生物活性陶瓷涂层材料的制备及研究进展

时间:2019-05-13 06:32:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《生物活性陶瓷涂层材料的制备及研究进展》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《生物活性陶瓷涂层材料的制备及研究进展》。

第一篇:生物活性陶瓷涂层材料的制备及研究进展

表面生物活性陶瓷的制备及研究

姓名:彭博

学号:20130512225

班级:材料化学

摘要:简单介绍表面生物活性陶瓷的种类以及制备表面生物活性陶瓷的主要方法:等离子喷涂、溶胶-凝胶法、电沉积和激光熔覆等,并且介绍了各个方法对表面生物陶瓷的工艺参数、界面结合等因素进行分析,最后展望表面生物陶瓷材料的发展前景,并提出了表面生物陶瓷材料今后的研究方向。

关键词:表面生物活性陶瓷材料;制备方法;研究进展

前言:生物材料包括金属材料、陶瓷材料、高分子材料及其复合材料等。金属材料具有抗压和抗拉强度高、抗冲击性和延展性好、加工成形性好和质量波动小及可靠性高等优点。生物陶瓷材料作为无机生物医学材料,没有毒副作用,与生物体组织有良好的生物相容性,且具有耐腐蚀等优点。表面生物陶瓷材料(又称表面生物陶瓷材料)按照功能分为惰性表面生物陶瓷材料和表面生物活性陶瓷材料。表面惰性生物陶瓷材料是指在植入生物体后不与生物体发生相互作用的材料。在生物环境中能保持稳定,不发生或仅发生微弱化学反应的生物医学材料,包括氧化铝、氧化锆和氮化硅等,涂覆表面惰性生物陶瓷的植入体植入生物体后,涂层与生物机体组织不发生反应,机体不产生排异现象,在植入体与生物体之间形成一定厚度的纤维组织。同时机体组织生长到植入体表面,形成机械式固定结合。表面生物活性陶瓷材料是指在植入生物体的过程中,能够与生物体骨细胞和组织发生相互作用,逐渐转变成天然的股材料。它具有与生物体组织很好的生物相容性,其中最典型的为羟基磷灰石表面涂层材料和钙硅酸盐表面涂层材料。生物惰性材料不能与骨组织产生化学结合,只能被纤维结缔组织所包围,其与骨组织的结合和对骨组织的生长的促进都不理想,有的材料还可能溶出一些对生物体有一定毒性的元素。19世纪70年代,科学家开始将生物活性材料用于人工骨材料[1],其中应用最广泛的是羟基磷灰石生物活性陶瓷,它是人体硬组织中主要的无极成分,与生物组织有良好的生物相容性,并能与骨组织形成骨性结合。与表面生物惰性材料形成鲜明的对比,更加说明了生物活性陶瓷的特性及研究意义。本文主要介绍表面生物活性陶瓷的种类、性能遗迹等离子喷涂、溶胶-凝胶法、电沉积及激光熔覆等主要制备方法[2]。

一、表面生物活性陶瓷的种类

【1.1】羟基磷灰石材料

人体骨中主要成分是M10(RO4)6(OH)2,其中M主要成分为Ca,R的主要成分为P,其结晶结构完整且为细长针状结构。羟基磷灰石[Ca10(PO4)6(OH)2](简称HA)属流放晶系,其与人体骨中的无机物结构相同,植入人体后无毒、无体外排异反应,具有良好的生物活性和生物相容性[3],是理想的人体骨替代材料。

关于HA涂层制备过程中的物理化学变化,目前亦取得一些显著成果。例如,等离子喷涂制备羟基磷灰石涂层过程中,羟基磷灰石粉料被高温等离子体(火焰温度高达100000K)加热并熔化,部分羟基磷灰石分解为Ca10(PO4)6O、α-磷酸三钙[α-Ca3(PO4)2]、β-磷酸三钙[β-Ca3(PO4)2]、磷酸四钙(Ca4P2O9)、CaO遗迹无定形相。

【1.2】钙硅酸盐材料

自1969年L LHench发现某些组成的玻璃能同骨骼形成化学键合以来,生物活性玻璃和α-W玻璃陶瓷已被广泛地应用于骨组织的修复和重建。发现在模拟体液中,CaO-SiO2基玻璃表面能形成骨磷灰石层,而CaO-P2O5基玻璃表面没有骨磷灰石生成,意味着CaO和SiO2成分是生物活性玻璃在体内与骨发生化学键合的主要原因。硅灰石的化学分子式为CaSiO3,其理论组成为48.3%CaO和51.7%SiO2。因此,硅灰石在体液中也应具有生物活性,并能诱导骨磷灰石在其表面形成。PSiihorpannnn等[4]发现在模拟体液中CaSiO3陶瓷表面骨磷灰石的形成速度比其他生物玻璃和玻璃陶瓷更快。Liu X Y等[5]采用等离子火焰球化商用硅灰石粉末(d为10~100μm),以TiC4合金作为基体材料,制备了硅灰石涂层。硅灰石涂层在TiC4基体上的拉伸结合强度为42.8MPa。

