塑法,作为改善轮齿质量、齿轮整体精度、减小内应力的一种方法。
除了齿轮本身以外,成型人员还需要注意齿轮的设计结构。结构中齿轮轴的位置必须成线性排列才能保证齿轮成一直线运行,即使在负荷和温度改变的情况下,因此结构的尺寸稳定性和精度是非常重要的。考虑到这个因素,应该使用玻纤增强材料或矿物填充的聚合物等材料做成具有一定刚性的齿轮结构。
现在,在精密齿轮制造领域,一系列的工程性热塑性塑料的出现给加工人员提供了比以前更多的选择机会。乙缩醛类、PBT和聚酰胺等最常用的材料,可以生产出优良的耐疲劳、耐磨损、光滑性、耐高切线应力强度性能,能承受诸如往复式马达运转等造成的振动负荷的齿轮设备。对于结晶性的聚合物必须在足够高的温度下成型,保证材料的充分结晶,否则在使用时由于温度升到成型温度以上,材料发生二次结晶而导致齿轮尺寸变化。
乙缩醛作为一个重要的齿轮制造材料广泛应用于汽车、器具、办公设备等领域,已有40多年的历史。它的尺寸稳定性能和高耐疲劳和抗化学性可承受温度高达90 ℃以上。和金属以及其它塑料材料相比,它具有优异的润滑性能。
PBT聚酯可制造出非常光滑的表面,不进行填充改性其最大工作温度可达150℃,玻纤增强后的产品工作温度可达170℃。与乙缩醛、其它类型塑料以及金属材料的产品比较,它运行良好,经常用于齿轮的结构中。
聚酰胺材料,与其它的塑料材料和金属材料比较,具有韧性好和经久耐用的性质,常用于涡轮传动设计和齿轮框架等应用领域。聚酰胺齿轮未填充时运行温度可达150℃,玻纤增强后的产品工作温度可达175℃。但是聚酰胺具有吸湿或润滑剂而造成尺寸变化的特征,使得它们不适合用于精密齿轮领域。
聚苯硫醚(PPS)的高硬度、尺寸稳定性、耐疲劳和耐化学性能的温度可达到200℃。它的应用正深入到工作条件要求苛刻的应用领域、汽车业以及其它终端用途等。
液晶聚合物(LCP)做成的精密齿轮尺寸稳定性好。它可以忍受高达220℃的温度,具有高抗化学性能和低成型收缩变化。使用该材料已经做出齿厚约0.066 mm的成型齿轮,相当于人头发直径的2/3大小。
热塑性弹性体能使齿轮运行更安静,做成的齿轮柔韧性更好,能够很好的吸收冲击负荷。例如,共聚酯类的热塑性弹性体做成的一个低动力、高速的齿轮,当保证足够的尺寸稳定性和硬度的时候,运行时允许出现一些偏差,同时能够降低运行噪音。这样的一个应用例子是窗帘传动器中使用的齿轮。
在温度相对较低、腐蚀性化学环境或者高磨损环境中,聚乙烯、聚丙烯和超高分子量聚乙烯等材料也已被用于齿轮生产。也考虑了其它的聚合材料,但在齿轮应用中受到了许多苛刻的限要求限制,例如聚碳酸酯润滑性能、耐化学性和耐疲劳性能不好;ABS和LDPE材料通常不能满足精密齿轮的润滑性能、耐疲劳性能、尺寸稳定性以及耐热、抗蠕变等性能要求。这样的聚合物大多数用于常规的、低负荷或者低速运转的齿轮领域。
使用塑料齿轮的优势
与同等尺寸的塑料齿轮相比,金属齿轮运行良好,温度和湿度变化时的尺寸稳定性好。但是与金属材料相比,塑料在成本、设计、加工和性能上具有很多优势。
与金属成型相比,塑料成型的固有的设计自由度保证了更高效的齿轮制造。可以用塑料成型内齿轮、齿轮组、蜗轮等产品,而这很难以一个合理的价格使用金属材料来成型。塑料齿轮应用领域比金属齿轮宽,因此它们推动了齿轮朝着承受更高负荷、传送更大动力的方向发展。塑料齿轮同时也是一种满足低静音运行要求的重要材料,这就要求有高精度、新型齿形和润滑性或柔韧性优异的材料出现。
塑料制造的齿轮一般不需要二次加工,所以相对于冲压件和机造件金属齿轮,在成本上保证了50%到90%水平的降低。塑料齿轮比金属齿轮轻、惰性好,可用在金属齿轮易腐蚀、退化的环境中,例如水表和化学设备的控制。
和金属齿轮相比,塑料齿轮可以偏转变形来吸收冲击载荷的作用,能较好的分散轴偏斜和错齿造成的局部负荷变化。许多塑料固有的润滑特征使得它们成了打印机、玩具和其它低负荷运转机构的理想齿轮材料,这里不包括润滑剂。除了运行在干燥的环境中,齿轮还可用油脂或油来润滑。
材料的增强作用
齿轮和结构材料的说明中,应该考虑到纤维和填料对树脂材料性能的重要作用。例如当乙缩醛共聚物填充25%的短玻纤(2mm或更小)的填料后,它的拉伸强度在高温下增大2倍,硬度升3倍。使用长玻纤(10 mm或者更小)填料可提高强度、抗蠕变能力、尺寸稳定性、韧性、硬度、磨损性能等以及其它的更多性能。因为可获得需要的硬度、良好的可控热膨胀性能,在大尺寸齿轮和结构应用领域,长玻纤增强材料正成为一种具有吸引力的备选材料。
塑料齿轮加工工艺及材料简介
塑料齿轮正朝着更大的尺寸、更复杂的几何形状、更高强度的方向发展,同时高性能树脂和长玻纤填充的复合材料起到了重要的推动作用。
塑料齿轮在过去的50年里经历了从新型材料到重要的工业材料的一个变化历程。今天它们已经深入到许多不同的应用领域中,如汽车、手表、缝纫机、结构控制设施和导弹等,起到传递扭矩和运动形式的作用。除了现有的应用领域以外,新的、更难加工的齿轮应用领域将不断的出现,这种趋势还在深入发展中。
汽车工业已经成为塑料齿轮发展最快的一大领域,这一成功的变化是令人鼓舞的。汽车制造厂商正努力寻找各种汽车驱动的辅助系统,他们需要的是马达和齿轮等而不是功率、液压或者电缆。这种变化使得塑料齿轮深入应用到很多应用领域,从升降门、座位、跟踪前灯到刹车传动器、电动节气门段、涡轮调解装置等。
塑料动力齿轮的应用进一步拓宽。在一些大尺寸要求的应用领域,塑料齿轮经常用来替代金属齿轮,如使用塑料的洗衣机传动装置等,这改变着齿轮在尺寸上的应用限度。塑料齿轮也应用到其它很多领域,如通风和空调系统(HVAC)的减振驱动器、流动设施中的阀门传动、公共休息室中的自动冲扫器、小型航空器上用的控制表层稳定的动力螺旋器、军用领域中的螺砣仪以及操纵装置。
大尺寸、高强度的塑料齿轮
由于塑料齿轮成型上的优势以及可以成型更大、高精度和高强度的特征,这是塑料齿轮得以发展的一个重要原因。早期的塑料齿轮发展趋势一般是跨度小于1英寸,传输能力不超过0.25马力的直齿轮。现在齿轮可以做成许多不同的结构,传输动力一般为2马力,直径范围为4-6英寸。预测到2010年,塑料齿轮成型直径可以达到18英寸,传送能力可以提高到10马力以上。
如何设计出一个齿轮构型,在传送动力最大化的同时让传送错误和噪音最小化,还面临着很多难题。这就对齿轮的同心性、齿形以及其它的特性提出了很高的加工精确要求。某些斜齿轮,可能需要复杂的成型动作来制造最终的产品,其它的齿轮在较厚部分需要使用芯齿来减少收缩。虽然很多成型专家使用了最新的聚合材料、设备和加工技术达到了生产新一代塑料齿轮的能力,但是对于所有的加工者来说,将面临的一个真正的挑战是如何配合制造这种整个高精度产品。
沙发大中小发表于 2009-6-10 16:05 只看该作者
控制的难点
高精度齿轮允许的公差一般很难用美国塑料工业协会(SPI)所说明的“好”来形容。但是今天多数成型专家使用最新的配有加工控制单元的成型机器,在一个复杂的窗口上,控制成型温度的精度、注射压力以及其它的变量来成型精密的齿轮。一些齿轮成型专家使用更先进的方法,他们在型腔里安置温度和压力传感器来提高成型的一致性和重复性。
精密齿轮的生产商也需要使用专业的检测设备,如用来控制齿轮质量的双齿侧面的滚动检测器、评估齿轮齿面以及其它特征的电脑控制检测器。但是拥有正确的设备仅仅是个开始。那些试图进入精度齿轮行业的成型商也必须调整他们的成型环境来确保他们生产的齿轮,在每一次注塑、每一次型腔都尽可能的一致。由于在生产精密齿轮的时候,技工的行为往往是决定性的因素,因此他们必须着力于对员工的培训和操作过程的控制。