二、制备表面生物活性陶瓷的方法

【2.1】等离子体喷涂技术

等离子喷涂法[6]是迄今为止研究最为广泛的制备表面生物陶瓷的方法。该技术利用等离子枪产生等离子流将生物陶瓷粉料高温加热熔融或接近熔融状态,高速喷至金属基体表面形成涂层。它能在基体与涂层之间提供很高的结合力,并能获得覆盖完整的涂层40~54μm。但由于等离子喷涂制备陶瓷涂层的过程中等弧θ高达1000°C以上,所以冷却时金属基体与涂层的界面存在很高的残余热应力和缺陷的集中,使得材料的破坏通常发生在界面处,不利于涂层的稳定且涂层与基体界面主要是机械咬合,结合强度也相应受到制约。另外等离子喷涂涂层与金属基体间物理性能差别较大,在界面处会产生较大的内应力,从而降低了涂层与基体的结合强度。Yang[7]等采用等离子体喷涂技术在Ti和CoCrMo合金上制备了高强度的ZrO2涂层。研究表明:在钛合金基体上3%Y2O3,稳定的ZrO2涂层结合强度为32MPa,而4%GeO2稳定的ZrO2涂层结合强度可达68MPa,这是因为4%GeO2稳定的ZrO2涂层中四方相ZrO2粒径较小,涂层的稳定性较好。Lu[8-11]等利用后处理技术对等离子体喷涂纳米TiO2涂层进行生物活化处理,获得了既具有良好生物活性和生物相容性,又与钛合金基体结合良好的TiO2涂层。

近年来发展了在铝合金表面等离子喷涂生物活性梯度涂层的研究,在基体与羟基磷灰石之间形成一个化学组成梯度变化的过渡区域,大大降低了界面处的应力,提高了界面结合强度。Lu等[12-15]采用等离子体喷涂技术,成功制备了硅灰石和硅酸二涂层,另外对透辉石涂层也进行初步探查,并对这些涂层材料的生物活性和生物相容性进行了探讨,说明利用等离子体喷涂的硅灰石涂层、硅酸二钙涂层和透辉石涂层都具有良好的生物活性和生物相容性。

【2.2】激光熔覆法

激光熔覆技术已成为制备各种功能涂层材料的有效手段之一,其最显著的特点就是涂层与基体之间能形成牢固的冶金结合,且熔覆层成分和稀释度可控。界面作为金属基生物活性陶瓷涂层极为重要的组成部分,其结构和性能对涂层稳定性及寿命起着决定性作用。因此,研究金属基生物活性陶瓷涂层界面的组织结构、结合机制及残余应力分布对获得高性能涂层尤为重要[16]。郑敏等[16]对熔覆层和界面的显微组织、相组成及成分等进行了研究,并重点分析激光熔覆生物陶瓷复合涂层的界面形貌、结合状态及残余应力分布。邓迟等[17]用X-射线衍射和能谱分析方法检测了表面生物陶瓷和涂层与界面的物相及成分分布,结果显示涂层内和涂层与基材间出现了新相,这表明其中发生了复杂的化学冶金反应,适当的激光熔覆工艺、涂层及基体的物性三者确定了化学冶金反应发生。在这些条件作用下,涂层内合成了具有生物活性的钙.磷陶瓷,形成了牢固的界面。高家诚等[18]先用高能激光束辐射预置于钛表面的陶瓷粉末,在金属表面原位合成生物陶瓷成分,再用X-射线衍射表征了涂层材料,测定了涂层与界面的结合强度。结果表明:获得的涂层的成分为生物陶瓷成分,其中的主要成分为羟基磷灰石(HA),涂层与基材获得的界面强度达到42.96MPa,界面有较好的改善。张亚平[19]等在经过渡层预处理的TC 铝合金表面上预置设定配比的CaHPO4、CaCO3混合粉末,比较少量Y2O3粉末对合成与涂砚表面生物陶瓷的影响。经优化激光工艺处理后,成功地实现一步激光束合成与涂砚表面生物陶瓷。该涂层具有优良的力学性能,且改善了植人材料弹性模量与生物硬组织的匹配性。Y2O3,对表面生物陶瓷的合成及性能改善均有重要作用。王勇等[20]测试了激光熔覆表面生物陶瓷与基体的结合强度、涂层抗弯、抗拉和抗压强度,并计算了弹性模量。结果表明,稀土能够提高涂层与基体的结合强度、抗弯及抗拉强度,但降低了涂层的抗压强度。稀土在激光熔覆条件下充分扩散传质弥散分布于涂层熔池内,分散的稀土颗粒促进晶体形核和成长,细化晶粒,强化涂层。激光熔覆涂层复合材料能满足生理条件下的强度要求。激光是一种能量高度集中的能源,利用激光束对材料表面的局部区域进行加热、熔化,进行激光熔覆原位合成与涂覆羟基磷灰石(HA)等生物陶瓷的方法,由于合成生物陶瓷成分效率高,工艺新颖,操作方便而引起同行的关注。

【2.3】燃烧合成法

燃烧合成是一种制备生物涂层的新工艺,具有较大的优点[21]:燃烧温度高,反应速度快,工艺简单,设备要求低,生产率高,不受基体形状和大小的限制,可在复杂表面合成厚度均匀的陶瓷涂层等。国外已有报道采用溶液燃烧合成制备生物陶瓷粉末。在此基础上,拟开发溶液燃烧合成制备表面生物陶瓷的工艺[22]。刘咏等[23]采用然烧合成-水热法制备了表面生物陶瓷,用X-射线衍射、扫描电镜和粘接拉伸法分析了涂层物相组成形貌和涂层与基体的界面结合弧度。水热处理2h后,涂层中HA含量增加,延长水热处理时间,得到纯HA涂层,涂层δ为20μm。

【2.4】电沉积一水热合成法

Shirkhanzadeh等[24]首先报道了用电沉积法制备磷酸钙涂层的工艺:电沉积一水热合成法是一种低温下在含Ca2+和H2PO4-溶液中沉积磷酸钙涂层随后水热处理获取纯HA涂层的工艺,具有设备投资少、生产费用低、操作简单、原材料利用率高、工艺连续性好及易于实现自动化生产的优点。采用电沉积.水热合成法和高温锻烧相结合的方法,制备了表面生物陶瓷。刘芳等[25]研究了涂层与基体间过渡层的物相组成和界面结合强度。用X-射线衍射、扫描电镜和粘接拉伸法进行分析。研究结果表明:水热合成后,界面结合强度较低,为7.04MPa。在空气中煅烧,700°C以下时,界面出现极薄TiO2

层,同时随着煅烧温度的升高,界面结合强度提高。黄伯云等[26]评述了电沉积一水热合成法制备在羟基磷灰石表面生物陶瓷的相形成机理、工艺进展和工艺特点,并对有关问题进行了探讨。结果表明,采用电沉积.水热合成法制备羟基磷灰石表面生物陶瓷最大的缺点是涂层与基体结合力较低。今后,将在可控制涂层孔隙度梯度变化的基础上,着手研究涂层化学组分的梯度变化,降低涂层与基体问热膨胀系数等物理特性的差别,减少涂层材料中残余热应力和残余热应变,促进界面化学冶金结合,提高涂层与基体的结合强度。

【2.5】电泳沉积法

用电泳方法制备的表面生物陶瓷,基底和涂层界面不存在热应力,有利于增强基底和涂层的结合强度,而且电泳过程是非直线过程,可以在形状复杂和表面多孔的基底上制备出均匀的涂层,涂层再经过真空烧结等技术可以进一步提高HA与基底的结合强度。郭军松等[27]用异丙醇作为分散介质,对电泳沉积羟基磷灰石表面生物陶瓷进行了系统研究。经过制备稳定的悬浮液、电泳沉积及高温烧结等过程,在Ti6A14V合金上得到表面均匀的羟基磷灰石表面生物陶瓷。用X-射线衍射和扫描电镜等对羟基磷灰石颗粒的物相和沉积层的表面进行了表征。研究了电泳时间与电泳沉积量和电流密度、电泳沉积量与电泳电压之间的相互关系,并讨论了这些参数对电泳沉积过程的影响。并通过电泳沉积得到HA沉积层,沉积层在高温条件下烧结,制得羟基磷灰石表面生物陶瓷。同时,运用电容充电的模型,定性地解释了电泳沉积过程中质量、时间、电压及电流之间的关系曲线。