由于齿轮的尺寸容易受季节性温度变换的影响,甚至打开门让一个叉车通过引起的温度波动都能影响齿轮的尺寸精度,因此模塑厂商需要严格控制成型区的环境条件。其它需要考虑的因素还包括:一个稳定的动力供给,可控制聚合物温度和湿度的适宜干燥设备,配有恒定的气流的冷却单元。有些场合使用自动化技术,通过一个反复的动作,将齿轮从成型的位置移开并放置在传送单元上,达到冷却方式的一致。
重要的成型冷却步骤
高精密零件的加工与一般成型加工的要求相比较,需要注意更多的细节问题以及达到精确测量水平所要求的测量技术。这一工具必须确保每一次成型的腔内成型温度和冷却速率相同。精密齿轮加工中最常见的问题是如何处理齿轮对称性冷却以及各模腔间一致性的问题。
精密齿轮的模具一般不超过4个型腔。由于第一代的模具只生产一个齿轮,很少有具体的说明,轮齿嵌入物经常用来减少二次切削的成本。
精密齿轮应该从齿轮中心位置的一个浇口处注入。多浇口易形成熔合线,改变压力分布和收缩,影响齿轮公差。对于玻纤增强的材料,由于纤维沿着焊接线成放射状排列,使用多浇口时易造成半径的偏心的“碰撞”。
一个成型专家能控制好齿槽处的变形,获得可控的、一致性的、均匀的收缩能力的产品是以良好的设备、成型设计、所用的材料伸展能力以及加工条件为前提的。在成型时,要求精密控制成型表面的温度、注射压力和冷却过程。其它的重要因素还包括壁厚、浇口尺寸和位置、填料类型、用量和方向、流速和成型内应力。
最常见的塑料齿轮是直齿、圆柱形蜗轮和斜齿轮,几乎所有用金属制造的齿轮都可以用塑料来制造。齿轮常用分瓣模腔来成型。斜齿轮加工时由于注射时必须让齿轮或者形成齿的齿轮环进行旋转,所以要求注意其细节。
蜗轮运行时产生的噪音比直齿小,成型后通过旋出型腔或者用多个滑动机构移出。如果使用滑动机构,必须高精确操作,避免在齿轮上出现明显的分缝线。
TOP 钢中模具 UG教程 ,PROE自学,五金模具,模流分析,精雕浮雕全套,压铸模具,高薪突破教程--点击订购
板凳大中小发表于 2009-6-10 16:05 只看该作者
新工艺和新树脂
更多的先进的塑料齿轮成型方法正在被开发出来。例如二次注射成型法,通过在轮轴和轮齿之间设计一个弹性体的方法,使齿轮运行起来更安静,在齿轮突然停止运转时,能够较好的吸收振动,避免轮齿损坏。轮轴可以被重新模塑上其它材料,可以选择柔韧性更好或者价值更高、自润滑效果更好的复合材料。同时研究了气辅法和注射压缩模塑法,作为改善轮齿质量、齿轮整体精度、减小内应力的一种方法。
除了齿轮本身以外,成型人员还需要注意齿轮的设计结构。结构中齿轮轴的位置必须成线性排列才能保证齿轮成一直线运行,即使在负荷和温度改变的情况下,因此结构的尺寸稳定性和精度是非常重要的。考虑到这个因素,应该使用玻纤增强材料或矿物填充的聚合物等材料做成具有一定刚性的齿轮结构。
现在,在精密齿轮制造领域,一系列的工程性热塑性塑料的出现给加工人员提供了比以前更多的选择机会。乙缩醛类、PBT和聚酰胺等最常用的材料,可以生产出优良的耐疲劳、耐磨损、光滑性、耐高切线应力强度性能,能承受诸如往复式马达运转等造成的振动负荷的齿轮设备。对于结晶性的聚合物必须在足够高的温度下成型,保证材料的充分结晶,否则在使用时由于温度升到成型温度以上,材料发生二次结晶而导致齿轮尺寸变化。
乙缩醛作为一个重要的齿轮制造材料广泛应用于汽车、器具、办公设备等领域,已有40多年的历史。它的尺寸稳定性能和高耐疲劳和抗化学性可承受温度高达90 ℃以上。和金属以及其它塑料材料相比,它具有优异的润滑性能。
PBT聚酯可制造出非常光滑的表面,不进行填充改性其最大工作温度可达150℃,玻纤增强后的产品工作温度可达170℃。与乙缩醛、其它类型塑料以及金属材料的产品比较,它运行良好,经常用于齿轮的结构中。
聚酰胺材料,与其它的塑料材料和金属材料比较,具有韧性好和经久耐用的性质,常用于涡轮传动设计和齿轮框架等应用领域。聚酰胺齿轮未填充时运行温度可达150℃,玻纤增强后的产品工作温度可达175℃。但是聚酰胺具有吸湿或润滑剂而造成尺寸变化的特征,使得它们不适合用于精密齿轮领域。
聚苯硫醚(PPS)的高硬度、尺寸稳定性、耐疲劳和耐化学性能的温度可达到200℃。它的应用正深入到工作条件要求苛刻的应用领域、汽车业以及其它终端用途等。
液晶聚合物(LCP)做成的精密齿轮尺寸稳定性好。它可以忍受高达220℃的温度,具有高抗化学性能和低成型收缩变化。使用该材料已经做出齿厚约0.066 mm的成型齿轮,相当于人头发直径的2/3大小。
热塑性弹性体能使齿轮运行更安静,做成的齿轮柔韧性更好,能够很好的吸收冲击负荷。例如,共聚酯类的热塑性弹性体做成的一个低动力、高速的齿轮,当保证足够的尺寸稳定性和硬度的时候,运行时允许出现一些偏差,同时能够降低运行噪音。这样的一个应用例子是窗帘传动器中使用的齿轮。
在温度相对较低、腐蚀性化学环境或者高磨损环境中,聚乙烯、聚丙烯和超高分子量聚乙烯等材料也已被用于齿轮生产。也考虑了其它的聚合材料,但在齿轮应用中受到了许多苛刻的限要求限制,例如聚碳酸酯润滑性能、耐化学性和耐疲劳性能不好;ABS和LDPE材料通常不能满足精密齿轮的润滑性能、耐疲劳性能、尺寸稳定性以及耐热、抗蠕变等性能要求。这样的聚合物大多数用于常规的、低负荷或者低速运转的齿轮领域。
TOP 53套UG高级编程 57套分模 Proe全套 模流78节课+21套案例 精雕浮雕 压铸五金汽车模具设计 国内第一品牌
地板大中小发表于 2009-6-10 16:06 只看该作者
使用塑料齿轮的优势
与同等尺寸的塑料齿轮相比,金属齿轮运行良好,温度和湿度变化时的尺寸稳定性好。但是与金属材料相比,塑料在成本、设计、加工和性能上具有很多优势。
与金属成型相比,塑料成型的固有的设计自由度保证了更高效的齿轮制造。可以用塑料成型内齿轮、齿轮组、蜗轮等产品,而这很难以一个合理的价格使用金属材料来成型。塑料齿轮应用领域比金属齿轮宽,因此它们推动了齿轮朝着承受更高负荷、传送更大动力的方向发展。塑料齿轮同时也是一种满足低静音运行要求的重要材料,这就要求有高精度、新型齿形和润滑性或柔韧性优异的材料出现。
塑料制造的齿轮一般不需要二次加工,所以相对于冲压件和机造件金属齿轮,在成本上保证了50%到90%水平的降低。塑料齿轮比金属齿轮轻、惰性好,可用在金属齿轮易腐蚀、退化的环境中,例如水表和化学设备的控制。
和金属齿轮相比,塑料齿轮可以偏转变形来吸收冲击载荷的作用,能较好的分散轴偏斜和错齿造成的局部负荷变化。许多塑料固有的润滑特征使得它们成了打印机、玩具和其它低负荷运转机构的理想齿轮材料,这里不包括润滑剂。除了运行在干燥的环境中,齿轮还可用油脂或油来润滑。
材料的增强作用
齿轮和结构材料的说明中,应该考虑到纤维和填料对树脂材料性能的重要作用。例如当乙缩醛共聚物填充25%的短玻纤(2mm或更小)的填料后,它的拉伸强度在高温下增大2倍,硬度升3倍。使用长玻纤(10 mm或者更小)填料可提高强度、抗蠕变能力、尺寸稳定性、韧性、硬度、磨损性能等以及其它的更多性能。因为可获得需要的硬度、良好的可控热膨胀性能,在大尺寸齿轮和结构应用领域,长玻纤增强材料正成为一种具有吸引力的备选材料。
塑料齿轮在绝大多数的应用领域内,多采用(POM)和尼龙(PA66)。其主要原因是它们具有较非结晶态塑料更优良的抗疲劳性、高强度、高耐磨性。
塑料齿轮相对于金属齿轮存在很多优势:塑料齿轮具有质量轻、工作噪音小、耐磨损、无需润滑、可以成型较为复杂的形状,大批量生产成本较低等优点。但是由于塑料材质的局限,塑料齿轮存在着精度低,使用寿命短等缺点,随着新材料的应用以及制造技术的发展,塑料齿轮的精度越来越高了寿命也越来越强,塑料齿轮目前广泛用于汽车仪表,大灯调节器传动,打印机,复印机传动,VCM镜头传动等领域。