三、展望

表面生物陶瓷是综合运用材料科学和生命科学原理进行研制的一种新型陶瓷涂层材料。生物材料必须具备的特性是无毒性、无致癌作用,无变态反应,对周围生物组织无刺激和不引起其他故障作用在生物机体内材料的物理、化学性能稳定,经长期使用不会发生变质和力学性能降低的现象与生物组织亲和性好容易进行杀菌、消毒等。表面生物陶瓷的种类从生物惰性涂层材料发展到生物活性涂层材料、降解材料及多相复合材料。表面生物陶瓷材料可分为惰性表面生物陶瓷、活性表面生物陶瓷、降解表面生物陶瓷和复合表面生物陶瓷。目前,生物涂层材料的研究已经进入了攻坚阶段,而如何提高材料的界面结合强度又能够保证涂层的稳定性和生物活性则是研究的核心内容。随着各种制备方法的不断出现和改进,以及对其机理的深入研究,将会对生物涂层材料的研究提供强大的工具。从基于仿生原理出发,制备类似于自然组织的组成、结构和性质的理想生物材料,应该是生物材料的一个新的发展方向。参考文献

[1] 戴浩,周融,樊刚.钛板表面生物活性梯度陶瓷涂层的制备[J].江苏冶金,2006,34(2):19-21.

[2] 刘栋,刘其斌.宽带激光熔覆生物陶瓷梯度涂层及其生物活性[J].红外与激光工程,2010,39(4):741—746.

[3] 赵海涛.生物陶瓷的研究与应用前景展望[J].长春光学精密机械学院学报,2002,35(1):6l一64.

[4] Siriphannon P,Kameshima Y,Yasumori A,et a1.Influence of preparation conditions on the microstructure and bioactivity of α-CaSiO2 ceramics:Form~ion of hydroxyapatite in simulated body fluid[J].J.Biomed.Mater.Res,2000,52(1):30—39.

[5] Xuanyong Liu,Chuanxian Ding,Zhenyao Wang.Apatite formed on the surface of plasma—sprayed wollastonite coating immersed in simulated body fluid[J].Biomaterials,2001,22(14):2007-2012.

[6] Yang Y C,Chang E.The bonding of vlasma—sprayedhydroxyapatite coatings to titanium :effect of processin,prosityand residual stress[J].Thin Solid Films,2003,444:260—274.

[7] Yang Yunzhi,Ong J L,Tian Jierno.Deposition of highly adhesive ZrO2 coating on Ti and CoCrMo implant materials using plasma spraying[J].Biomatefials,2003,24:619—627.

[8] Liu Xuanyong,Zhao Xiaobing,Ding Chuanxian,et a1.Light-induced bioactive TiO2 surface[J].App1.Phys.Lett,2006,88(1):013905.

[9] Zhao Xiaobing,Liu Xuanyong,Ding Chuanxian,et a1.Invitro bioactivity ofplasmasprayed TiO2 coating after sodium hydroxide treatment[J].Sur Coat Teahnol,2006,200:5487—5492.

[10] Liu Xuanyong,Zhao Xiaobing,Furky,et a1.Plasma—treated nanostruetured TiO2 surface supposing biomimetic growth apatite[J].Biomaterials,2005,26(31):6143.6150.

[11] Zhao Xiaobing,Liu Xuanyong,Ding Chuanxian.Acid—induced bioactive titania sueface[J].J Biomed Mater Res,2005,75A:888-894.

[12] Liu Xuanyong,Ding Chuanxian.Apatite formed on the Surface of plasma—spryed wollastonite

coating

immersed

in

simulated

body fluid[J].Biomaterials,2001,22:2007—2012 [13] 刘宣勇,丁传贤.等离子喷涂硅灰石涂层结构和性能的研究[J].硅酸盐学报.2002,30(1):20—25.

[14] 郑学斌.等离子喷涂羟基磷灰石复合涂层的研究[D].上海:中国科学院上海硅酸盐研究所,2005:l6-20.

[15] Liu Xuanyong,Tao Shunyan.Ding Chuanxian.Bioactivity of plasma spraycd diealcium silicatc coatings[J].Biomaterials,2002,23:963—968.

[16]郑敏,樊丁,李秀坤,等.激光熔覆钛基生物陶瓷涂层的制备及其界面研究[J].稀有金属材料与工程,2009,38(11):2004-2009.

[17]邓迟,黄永一,张亚平.激光熔覆生物陶瓷涂层化学冶金反应研究[J].西南师范大学学报(自然科学版),2005,30(6):1055—1061.

[18]高家诚,邓迟,张亚平.激光熔覆生物陶瓷涂层和界面的研究[J].应用激光,2006,26(1):20—25.

[19]张亚平,高家诚,文静.铝合金表面激光熔凝一步制备复合生物陶瓷涂层[J].材料研究学报,2003,12(4):424-426.

[20]邓迟,王勇,张亚平,等.稀土对激光熔覆生物陶瓷涂层强度的影响[J].材料热处理学报,2005,26(5):28.34.

[21]金华峰.燃烧合成陶瓷涂层技术的应用研究与发展趋势[J].表面技术,2000,29(6):26—32.

[22]刘芳,周科朝,刘咏,等.燃烧合成在制备生物陶瓷涂层中的应用[J].粉末冶金材料科学与工程,2004,9(1):41—44.

[23]刘芳,刘咏,周科朝,等.燃烧合成一水热法制备生物陶瓷涂层[J].粉末冶金材料科学与工程,2003,8(2):103—106.

[24]Shinkhanzadeh M.Bonctive enleium phsphte eontings preepared by electrode position[J].Matenial seienee Lettet,2001,10:1415—1417.

[25]刘芳,周科朝,刘咏,等.电沉积-水热合成法制备的生物陶瓷涂层与基体界面结合强度[J].粉末冶金材料科学与工程,2003,8(3):191—194.

[26] 刘芳,周科朝,黄伯云,等.电沉积一水热合成法制备羟基磷灰石生物陶瓷涂层的研究进展[J].粉末冶金材料科学与工程,2002,7(2):128—131.

[27] 郭军松,张建民.电泳沉积羟基磷灰石生物陶瓷涂层的研究[J].郑州大学学报(理学版),2003,35(1):4.77.

第二篇:EB-PVD制备热障涂层完整介绍

电子束物理气相沉积(EB-PVD)技术制备热障涂层技术 黄升

摘要:本文介绍电子束物理气相沉积(EB-PVD)制备热障涂层技术,结合发展历程综述其技术原理、设备构造及工艺特点。

关键词:电子束物理气相沉积(EB-PVD)热障涂层 1 引言

当今航空涡扇发动机正朝高流量比、高推重比和高涡轮进口温度方向发展,这就使得发动机叶片所承受温度不断升高,据报道目前商用飞机燃气温度达1500 °C、军用飞机燃气温度高达1700 °C[1]。而当前所使用镍基高温合金最高工作温度只能达到1200 °C,并几乎已达到其使用温度上限,提升空间极其有限。面对发动机使用的高温障碍,降低发动机叶片温度就成了极其关键的任务。热障涂层就是一种降温的有效途径(见图1),自20世纪70年代初问世以来[2],受到广泛重视并迅速发展成为高温涂层研究的热点[3-8]。

图1 涡轮叶片承温能力

所谓热障涂层(Thermal Barrier Coatings, TBCs)是指由金属缓冲层或者黏结层和耐热性好、隔热性好的陶瓷热保护功能层组成的层合型金属陶瓷复合涂层系统[9]。一般由具有一定厚度和耐久性的陶瓷涂层、金属粘结层和承受机械载荷的合金组成。目前根据不同设计要求热障涂层具有如图2所示双层、多层、梯度系统三种结构形式。

图2 热障涂层结构示意图

而电子束物理气相沉积(Electron bean-physical vapor deposition EB-PVD)制备热障涂层(TBCs)是在20世纪80年代开发,近年来不断发展成熟起来的新技术,其使用高能电子束加热并汽化陶瓷源,陶瓷蒸汽以原子形式沉积到基体上而形成涂层。EB-PVD法制备的TBCs涂层表面光洁,有良好的动力学性能;涂层/基体的界面以冶金结合为主,结合力强,稳定性好。特别是其制备涂层组织为垂直基体表面柱状晶结构,具有很高的应变容限,较热喷涂制备涂层热循环寿命提升巨大。另外EB-PVD工艺技术精密,具有良好的可重复性。简而言之,EB-PVD法制备热障涂层是兼具优良性能和巨大应用潜力的前沿技术。2 EB-PVD技术发展历程

EB-PVD技术是伴随着电子束与物理气相沉积技术的发展而发展。直到上世纪中叶,电子束与物理气相沉积技术结合并成功地用于材料焊接及镀膜(或涂层)的制备。20世纪80年代,美国、德国等西方国家开始利用 EB-PVD工艺制备热障涂层,但由于该设备在西方国家价格昂贵,且制备成本高,这使得对EB-PVD 技术的开发曾经一度停止[10, 11]。