深圳兆威市一家专业生产塑料齿轮的厂家,对于塑料齿轮的设计生产,我们在精度上严格要求,以至于我们现在塑料齿轮的精度达到了JGMA 0级。我们拥有先进的生产技术,先进的仪器设备,在产品的设计生产上我们要求严格,精益求精,在不懈的努力和追求下,产品能够满足广大客户的需求。
在2007年以突破0.1mm的注塑成型被深圳市科技局授予高新技术企业称号,以微量精密的注塑在2009年与橡胶模具国家工程研究中心共同创建了国内首家“微细精密注塑成型与模具技术中心” 并且通过与索尼、松下、三洋等国际知名企业的合作,直接参与国际化竞争,使公司的技术能力、管理水平不断提升。
相对金属齿轮,塑料齿轮具有质量轻、工作噪音小、耐磨损无需润滑、可以成型较复杂的形状、大批量生产成本低等优点。但由于塑料本身具有收缩、吸水,相对金属强度也比较弱,对工作环境要求高,对
温度较为敏感等特性。因而,塑料齿轮同时就有精度低、寿命短、使用环境高等缺点。随着新材料的应用及制造技术的发展,塑料齿轮的
精度越来越高,寿命也越来越长,并广泛应用于仪器、仪表、玩具、汽车、打印机等行业。
直齿轮:加工容易,便于提高精度,是齿轮中最基本的形式。
斜齿轮:重合度大,传动平稳,适于高速重载传动,缺点是传动过程中产生轴向力。
人字齿轮:可视为有两个螺旋角相同而旋向相反的斜齿轮所组成,它除具有斜齿轮的特点外,还能够自相平衡传动过程中产生的轴向力,从而可以采用大的 螺旋角,进一步提高承载能力平衡性。
塑料齿轮加工工艺及材料简介
2007-1-30 19:12:00 【文章字体:
】 推荐收藏 打印
塑料齿轮正朝着更大的尺寸、更复杂的几何形状、更高强度的方向发展,同时高性能树脂和长玻纤填充的复合材料起到了重要的推动作用。
塑料齿轮在过去的50年里经历了从新型材料到重要的工业材料的一个变化历程。今天它们已经深入到许多不同的应用领域中,如汽车、手表、缝纫机、结构控制设施和导弹等,起到传递扭矩和运动形式的作用。除了现有的应用领域以外,新的、更难加工的齿轮应用领域将不断的出现,这种趋势还在深入发展中。
汽车工业已经成为塑料齿轮发展最快的一大领域,这一成功的变化是令人鼓舞的。汽车制造厂商正努力寻找各种汽车驱动的辅助系统,他们需要的是马达和齿轮等而不是功率、液压或者电缆。这种变化使得塑料齿轮深入应用到很多应用领域,从升降门、座位、跟踪前灯到刹车传动器、电动节气门段、涡轮调解装置等。
塑料动力齿轮的应用进一步拓宽。在一些大尺寸要求的应用领域,塑料齿轮经常用来替代金属齿轮,如使用塑料的洗衣机传动装置等,这改变着齿轮在尺寸上的应用限度。塑料齿轮也应用到其它很多领域,如通风和空调系统(HVAC)的减振驱动器、流动设施中的阀门传动、公共休息室中的自动冲扫器、小型航空器上用的控制表层稳定的动力螺旋器、军用领域中的螺砣仪以及操纵装置。
大尺寸、高强度的塑料齿轮
由于塑料齿轮成型上的优势以及可以成型更大、高精度和高强度的特征,这是塑料齿轮得以发展的一个重要原因。早期的塑料齿轮发展趋势一般是跨度小于1英寸,传输能力不超过0.25马力的直齿轮。现在齿轮可以做成许多不同的结构,传输动力一般为2马力,直径范围为4-6英寸。预测到2010年,塑料齿轮成型直径可以达到18英寸,传送能力可以提高到10马力以上。
如何设计出一个齿轮构型,在传送动力最大化的同时让传送错误和噪音最小化,还面临着很多难题。这就对齿轮的同心性、齿形以及其它的特性提出了很高的加工精确要求。某些斜齿轮,可能需要复杂的成型动作来制造最终的产品,其它的齿轮在较厚部分需要使用芯齿来减少收缩。虽然很多成型专家使用了最新的聚合材料、设备和加工技术达到了生产新一代塑料齿轮的能力,但是对于所有的加工者来说,将面临的一个真正的挑战是如何配合制造这种整个高精度产品。
控制的难点
高精度齿轮允许的公差一般很难用美国塑料工业协会(SPI)所说明的“好”来形容。但是今天多数成型专家使用最新的配有加工控制单元的成型机器,在一个复杂的窗口上,控制成型温度的精度、注射压力以及其它的变量来成型精密的齿轮。一些齿轮成型专家使用更先进的方法,他们在型腔里安置温度和压力传感器来提高成型的一致性和重复性。
精密齿轮的生产商也需要使用专业的检测设备,如用来控制齿轮质量的双齿侧面的滚动检测器、评估齿轮齿面以及其它特征的电脑控制检测器。但是拥有正确的设备仅仅是个开始。那些试图进入精度齿轮行业的成型商也必须调整他们的成型环境来确保他们生产的齿轮,在每一次注塑、每一次型腔都尽可能的一致。由于在生产精密齿轮的时候,技工的行为往往是决定性的因素,因此他们必须着力于对员工的培训和操作过程的控制。
由于齿轮的尺寸容易受季节性温度变换的影响,甚至打开门让一个叉车通过引起的温度波动都能影响齿轮的尺寸精度,因此模塑厂商需要严格控制成型区的环境条件。其它需要考虑的因素还包括:一个稳定的动力供给,可控制聚合物温度和湿度的适宜干燥设备,配有恒定的气流的冷却单元。有些场合使用自动化技术,通过一个反复的动作,将齿轮从成型的位置移开并放置在传送单元上,达到冷却方式的一致。
重要的成型冷却步骤
高精密零件的加工与一般成型加工的要求相比较,需要注意更多的细节问题以及达到精确测量水平所要求的测量技术。这一工具必须确保每一次成型的腔内成型温度和冷却速率相同。精密齿轮加工中最常见的问题是如何处理齿轮对称性冷却以及各模腔间一致性的问题。
精密齿轮的模具一般不超过4个型腔。由于第一代的模具只生产一个齿轮,很少有具体的说明,轮齿嵌入物经常用来减少二次切削的成本。
精密齿轮应该从齿轮中心位置的一个浇口处注入。多浇口易形成熔合线,改变压力分布和收缩,影响齿轮公差。对于玻纤增强的材料,由于纤维沿着焊接线成放射状排列,使用多浇口时易造成半径的偏心的“碰撞”。
一个成型专家能控制好齿槽处的变形,获得可控的、一致性的、均匀的收缩能力的产品是以良好的设备、成型设计、所用的材料伸展能力以及加工条件为前提的。在成型时,要求精密控制成型表面的温度、注射压力和冷却过程。其它的重要因素还包括壁厚、浇口尺寸和位置、填料类型、用量和方向、流速和成型内应力。
最常见的塑料齿轮是直齿、圆柱形蜗轮和斜齿轮,几乎所有用金属制造的齿轮都可以用塑料来制造。齿轮常用分瓣模腔来成型。斜齿轮加工时由于注射时必须让齿轮或者形成齿的齿轮环进行旋转,所以要求注意其细节。
蜗轮运行时产生的噪音比直齿小,成型后通过旋出型腔或者用多个滑动机构移出。如果使用滑动机构,必须高精确操作,避免在齿轮上出现明显的分缝线。
新工艺和新树脂
更多的先进的塑料齿轮成型方法正在被开发出来。例如二次注射成型法,通过在轮轴和轮齿之间设计一个弹性体的方法,使齿轮运行起来更安静,在齿轮突然停止运转时,能够较好的吸收振动,避免轮齿损坏。轮轴可以被重新模塑上其它材料,可以选择柔韧性更好或者价值更高、自润滑效果更好的复合材料。同时研究了气辅法和注射压缩模塑法,作为改善轮齿质量、齿轮整体精度、减小内应力的一种方法。
除了齿轮本身以外,成型人员还需要注意齿轮的设计结构。结构中齿轮轴的位置必须成线性排列才能保证齿轮成一直线运行,即使在负荷和温度改变的情况下,因此结构的尺寸稳定性和精度是非常重要的。考虑到这个因素,应该使用玻纤增强材料或矿物填充的聚合物等材料做成具有一定刚性的齿轮结构。
现在,在精密齿轮制造领域,一系列的工程性热塑性塑料的出现给加工人员提供了比以前更多的选择机会。乙缩醛类、PBT和聚酰胺等最常用的材料,可以生产出优良的耐疲劳、耐磨损、光滑性、耐高切线应力强度性能,能承受诸如往复式马达运转等造成的振动负荷的齿轮设备。对于结晶性的聚合物必须在足够高的温度下成型,保证材料的充分结晶,否则在使用时由于温度升到成型温度以上,材料发生二次结晶而导致齿轮尺寸变化。
乙缩醛作为一个重要的齿轮制造材料广泛应用于汽车、器具、办公设备等领域,已有40多年的历史。它的尺寸稳定性能和高耐疲劳和抗化学性可承受温度高达90 ℃以上。和金属以及其它塑料材料相比,它具有优异的润滑性能。
PBT聚酯可制造出非常光滑的表面,不进行填充改性其最大工作温度可达150℃,玻纤增强后的产品工作温度可达170℃。与乙缩醛、其它类型塑料以及金属材料的产品比较,它运行良好,经常用于齿轮的结构中。
聚酰胺材料,与其它的塑料材料和金属材料比较,具有韧性好和经久耐用的性质,常用于涡轮传动设计和齿轮框架等应用领域。聚酰胺齿轮未填充时运行温度可达150℃,玻纤增强后的产品工作温度可达175℃。但是聚酰胺具有吸湿或润滑剂而造成尺寸变化的特征,使得它们不适合用于精密齿轮领域。
聚苯硫醚(PPS)的高硬度、尺寸稳定性、耐疲劳和耐化学性能的温度可达到200℃。它的应用正深入到工作条件要求苛刻的应用领域、汽车业以及其它终端用途等。
液晶聚合物(LCP)做成的精密齿轮尺寸稳定性好。它可以忍受高达220℃的温度,具有高抗化学性能和低成型收缩变化。使用该材料已经做出齿厚约0.066 mm的成型齿轮,相当于人头发直径的2/3大小。
热塑性弹性体能使齿轮运行更安静,做成的齿轮柔韧性更好,能够很好的吸收冲击负荷。例如,共聚酯类的热塑性弹性体做成的一个低动力、高速的齿轮,当保证足够的尺寸稳定性和硬度的时候,运行时允许出现一些偏差,同时能够降低运行噪音。这样的一个应用例子是窗帘传动器中使用的齿轮。
在温度相对较低、腐蚀性化学环境或者高磨损环境中,聚乙烯、聚丙烯和超高分子量聚乙烯等材料也已被用于齿轮生产。也考虑了其它的聚合材料,但在齿轮应用中受到了许多苛刻的限要求限制,例如聚碳酸酯润滑性能、耐化学性和耐疲劳性能不好;ABS和LDPE材料通常不能满足精密齿轮的润滑性能、耐疲劳性能、尺寸稳定性以及耐热、抗蠕变等性能要求。这样的聚合物大多数用于常规的、低负荷或者低速运转的齿轮领域。
使用塑料齿轮的优势
与同等尺寸的塑料齿轮相比,金属齿轮运行良好,温度和湿度变化时的尺寸稳定性好。但是与金属材料相比,塑料在成本、设计、加工和性能上具有很多优势。
与金属成型相比,塑料成型的固有的设计自由度保证了更高效的齿轮制造。可以用塑料成型内齿轮、齿轮组、蜗轮等产品,而这很难以一个合理的价格使用金属材料来成型。塑料齿轮应用领域比金属齿轮宽,因此它们推动了齿轮朝着承受更高负荷、传送更大动力的方向发展。塑料齿轮同时也是一种满足低静音运行要求的重要材料,这就要求有高精度、新型齿形和润滑性或柔韧性优异的材料出现。
塑料制造的齿轮一般不需要二次加工,所以相对于冲压件和机造件金属齿轮,在成本上保证了50%到90%水平的降低。塑料齿轮比金属齿轮轻、惰性好,可用在金属齿轮易腐蚀、退化的环境中,例如水表和化学设备的控制。
和金属齿轮相比,塑料齿轮可以偏转变形来吸收冲击载荷的作用,能较好的分散轴偏斜和错齿造成的局部负荷变化。许多塑料固有的润滑特征使得它们成了打印机、玩具和其它低负荷运转机构的理想齿轮材料,这里不包括润滑剂。除了运行在干燥的环境中,齿轮还可用油脂或油来润滑。
材料的增强作用
齿轮和结构材料的说明中,应该考虑到纤维和填料对树脂材料性能的重要作用。例如当乙缩醛共聚物填充25%的短玻纤(2mm或更小)的填料后,它的拉伸强度在高温下增大2倍,硬度升3倍。使用长玻纤(10 mm或者更小)填料可提高强度、抗蠕变能力、尺寸稳定性、韧性、硬度、磨损性能等以及其它的更多性能。因为可获得需要的硬度、良好的可控热膨胀性能,在大尺寸齿轮和结构应用领域,长玻纤增强材料正成为一种具有吸引力的备选材料。
第三篇:变速器齿轮工艺设计实习总结
生产实习总结
机自082班刘旭彪200810301242 时光如流水,两周时间转眼即逝,为期两周是实习给我的体会是:
1.通过这次实习我们了解了现代机械制造产业的生产方式和工艺过程。熟悉毛-----零件的主要成型方法和主要机械加工方法及其所用主要设备的工作原理及典型结构、工夹量具的使 用及安全操作技术。了解机械制造工艺知识和新工艺、新技术、新设备在机械制造中的应用。
2、在毛肧到零件的主要机加工方法上具有初步的独立操作技能。
3、在了解、熟悉和把握一定的工程基础知识和操作技能过程中,通过培养进一步加强了我们的工程实践能力、创新意识和创新能力。
4、通过实践培养和锻炼了我们的劳动观点、产品质量和经济观念,强化遵守劳动纪律、遵守安全技术规划和爱护公共财产的自觉性,进一步提高了我们的整体综合素质。
5、这次实习,让我们明白做事要认真小心细致,不得有半点马虎。同时也使我们拥有了坚强不屈的本质,不到最后一秒绝不放弃的毅力。
6、在整个实习过程中老师对我们的纪律要求非常严格,制订了学生实习守则,同时更加强调了保持车间环境卫生、下班前要清理
机床及遵守各工序过程的安全操作规程等要求,对我们的综合工程素质培养起到了较好的促进作用。
很快我们就要步入社会,面临就业了,就业单位不会像老师那样点点滴滴、细致入微地把要做的工作告诉我们,更多的是需要我们自己去观察、学习。不具备这项能力就难以胜任未来的挑战。随着科学的迅猛发展,新技术的广泛应用,会有很多领域是我们未曾接触过的,只有敢于尝试才会有所突破,有所创新。就像我们接触到的车工,固然它的危险性很大,但是要求每个同学都要去亲自操作而且要做出成品,这样就锻炼了我们敢于尝试的勇气。两周的实习带给我们的不全是我们所接触到的那些操作技能,更多的则是需要我们每个人在结束后根据自己的情况去感悟,去反思,勤时自勉,有所收获,使这次实习达到它真正的目的。
第四篇:小汽车齿轮的加工工艺简介
材料工程新技术新工艺课程论文
论文题目:小汽车齿轮的加工工艺与技术
学院:材料科学与工程学院
班级:料11*班
教师:*** 学生:**
学号:********
小汽车齿轮的加工工艺与技术
摘要:齿轮是汽车行业主要的基础传动元件,通常每辆汽车中有18~30个齿部,齿轮的质量直接影响汽车的噪声、平稳性及使用寿命。近年来, 齿轮技术得到了迅速发展, 其发展趋势可概括为: 高承载能力、高齿面硬度、高精度、高速度、高可靠性和高传动效率。最终归结于齿轮的加工工艺得到的进步。
关键字:齿轮 加工工艺
一个完整的齿轮加工过程一般要经过毛坯的准备、毛坯正火热处理、车削加工、滚齿、插齿、剃齿、再次热处理、磨削加工与修正等过程。
1.毛坯准备
毛坯的准备一般通过锻造制坯来完成的,当前,热模锻仍然是汽车齿轮件广泛使用的毛坯锻造工艺。近年来,楔横轧技术在轴类加工上得到了大范围推广。这项技术特别适合为比较复杂的阶梯轴类制坯,它不仅精度较高、后序加工余量小,而且生产效率高。
2.正火处理
正火这一工艺的目的是获得适合后序齿轮切削加工的硬度和为最终热处理做组织准备,以有效减少热处理变形。所用齿轮钢的材料通常为20CrMnTi,一般的正火由于受人员、设备和环境的影响比较大,在热处理工艺中,如果处理不当将使得工件冷却速度和冷却的均匀性难以控制,造成硬度散差大,金相组织不均匀,直接影响金属切削加工和最终热处理,使得热变形大而无规律,零件质量无法控制。[1]为此,采用等温正火工艺。实践证明,采用等温正火有效改变了一般正火的弊端,产品质量稳定可靠。
3.车削加工