20世纪50年代,前苏联对EB-PVD设备和工艺的投入全部集中在乌克兰巴顿焊接研究所,该所设计制造了30多台各种类型的EB-PVD设备。前苏联解体后,在科学院院士B A Movchen的领导下,乌克兰巴顿焊接研究所成立了电子束国际中心(International Center for Electron Beam Technologies, ICEBT),并将EB-PVD设备的成本降低到接近西方国家同类设备的1/5。该中心成功地在叶片上制备出热障涂层,现已得到应用。到了上世纪九十年代中期,随着乌克兰巴顿焊接研究所研制的低成本的EB-PVD设备在世界各国的推广,从而掀起了EB-PVD技术的开发的新热潮[12-14]。

鉴于等离子喷涂(APS)涂层表面粗糙度大、孔隙多,难以适应气动性要求高的飞行器发动机涡轮转子叶片,加之APS涂层热稳定性和抗热冲击、热腐蚀性差。因此自20世纪70年代开始国外对EB-PVD制备TBCs开展了大量研究,自20世纪80年代美国、德国均获得可成功的应用[15]。由于EB-PVD TBCs柱状组织结构,能非常牢固地粘接在金属基体上,当基体受热膨胀时,柱状陶瓷晶体在水平方向具有大膨胀系数与基体匹配,在平面内的杨氏模量较低,可更多地释放热应力,具有较好的抗热冲击性。正是这种高应力容限,使这种TBCs在高应力发动机上成功工作而不致剥落。这种特性是等离子喷涂TBCs不具备的。EB-PVD制备的TBCs在航空航天领域得到了广泛应用并发挥了巨大作用,正常情况下,TBCs可降低金属表面温度50~80 °C,个别高温点降温可达 140 °C。

以EB-PVD技术在梯度热障涂层的研究历程中起的作用为例,为了解决金属与陶瓷热膨胀系数不匹配造成陶瓷层过早剥落现象,德国和加拿大研究人员最先提出了梯度热障涂层的设想。梯度热障涂层(图3)顶层YSZ(Yttria Stabilized Zironia)陶瓷层,底层为NiCoCrAlY金属粘接层,在二者之间引入了Al2O3-YSZ 梯度过渡层[16, 17]。该系统中金属粘接层到陶瓷层为连续过渡,消除了层状结构的明显层间界面,使涂层力学性能由基体向陶瓷层连续过渡。B A Movchan等人[18]选用Al-Al2O3-YSZ作为梯度过渡材料,利用EB-PVD采用单源多组分蒸发技术制备梯度热障涂层。采用EB-PVD方法制备梯度热障涂层,将在YSZ陶瓷层内形成柱状晶结构,极大地提高陶瓷层的容应变能力。当Al2O3和ZrO2共同蒸发时,将在基体上得到具有微观多孔结构的Al2O3-YSZ混合层,可以降低材料的热导率。EB-PVD制备梯度TBC的抗热震性能得到了提高,在1135 °C(24 h)风冷至50 °C的热循环试验条件下,涂层能持续1500 h。

图3 梯度系统结构EB-PVD技术原理、设备结构及工艺特点

3.1 EB-PVD技术原理

电子束物理气相沉积(EB-PVD)技术是电子束技术与物理气相沉积技术相结合的产物。它是在真空环境下,利用高能量密度的电子束加热放入水冷坩埚中的被蒸发材料,使其达到熔融气化状态,并在基板上凝结成膜的技术。其物理过程如下: 被蒸发材料(固态)→金属熔融物和蒸气(气态)→涂层(固态)3.2 EB-PVD设备结构

图4为乌克兰GEKONT公司研制的L5型EB-PVD设备[19]。该设备为工业型电子束设备,全长近9 m,总功率为280 kW,由容积为116 m3和位于主真空两侧的1至2个预真空室组成。

图4 EB-PVD设备工作原理图

配备8把电子枪,4个电子枪可分别或同时蒸发对应的4个锭料,2个电子枪用于从下方对基板进行加热,另外2个电子枪用于从上方对基板进行加热。每个电子枪的功率为60 kW,电子枪主要有直式皮尔斯枪和电磁偏转式枪。该设备采用的是直式皮尔斯枪,该枪具有结构简单,价格低廉和能量密度低等优点。聚焦电压为25 kV,电子束流2~3 A。3.3 EB-PVD工艺特点 如前所述,电子束物理气相沉积法是以电子束为热源的一种蒸镀方法,在真空环境下(一般为0~10-2 Pa),利用高能密度的电子束轰击蒸镀材料(金属、陶瓷等)使之熔化、气化、蒸发,在基板上沉积形成涂层。其工艺具有以下特点[20]:

(1)在真空条件下着沉积涂层,有利于避免基板和涂层之间污染和氧化,便于获得质量较高的涂层;