为了满足高精度齿轮加工的定位要求,齿坯的加工全部采用数控车床,使用机械夹紧不重磨车刀,实现了在一次装夹下孔径、端面及外径加工同步完成,既保证了内孔与端面的垂直度要求,又保证了大批量齿坯生产的尺寸离散小。从而提高了齿坯精度,确保了后序齿轮的加工质量。数控车床比一般的人工操作车床具有更高的准确度,为计算加工提供很大便利。另外,数控车床加工的高效率还大大减少了设备数量,经济性好。
4.滚、插齿
加工齿部所用设备仍大量采用普通滚齿机和插齿机,虽然调整维护方便,但生产效率较低,若完成较大产能需要多机同时生产。随着涂层技术的发展,滚刀、插刀刃磨后的再次涂镀非常方便地进行,经过涂镀的刀具能够明显地提高使用寿命,一般能提高90%以上,有效地减少了换刀次数和刃磨时间,效益显著。滚齿是软齿面圆柱齿轮加工中应用最为广泛的一种切齿方法。目前,通过提高滚齿机刚性,采用高性能高速钢和硬质合金,采用先进的刀具涂层技术,改单头为多头滚刀,采用大直径滚刀作径向进给加工以及对角滚齿法等途径,使滚齿生产效率得到了极大的提高。国外采用TI N 涂层的优质高速钢滚刀的滚齿切削速度已达150m/min以上, 硬质合金滚刀的实用切削速度已达40m/min以上。
硬齿面滚齿工艺已广泛用于模数为m2一40、齿面硬度为HRC40 ~ 64的各种硬齿面圆柱齿轮的半精滚和精滚加工。根据不同的加工条件,齿面的精加工效率可比传统磨齿工艺提高1 ~ 5 倍,成本也明显降低,而且扩大了硬齿面的可加工范围,从工艺上保证了硬齿面齿轮的广泛应用。硬齿面滚齿工艺的开发,革新了传统的硬齿。
5.剃齿
以前主要用于齿轮滚插预加工后、淬火前的精加工。轴向剃齿法剃齿刀磨损不均匀,工作台行程长,生产效率不高,但工艺较简单;对角剃齿法剃齿刀磨损较均匀,刀具耐用度得到提高,生产效率较高;切向剃齿法生产效率更高。剃齿能加工5 一7 级精度齿轮,生产效率高,以前主要用于齿轮滚插预加工后、淬火前的精加工。轴向剃齿法剃齿刀磨损不均匀,工作台行程长,生产效率不高,但工艺较简单;对角剃齿法剃齿刀磨损较均匀,刀具耐用度得到提高,生产效率较高;切向剃齿法生产效率更高。近年来,国外又研制了径向剃齿法,工件和剃齿刀之间无相对的往复运动,只有径向进刀运动,生产效率在剃齿加工中最高,精度和表面粗糙度也好,但这类剃齿刀的设计和制造较困难。剃齿广泛应用于运动精度要求不高、批量较大的汽车、拖拉机、机床等行业的齿轮加工中,作为热处理前的精加工手段.近几年来又推出了一种硬齿面剃齿法,可谓剃齿加工的一大突破这种方法主要用于硬度为HRC50左右的中硬齿面精加工,剃齿刀采用高性能高速钢或进行表面化学处理。上海工具厂曾应用表面化学处理的剃齿刀,对中硬齿面剃齿,取得了较好的效果。磨齿加工
当前,径向剃齿技术以其效率高,设计齿形、齿向的修形要求易于实现等优势被广泛应用于大批量汽车齿轮生产中。
磨齿的加工精度很高,可达4 级以上,但成本较高,生产效率一般都较低(蜗杆砂轮磨齿机除外)。所以,国内只在加工精密齿轮和高精度齿轮时采用, 应用远不如国外普及。近年来,由于CBN磨料、齿轮形金刚石修整滚轮的应用以及其它砂轮修整技术的发展,使磨齿技术取得了很大进展。
CNC磨齿机采用普通氧化铝砂轮砂轮齿面经金刚石滚轮修整成为渐开线螺旋面(滚轮齿面)的包络面,磨齿时砂轮齿面经二次包络形成工件齿面,工件齿面为滚轮齿面的复映。对于有修形(国外修形很普遍)要求的齿轮,只需对金刚石滚轮进行相应的修形即可磨出所要求的修形齿轮。该机床磨削一个工件只34s,每磨20~30 个工件需对砂轮修整一次。修整时只要将金刚石滚轮置于工件位置,然后进行类似于磨削工件的循环过程即可实现对砂轮的修整,修整时间约为60s。新砂轮的开齿修整也用这种方法,约需6 一7min。该机床仅可用于磨削圆柱斜齿轮。球面蜗杆成形磨齿法的加工效率是目前各种磨齿加工方法中最高的。
CBN砂轮的锋利度极高,这使大磨削量磨削也近似于精加工。此外,磨削过程中产生的磨削热较小,由于热变形而引起的精度下降也小,所以在采用CBN砂轮时,如磨齿机床精度高,就可较容易地磨出高精度的齿轮。CBN磨齿的另一个优点是使齿面产生残余压应力,可使齿面强度得到提高。但要获得表面粗糙度值很低的齿面,一般认为必须对CBN砂轮进行精细的修整(因为CBN磨粒耐磨性好,少数突出的磨粒长时间不磨损而使齿面产生很深的划痕),或在齿轮的最终精加工时采用微粒砂轮。由于CBN磨粒的耐磨性好,国外也采用镀层CBN砂轮磨齿。如仅电镀一层CBN磨粒的碗形砂轮,可磨削必1500mm的汽车齿轮约2000个,磨削一个齿的时间在5s以内,精加工一个齿轮约2min。
短短几年的发展,使CBN砂轮以其高效率广泛应用于齿轮的精密磨削。研究结果表明,CBN砂轮在齿轮的镜面磨削方面也具有很大的潜力。
除了CBN砂轮磨齿机外,国外还开发了其它类型的CBN硬齿面精加工机床,如德国Carl Hurth 公司和日本三菱重工分别生产出ZHS350和HA25CNC 硬齿面精加工机床。这类机床采用圆盘齿轮状CBN 镀层,切削机理类似于剃齿加工,可以加工出所要求的各种齿形和齿向曲线,是一种高效硬齿面精加工方法。美国通用汽车公司于1985年购买了12台ZHS型硬齿面精加工机床,1986年又购买了10台,并将本公司的变速器齿轮的加工工艺由原来的滚齿一剃齿一碳淬火改为滚齿一渗碳淬火一硬齿面精加工。可以肯定,这种高效、高精度的硬齿面精加工新方法必将发挥越来越重要的作用。[2]
6.热处理
汽车齿轮要求渗碳淬火,以保证其良好的力学性能。对于热后不再进行磨齿加工的产品,稳定可靠的热处理设备是必不可少的。
7.磨削加工
该工艺主要是对经过热处理的齿轮内孔、端面、轴的外径等部分进行精加工,以提高尺寸精度和减小形位公差。齿轮加工采用节圆夹具定位夹紧,能有效保证齿部与安装基准的加工精度,获得满意的产品质量。磨削是国外齿轮硬精加工普遍使用的方法,其重要性和影响日益增加。这种加工方法常常为可靠地进行渐开线齿形和齿向所限定的精修提供唯一的手段。8.珩齿
这是变速器、驱动桥齿轮装配前对齿部进行磕碰毛刺的检查清理,以消除它们在装配后引起噪声异响。通过单对啮合听声音或在综合检查仪上观察啮合偏差来完成。制造公司生产的变速器中壳体零件有离合器壳、变速器壳和差速器壳。离合器壳、变速器壳是承重零件,一般采用压铸铝合金经专用模具压铸而成,外形不规则、较复杂,一般工艺流程是铣结合面→加工工艺孔和连接孔→粗镗轴承孔→精镗轴承孔和定位销孔→清洗→泄漏试验检测。
珩齿效果很大程度上取决于前一道工序的加工精度和热处理变形量。另外,无合适的齿轮修整方法,珩齿在整个使用过程中不进行修整,影响了珩齿精度的提高。新的珩齿加工技术主要有蜗杆形珩轮珩齿法和内齿布轮珩齿法两种。70 年代日本相浦正人教授等人对蜗杆形珩轮珩齿法进行了试验,之后,日本铿藤公司推出了蜗杆琦齿机和蜗杆形珩齿修整机的正式产品。国内长江机床厂和南京第二机床厂也生产类似产品。用蜗杆形珩齿珩齿不仅生产效率高,而且对琦磨轮进行修整也提高了琦磨轮的精度,从而提高齿轮加工精度。瑞士Fasselr公司在1979年推出内齿珩齿机床目前的D-250一CNC珩机加工齿轮的精度可达DIN(德国工业标准)6级,加工模数
35、齿数
11、齿宽37mm的斜齿轮的琦磨时间仅为lmin,十分适合齿轮的大批量生产。国外许多汽车厂家用这种方法对热处理硬化后齿轮进行精加工南京第二机床厂已生产出类似的内齿衡轮布齿机。内齿琦轮琦齿法的主要特点是:用金刚石滚轮对珩齿修,保持了珩齿精度;内啮合珩齿时增大了啮合系数,使珩齿过程传动平稳,增加了珩齿时的修正能力;珩齿时无须沿工件轴向进给即可衡出工件全齿宽。因此,内齿珩齿精度、生产效率高。[2]
齿轮作为一种重要的零部件,对于汽车工业乃至整个工业体系来说,是必不可少的。随着科技的发展,齿轮制造技术和装备也在进一步发展,高效、高精度、自动化、智能化、信息化及清洁加工是今后齿轮加工技术及装备的发展趋势。齿轮加工正朝着高效、高精度及绿色制造方向发展,齿轮加工机床也同着全数控、功能复合、智能化、自动化及信息化方向发展。中国齿轮加工机床制造商要抓住这一发展趋势,更好地为我国的汽车齿轮加工行业提供高效、复合、智能的装备。参考文献
[1]王政.汽车齿轮加工工艺及发展趋势,MC现代零部件,2010,9:26-27 [2]安立宝.齿轮加工技术新进展,航空工艺技术:29,35
第五篇:20CrMnMo齿轮热处理工艺设计课程设计
20CrMnMo齿轮热处理 目 录 1 绪 论 1 1.1 热处理工艺课程设计的目的 1 1.2 课程设计的任务 1 1.3 热处理工艺设计的方法 1 2 热处理工艺课程设计内容和步骤 1 2.1 课题工件简图 1 2.2 技术要求: 2.3 特点 2 2.4 适用范围 2 2.5 齿轮的性能要求及为何选用20CrMnMo 2 2.6 化学成分作用 3 2.7 20CrMnMo钢的淬透性曲线 4 2.8 淬透性 5 2.9 渗碳热处理工艺规范 5 2.10 钢的等温转变和连续冷却转变 5 3 热处理工艺方案以及参数论述 6 3.1 热处理工艺流程 6 3.2 热处理工艺方案论证 6 3.2.1 20CrMnMo处理温度以及冷却方式 6 3.2.2 热处理方案制定 6 3.3 热处理方案 6 3.3.1 正火 7 3.3.2 正火工艺曲线 7 3.3.3 正火冷却 8 3.4 20CrMnMo的渗碳工艺 8 3.4.1 渗碳的目的 8 3.4.2 渗碳过程 8 3.5 20CrMnMo的淬火工艺 9 3.5.1 渗碳后一次重新加热淬火的目的 9 3.5.2 淬火事项 9 3.6 低温回火工艺 10 3.6.1 回火的目的 10 3.6.2 回火温度 11 3.6.3 加热介质 11 3.6.4 保温时间 11 3.6.5 回火工艺曲线 11 3.6.6 冷却方式 12 4 总的热处理工艺曲线 12 4.1 热处理总工艺曲线 12 4.2 选择加热设备 12 4.2.1 装置选择:井式电阻炉 12 4.2.2井式炉示意图 13 4.3.1 井式气体渗碳炉型号规格及技术数据 13 5 工装图 14 5.1 工装图及装件 14 6 工序质量检验 15 7 热处理工艺过程中常见缺陷分析 15 7.1 常见的淬火及防护措施 15 7.2 常见的渗碳缺陷及防护措施 16 8 心得体会 17 9 参考文献 17 20CrMnMo齿轮热处理工艺设计 1 绪 论 1.1 热处理工艺课程设计的目的 热处理工艺课程设计是高等工业学校金属材料工程专业一次专业课设计练习,是热处理原理与工艺课程的最后一个教学环节。其目的是:
(1)培养学生综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。
(2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。
(3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。
因此,本课程设计要求我们综合运用所学来的知识 解决生产实践中的热处理文艺,包括工艺设计中的细节问题,如设备的选用,为何选用该设备温度调节。要求我们设计工艺流程,并且需要我们翻阅大量文献。灵活运用书籍中的资料,精简知识,精要描绘并且完整体现出来,不能一蹴而就。
1.2 课程设计的任务 进行零件的加工路线中有关热处理工序和热处理辅助工序的设计。根据零件的技术要求,选定能实现技术要求的热处理方法,制定工艺参数,画出热处理工艺曲线图,选择热处理设备,设计或选定装夹具,作出热处理工艺卡。最后,写出设计说明书,说明书中要求对各热处理工序的工艺参数的选择依据和各热处理后的显微组织作出说明。
1.3 热处理工艺设计的方法 热处理工艺的最佳方案是在能够保证达到根据零件使用性能和由产品设计者提出的热处理技术要求的基础上,设计的一种高质量、低成本、低能耗、清洁、高效、精确的热处理工艺方法,通过综合经济技术分析,确定最佳热处理工艺方案。最后,编写主要热处理工序的操作守则。热处理工艺课程设计内容和步骤 2.1 课题工件简图 课题工件简图如图2.1 图2.1 工件示意图(单位:mm)材料:20CrMnMo 2.2 技术要求:
1.由于齿面硬度很高,具有很强的抗点蚀和耐磨损性能;
心部具有很好的韧性,表面经硬化后产生的残余应力,大大提高了齿根强度;
一半齿面硬度范围56~63HRC。
2.简要流程:下料-锻造-正火-粗加工-渗碳-淬火-低温回火-精磨-成品。
2.3 特点 1.加工性能好。
2.热处理畸变较大,热处理后应磨齿,可以获得高的精度。
2.4 适用范围 广泛用于要求承载能力高,抗冲击性能好,精度高,体积小的中型一下齿轮,多出应用于汽车变速器,分动箱,起动机及驱动桥的各类齿轮以及拖拉机的动力传送装置的各类齿轮,20CrMnMo的性能要比20CrMnTi的性能相对较硬。
2.5 齿轮的性能要求及为何选用20CrMnMo 为保证齿轮的正常工作,齿轮应具备以下主要性能: 1.高的弯曲疲劳强度和接触疲劳强。除材料本身性能外,还可以依靠齿轮的表面强化处理来实现。
2.齿面具有高的硬度和耐磨性,以防止黏着磨损和应力磨损。耐磨性的提高,主要依靠提高表面硬度和降低摩擦因数来实现。
3.齿轮心部具有足够的强度和韧性,以提高承载能力。
常用的渗碳钢有20CrMnMo,20CrMnTi。本次设计我用的是20CrMnMo。20CrMnMo淬火温度850℃,只需要一次,冷却方式与20CrMnTi一样,都采用油冷,一般可制造小雨300mm的高速,中载,受冲击和磨损的重要零件,适用于拖拉机变速箱齿轮,离合器轴和车辆上的主动轴,但某些方面优于20CrMnTi。
表2.1 20CrMnMo的化学成分[1] C Si Mn Cr Mo P,S Ni C 0.17~0.23 0.17~0.37 0.90~1.20 1.10~1.40 0.20~0.30 ≤0.0.35 ≤0.30 ≤0.30 2.6 化学成分作用 铬(Cr的影响)铬为碳化物形成元素。它能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性;
阻止晶粒长大,增加钢的淬透性,降低钢的临界冷却速度。因而,使钢在热处理时,退火、正火、淬火的加热温度有所提高。并使它在油中便能淬硬。但它降低了钢的马氏体点,因而增加了钢残余奥氏体量。使钢的奥氏体不稳定区域变为700-500℃和400-250℃。提高了钢的硬度和强度,增加了钢在高温回火时强度降低的抗力。
钼(Mo的影响)提高钢的淬透性,热强性,有二次硬化的作用,能降低回火脆性。
锰(Mn)降低钢的Ac1和Ac3而使钢在热处理时的温度有所降低。增加奥氏体的稳定性,降低钢的临界冷却速度,但它使参与奥氏体量增加。可以减少钢在淬火时的变形和增加钢的强度和硬度。使钢的回火脆性与晶粒长大的作用增大。
表2.2 20CrMnMo的热处理基本参数[2] 临界温度 Ac1 Ac3 Ar1 Ar3 Ms 温度/℃ 710 830 620 740--20CrMnMo属于亚共析钢,缓慢冷却到室温后的组织为铁素体+珠光体,从钢的分类来看,20CrMnMo钢属于高级渗碳结构钢,以加工和加热并且性能良好,强度,塑性和韧性都比较高,过热倾向小,无回火脆性,即可做渗碳钢使用,也可作为调质钢使用,渗碳淬火后具有较高的抗弯强度和耐磨性,但是磨削时容易产生裂纹,淬火以及低温挥霍具有良好的综合力学性能和低温冲击任性。20CrMnMo钢采用低温回火,表面可获得60-65HRC的高硬度。