(2)电子束功率易于调节,束斑尺寸和位置易于控制,有利于精确控制涂层厚度;(3)选择适当的工艺参数,可得到与被蒸镀材料的成分相同,元素含量基本一致的涂层;(4)与其他蒸镀方法比,蒸发速率和沉积速率高(分别可达10~15 kg/h和100~150 μm/min)工艺重复性好;

(5)电子束所具有的高能量密度可以熔化、蒸发一些难熔材料物质,即使蒸气压较低的元素(如Mo、Nb等)也能利用该工艺蒸发;(6)基体与涂层之间有较高的结合力。3.4 EB-PVD工艺参数

由于电子束物理气相沉积(EB-PVD)是一个真空沉积过程,从蒸发材料表面的蒸汽流直接传输到基体上,沉积物达到基板的表面可能以几种状态存在:与基体完全粘结,扩散进入基体;与基体反应或不与基体反应。而这些均可以通过改变基板的条件或调整气液相的冷却速率来控制。许多制备工艺参数都会影响到EB-PVD涂层的组织结构和性能,如受到残余气体压强、蒸发材料的性质、电子束的特性以及基板温度等一系列因素的影响[21]。3.4.1 蒸发温度

蒸发温度直接影响沉积速率和质量,通常将蒸发物质加热,使其平衡蒸气压达到几帕以上,这时的温度定义为蒸发温度。根据热力学理论,材料蒸气压p与温度T之间的关系可以近似表示为:

(1)

式中:A、B分别为与材料性质相关的常数(可以直接由实验确定或查阅相关文献获得);T为热力学温度,单位为K;p为材料的蒸气压,单位为mmHg。3.4.2 气体压强的影响

为保持蒸气流和电子束可以畅通无阻的传输,必须使真空室的压强保持足够低。如果残余气体粒子密度处于较低的水平,那么就可以忽略蒸气粒子与电子和残余气体粒子相互碰撞的影响。但是蒸发表面附近,高的蒸气密度使蒸气与电子束束流发生相互作用,碰撞使蒸气粒子和电子偏离其原有的轨道,从而降低材料的利用率和能量的利用率,由碰撞引起的电子能量损失伴随着蒸气的激发和电离。对于压强为0.01 Pa的残余气体来说,蒸气流和电子流之间的相互作用都可以忽略不计;在气体压强为0.01~1 Pa时,与气体的相互作用非常显著,必须考虑电子与蒸气之间的相互作用。3.4.3 蒸发和凝聚的作用

若用单位时间内从单位面积蒸发的质量即质量蒸发速率Nm来表示蒸发速率,考虑到碰撞到液面或固面的分子只有部分凝聚,引入系数α(α<1),则:

(2)

引入气体状态方程p=nkT后,代入常数项,得

(3)

式(3)说明蒸发速率与蒸气压和温度之间密切相关,蒸发物质的饱和蒸气压和蒸气压随温度的变化呈指数变化,当温度变化10%时,饱和蒸气压要变化大约1个数量级。因此,控制蒸发速率的关键在于精确控制蒸发温度。

当两种组元的凝聚系数都接近1时(即沉积层中B组元的含量XB4与蒸气中的含量XB3),蒸发参数与XB3之间的关系是

(4)

组元含量按重量百分比给出,并且XA3+XB3=100。FA和FB是蒸气发射表面面积。假定:整个蒸发容器表面上的蒸发速率是相同的,并且FB/FA是一个常数。于是在多源蒸发共沉积时,沉积层中组元B的含量XB4可以通过改变各个坩埚的温度TA和TB来调节。

工业应用的沉积层要求组分恒定,沉积工艺必须在稳定状态进行。这种状态要求单位时间供给熔池内的蒸发物料的数量正好等于单位时间内被蒸发掉的;并且蒸发物料的组分必须精确的与沉积层的相同。当熔池中易挥发的组分消耗到某种程度时,蒸气的成分到达沉积的要求,即达到稳定的工作状态。建立稳定态所需的时间,亦即熔池达到所需成分的时间称为过渡时间,它主要取决于涂层组元的性质、熔池体积、蒸气发射面积及发射表面温度[22]。3.4.4 基板加热温度