20CrMnMo的含碳量为0.2%属于低碳钢,渗碳时保证了碳元素的正常渗入。钢中合金元素为Cr小于1.4%,Mn小于1.2%,Mo小于0.3%。加工时要对20CrMnMo进行表面渗碳处理,渗碳淬火后表面得到高谈马氏体,具有较高的耐磨性。
2.7 20CrMnMo钢的淬透性曲线 如图2.2 20CrMnMo钢淬透性曲线 图2.2 钢淬透性曲线[3] 2.8 淬透性 淬透性:淬透性随着淬火温度提高而增加,因为温度升高,奥氏体晶粒尺寸增大,淬透性提高。但是如果温度过高,奥氏体晶粒过于粗大淬火后会产生开裂或者变形。
2.9 渗碳热处理工艺规范 表2.3 渗碳热处理工艺规范[3] 渗碳/℃ 淬火温度/℃ 淬火冷却/℃ 回火温度/℃ 回火冷却 920~940 炉内降温至830~850 油冷 180~200 空冷 2.10 钢的等温转变和连续冷却转变 如图2.3 钢的等温转变图和连续冷却转变 图2.3 钢的等温转变和连续冷却转变[3] 3 热处理工艺方案以及参数论述 3.1 热处理工艺流程 简要流程:下料-锻造-正火-粗加工-渗碳-淬火-低温回火-精磨-成品。
3.2 热处理工艺方案论证 3.2.1 20CrMnMo处理温度以及冷却方式 表3.1 20CrMnMo处理温度以及冷却方式[4] 正火 渗碳 870±10℃ 925±10℃ 35min 2.5h 空冷 空冷 低温回火 160±10℃ 0.5h 空冷 3.2.2 热处理方案制定 20CrMnMo钢经热加工后,必须经过预备热处理来降低硬度,消除热加工时造成的组织缺陷,细化晶粒,改善组织,为最终热处理做好准备,对于20CrMnMo钢而言,正火可以细化晶粒,是组织均匀化,消除切削加工后的组织樱花现象和去除内应力.接着进行渗碳淬火,得到高强度,高硬度,高抗弯强度和耐磨性,满足加工齿轮的使用要求。
经过渗碳后,仅使表面层的含碳量提高0.7%~1.05%,仍达不到表层高硬度和耐磨的要求.因此,渗碳后还需要淬火和低温回火,使工件表层具有高的硬变和耐磨性.渗碳的目的是提高工件表面碳浓度,以便淬火后达到提高表面硬度和耐磨性的目的.渗碳后淬火加低温回火是达到表层高硬度的热处理方式,淬火后低温回火,表层得到回火马氏体组织,耐磨性达到较高水平,淬火的目的是提高硬度,淬火使得到尽量多的马氏体组织,得到高硬度,回火是为了马氏体二次分解形成索氏体,以便得到良好的机械性能。
3.3 热处理方案 3.3.1 正火 1.正火的目的 ①正火可以细化晶粒,使组织均匀化。
②消除切削加工后的组织硬化现象和去除内应力。
③消除共析钢中的网状硬化物,为热处理做好组织准备。
2.加热温度 加热温度:870±10℃ 因为20CrMnMo是亚共析钢,钢中含有碳化物形成元素。为使合金中难溶的特殊碳化物溶入奥氏体中,使奥氏体合金化程度增高,正火的加热温度为Ac3以上30~50℃,20CrMnMo的含碳量为0.20%,Ac3为830℃,所以将钢件的加热温度确定为870℃。
3.加热方式 采用到温加热的方法,是指当炉温加热到指定的温度时,再将工件装进热处理炉进行加热,原因是加热速度过快,节约时间。
保温时间=保温时间系数×有效尺寸,保温时间用τ表示。合金钢保温时间系数α(mm/min)保温时间=保温时间系数×装炉修正系数×工件厚度。工件加热保温时间与加热介质,材料成分,炉温,工件的形状和大小,装炉量和装炉量等因素有关。一般用经验公式来计算保温时间:保温时间=保温时间系数×装炉系数×工件的有效厚度。合金结构钢选择750~900℃井式电阻炉加热的保温时间系数α选为1.5,装炉系数K一般选择1.4。工件的有效厚度为D=(10*3)/2=15mm 所以τ=α×K×D=1.5×1.4×15=31.5min取35min。
3.3.2 正火工艺曲线 如图3.1 正火工艺曲线 图3.1 正火工艺曲线 3.3.3 正火冷却 ⑴冷却方式采用出炉空冷⑵冷却介质是空气⑶正火组织产生细珠光体。
3.4 20CrMnMo的渗碳工艺 3.4.1 渗碳的目的 渗碳的具体方法是将工件置入具有活性渗碳介质中,加热到900--950℃的单相奥氏体区,保温足够时间后,使渗碳介质中分解出的活性碳原子渗入钢件表层,从而获得表层高碳,心部仍保持原有成分。
相似的还有低温渗氮处理。这是金属材料常见的一种热处理工艺,它可以使渗过碳的工件表面获得很高的硬度,提高其耐磨程度。
渗碳可以在多方面提高钢件的机械性能,可以提高钢件的硬度和耐磨性,降低冲击任性和断裂韧性(冲击韧性和断裂任性随着表面碳含量的越高,碳层越深,降低的越多),同事可以提高疲劳强度.采用炉内滴注式气体渗碳,高温下甲醇的裂解产物H2O,CO2等将CH4和[C]氧化。可使炉气成分和碳势保持在一定范围内 渗碳温度:目前在生产上广泛使用的温度920-940℃.通常渗碳的温度选择要根据渗层的深度确定。根据本次材料以及用途决定渗层深度为0.9-1.2,渗碳温度为925±10℃。
3.4.2 渗碳过程 1.保温时间;采用的渗碳介质是煤油,并且渗碳保温时间是2.5小时。
公式为: δ(mm):渗碳层深度;
K:与渗碳温度有关的系数925℃时K=0.633;
t(min):渗碳保温时间。经计算选渗碳时间t=(0.9/0.63)×(0.9/0.63)=2.01h≈2.5h。
2.冷却方法 空冷。
3.渗碳后的组织 表面为碳化物+珠光体,心部为珠光体;4.20CrMnMo钢渗碳工艺曲线 如图3.2 20CrMnMo钢渗工艺曲线 温度 925℃ 30min 1h 2h 850℃ 排气 强渗 降温 保温 图3.2 钢渗碳工艺曲线 5.渗碳后的组织性能分析 降低渗碳温度,具有节能降耗、减小工件变形、减小材料晶粒粗化倾向、细化组织等优点渗碳层硬度梯度趋于平缓。
3.5 20CrMnMo的淬火工艺 3.5.1 渗碳后一次重新加热淬火的目的 提高硬度和耐磨性,如刃具,量具,模具等;
提高强韧性,提高耐腐蚀性和耐热性。
3.5.2 淬火事项 1.淬火温度 840±10℃,依据亚共析钢加热温度选用AC3+(30-50℃),这样既能保证充分奥氏体化,又保持奥氏体晶粒细小。
2.保温时间 淬火加热时间包括升温和保温时间两个时间段,升温时间包括想变重结晶时间,保温时间实际上只考虑碳化物溶解和奥氏体成分均匀化所需要的时间。
公式:t=×K×D t:保温时间(min),a:钢在不同介质中加热时的保温系数(min/mm)(这里取1.2),k:零件装炉调整系数(1.3),D:零件有效厚度(15mm),因此此次保温时间为 t=23.4min,所以时间为0.5h。
3.淬火后组织 表面是高碳马氏体+碳化物+残余奥氏体;
心部是低碳马氏体+残余奥氏体。
4.淬火工艺曲线 如图3.3淬火工艺曲线 图3.3 淬火工艺曲线 5.淬火过程中组织转变分析 正常加热冷却:工件加热到860℃后珠光体转变为奥氏体,保温时组织不变,晶粒细化,出炉油冷到室温可以获得马氏体和少量残余奥氏体,具有很高的耐磨性和硬度。
3.6 低温回火工艺 3.6.1 回火的目的 回火是将淬火后的零件加热到A1一下的某一温度,保温一定时间后,以适当的形式冷却到室温的热处理工艺。
回火的主要目的是使零件有高的硬度和耐磨性,消除了淬火应力与脆性,改善了零件淬火后的韧性及组织稳定性。并且,降低或消除淬火引起的残余应力。由于淬火马氏体和残余奥氏体都是不稳定组织,在工件中会发生分解,从而导致工件的尺寸不精确。某些碳含量较高的钢制大型零件或复杂零件甚至淬火后在等待回火的期间就发生突然爆裂。所以说,淬火零件不经回火就投入使用时危险地,也是不允许的。
渗碳和碳氮共渗淬火后的零件,一般要进行低温回火处理。低温回火时,马氏体发生分解,得到回火马氏体,淬火内应力得到部分消除,淬火时产的微纹也大部分得到愈合,因此低温回火也可以在很少降低硬度的同时使钢的韧性明显提高。
3.6.2 回火温度 回火加热温度选择160±10℃。
依据:在低温回火时马氏体发生分解,析出碳化物成为马氏体,淬火内应力得到部分消除,淬火时产生的微纹也大部分也得到愈合,因此低温回火也可以在很少降低硬度的同时使钢的韧性明显提高。通常渗碳和渗氮零件的回火温度是﹤180℃。
3.6.3 加热介质 加热介质:空气。
3.6.4 保温时间 保温时间为1.5h 确定回火保温时间一般的做法是根据工件的截面厚度而定,一般每25mm厚度保温1-2h,温度高可酌情缩短。
回火的保温时间一般为1-3小时。
3.6.5 回火工艺曲线 回火工艺曲线 如图3.4所示 图3.4 回火工艺曲线 3.6.6 冷却方式 冷却方式:出炉空冷。
总的热处理工艺曲线 4.1 热处理总工艺曲线 如图4.1 热处理总工艺曲线 图4.1 热处理总工艺曲线 4.2 选择加热设备 4.2.1 装置选择:井式电阻炉 表4.1 RJ3-75-9井式电阻炉产品规格及技术参数[5] 型号 功率/kw 电压/V 相数 额定温度/℃ 炉膛尺寸(直径深度)/mmmm 炉温850℃时的指标 空炉损耗功率/kw 空炉升温时间/h 最大装载量/kg RJ2-40-9 40 380 3 950 600×800 9 2.5 350 材料是20CrMnMo,它的正火温度在870℃左右。考虑到中温炉在中温测量时比较准确,因而选用中温井式炉。
4.2.2 井式炉示意图 如图4.2 井式炉示意图 如图4.2 井式炉示意图[6] 4.3 井式渗碳炉 渗碳炉是新型节能周期作业式热处理电炉,主要供钢制零件进行气体渗碳。由于选用超轻质节能卢琛材料和先进的一体化水冷炉用密封风机,渗碳炉炉温均匀,升温快,保温好,工件渗碳速度加快,渗碳气氛均匀,渗层均匀,在炉压提高时,无任何泄漏。提高了生产效率和渗碳质量。
4.3.1 井式气体渗碳炉型号规格及技术数据 表4.2 RQ3-75-9 950℃井式气体渗碳炉的型号规格及技术数据[7] 额定功率KW 额定电压V 额定温度℃ 加热区数 电热原件接法 工作空间尺寸(直径×深)空炉升温时间h 空炉损耗功率KW 最大装载量 75 380 950 1 Y 450×900 ≦2.5 ≦14 ≦220 4.4 井式气体渗碳炉 如图4.3 井式气体渗碳炉 如图 4.3井式气体渗碳炉[8] 1—渗碳工件 2—耐热罐 3—加热元件 4—风扇 5—液体渗碳剂 6—废气 7—沙封。
工装图 5.1 工装图及装件 如图5.1工装图 如图5.1 工装图 5.2 装件 底面一圆盘中,中间两个圆盘通孔若干,整个工装筐由底盘,中间支撑轴以及工件固定杆组成,使用时将工装筐置于平地,将每个齿轮水平套进工件固定杆,每个工件固定杆之间距离固定,防止工件与工件之间相互接触,磨损,导致淬火不均匀,每个工件之间摆放位置井然有序,节省空间,大量提升了空间利用率。中间轴设计为弯钩,方便勾吊。
装炉量:16*6=96.6 工序质量检验 检查主轴的外观表面,渗层深度,硬度,金相组织是否达到设计的要求 1.外观:表面无损伤,烧伤,眼中腐蚀等缺陷;
使用测量工具测量,用显微镜看表面是否有裂纹。
2.渗层深度的检测。打断试样,磨光,腐蚀。
3.硬度的检测。60-65HRC,洛氏硬度计打硬度 4.金相组织:马氏体,残余奥氏体以及少量条状碳化物采用《重载齿轮渗碳金相检验》评定。
5.工件变形检验:根据图样技术检验工件挠曲变形,尺寸及几何形状的变化。
热处理工艺过程中常见缺陷分析 7.1 常见的淬火及防护措施 表7.1 淬火缺陷及其产生的原因及预防措施[9] 缺陷 产生原因 预防措施 硬度不 足 ①亚共析刚加热不足,有未溶铁素体 ②冷却速度不够 ③在淬火介质中停留时间不够 ④氧化和脱碳导致淬火后的硬度降低 ①正确选择并严格控制加热温度,保留时间和炉温的均匀性 ②合理选择淬火介质;
控制淬火介质的温度不超过最高使用温度;
定期检查或更换淬火介质 ③正确控制在淬火介质中的停留时间 ④采取防氧化脱碳措施;
采用下线加热温度;
在600℃左右预热,然后再加热到淬火温度,缩短高温加热时间 7.2 常见的渗碳缺陷及防护措施 表7.2 常见渗碳缺陷原因以及防止措施[10] 常见缺陷 产生原因 防止方法 表面碳质量分数低 1.炉温低 2.渗剂滴量少 3.炉子漏气 4.工件表面不干净 1.校检仪表,调整温度 2.按工艺规范调整滴量 3.检查炉子密封性 4.清理工件表面,补渗 渗层深度不够 1.保温时间不够 2.表面碳质量分数低 1.适当延长保温时间 2.按正常渗剂滴量补渗 渗层不均匀 1.炉温不均匀 2.零件表面不清洁,有锈点、油污 1.合理装炉,尽量使工件之间间隙均匀 2.装炉前严格清洗零件表面 碳化物出现网状分布 1.淬火温度低或保温时间不够 2.淬火冷却过程慢.渗层表面浓度过高 1.适当提高淬火温度,采用两次淬火 2.冷却操作要迅速,正确 3.降低渗剂活性,严格控制碳势 淬火后变形 1.淬火方式错误 2.淬火冷却速度过大 3淬火加热温度过高 1.制定正确的淬火方式,严格按照操作流程进行 2.选择合适的淬火介质,3.选择正确的淬火加热温度 表面贫碳或脱碳 1.炉内气氛碳势过低 2.高温出炉后在空气中缓冷时氧化脱碳 1.在碳势较高的渗碳介质中进行补碳 2.脱碳层小于0.02mm下采用磨去或喷丸等方法补救 8 心得体会 通过3周的课程设计,让我学到了很多。在这3周之中不仅让我见识到了热处理这项工艺的严谨性。也检验我所学的知识,还培养了我如何从不同角度思考一件事情,然后动脑去完成这件事情。我十分享受这个过程,什么都靠自己动手,还可以和同学互相探讨,相互学习。
通过这次课程设计,本人在多方面都有所提高,无论是课程上的理论知识还是实际操作本领,掌握了许多以前不懂得计算机知识,绘图能力,熟悉了规范和标准,同事也了解各科相关的知识,也让我认清自己,认识到自己的不足。我发现了以前很多搞不懂的更加清晰的呈现在我眼前,让我学习更加有动力,也让我今后在我从事的岗位更有信心。热处理是一门很有技术含量,很有发展潜力的技术,在这门技术发展这么多年来,依然有这么高的魅力,由于自己的设计能力有限,在设计中也难免出现错误,恳请老师们多多指点。
最后谢谢老师给我这次机会来锻炼我们,辛苦为我们选课。参考文献 [1]杨满.实用热处理技术手册.机械工业出版社.2010:100—110 [2]胡光立.钢铁热处理实用技术.化学工业大学出版社,2008年:155—200 [3]任颂赞,张静江,陈质如.钢铁的金相图谱.上海科技文献出版社.2003年6 [4]《热处理工艺手册》编写组,热处理手册1-4,机械工业出版社,1982年12 [5]叶宏.金属热处理原理与工艺[M].北京:化学工业出版社.2011.6:137-138 [6]《齿轮热处理手册》陈保华,热处理,机械工业出版社 [7]范逸明。简明金属热处理手册。国防工业出版社,2006年3月 [8]樊东黎,徐跃明,杨满.热处理技术数据手册.机械工业出版社,2006:158—187 [9]叶宏.金属热处理原理与工艺[M].北京:化学工业出版社.2011.6:137-138 [10]李国斌.热处理工艺规范与数据手册.北京:化学工业出版社.2012.9:85-85