许多制备工艺参数都会影响到EB-PVD涂层的结构与性能,但其中最主要的是基片加热温度Ts的选择。

研究发现当基片温度Ts ≤ 2/3 Tm(Tm为金属熔点,单位为K)时,金属由气相直接凝结成固相;而当基片温度Ts > 2/3 Tm时,金属逐步地由气相变成液相(液滴),当液滴达到一定尺寸之后发生结晶。B A Movchen和A V.Demchishin对基片温度与真空度对涂层微观结构的影响进行详细的研究,建立了基片温度与涂层结构的关系模型[23, 24],如图5所示。这一结构模型为后来的许多研究所确认成为经典的关系模型。该模型的具体内容如下:(1)当Ts/Tm < 0.3时,由于阴影效应和沉积原子在基片表面扩散不充分,使得涂层为圆顶柱状晶结构,晶界有较多孔隙(Ⅰ)区。从Ⅰ区到Ⅱ区之间为过渡区域,由密排纤维状晶粒组成;

(2)当0.3 < Ts/Tm < 0.5时,形成Ⅱ区所示的致密的柱状晶结构,这种涂层结构是由表面扩散控制的凝结形成的。在这一范围内,随着Ts的增大,柱状晶尺寸也会增大,以Ni为例,其柱状晶尺寸可以从1 μm增大到25 μm。

(3)当0.5 < Ts/Tm < 1时,形成Ⅲ区的再结晶结构,这种结构主要由体扩散控制。

图5 基板温度同涂层结构关系模型结束语

在航空航天领域,利用EB-PVD制备热障涂层,是实现高推重比发动机的一项关键技术。EB-PVD技术在制备TBCs涂层方面有其自身的特点,尤其在改善发动机热端部件性能方面具有显著优势。

本文较为详尽地介绍了EB-PVD技术的发展历史、技术原理、设备、工艺特点,可以看到EB-PVD技术的应用涉及到众多学科领域,包括机械、真空、材料、高压、自控等,是一个多学科交叉发展的高技术集成系统,是先进制造水平的体现。

当今国际上,EB-PVD沉积热障涂层在航空发动机制造中已有20多年的成功应用经验,随着我国科技实力的增强以及对EB-PVD技术不断深入研究,将缩短与国外的差距,使EB-PVD技术在我国国防及民用领域发挥更大的作用。参考文献

[1] 张平.热喷涂材料 [M].北京: 国防工业出版社, 2006.[2] 谢冬柏, 王福会.热障涂层研究的历史与现状 [J].材料导报, 2002, 16(3): 7 [3] Suhu lzU, Leyens C, FrischerK, et al.Some recent trends in research and technology of advanced thermal barrier coatings [J].Aerospace Science and Technology, 2003, 7: 73-80.[4] Leyens C, Suhulz U, FrischerK, et al.Contemporary materials issues for adv anced EB-PVD thermal barrier coating systems [J].Zeitschrift Fuer Metallkunde, 2001, 92(7): 762-772.[5] Kaysser W A, Bartsch M, Krell T, et al.Ceramic thermal barriers for demanding turbine applications [J].Ceramic Forum International 2000, 77(6): 32-36.[6] 徐强, 潘伟, 王敬栋, 等.Dy2Zr2O7陶瓷的固相合成与热物理性能研究 [A].中国材料研讨会论文集 [C].北京: 中国材料研究学会, 2004, 817-822.[7] 刘喜华.La2O3-CeO2-ZrO2 热障涂层的制备 [D].北京: 北京科技大学, 2004.[8] 张罡, 梁勇.激光制备陶瓷热障涂层的研究和发展 [J].沈阳工业学院学报, 2000, 19(1): 1-7.[9] 林锋, 蒋显亮.热障涂层的研究进展 [J].功能材料, 2003, 34(3): 254-261.[10] 徐惠彬, 宫声凯, 刘福顺.乌克兰巴顿焊接研究所的电子束物理气相沉积技术 [J].航空制造工程, 1997, 6 :6-8.[11] 关春龙, 李垚, 赫晓东.电子束物理气相沉积技术及其应用现状 [J].航空制造技术, 2003, 11: 35-37.[12] Movchen B A.EB-PVD technology in the gas turbine industry: present and future [J].JOM, 1996,(11):40-45.[13] Movchen B A, Marinski G S.Gradient protective coatings of different application produced by EB-PVD [J].Surface and Coatings Technology, 1998, 1002101: 309-315.[14] Movchen B A, Lemkey F D.Some approaches to producing microporous materials and coatings by EB-PVD [J].Surface and Coatings Technology, 2003, 165:90-100.[15] 李美姮, 胡望宇, 孙晓峰, 等.热障涂层的研究进展与发展趋势 [J].材料导报, 2005, 19(4): 41-45.[16] 郭洪波 ,宫声凯 ,徐惠彬.梯度热障涂层的设计 [J].航空学报, 2002, 23(5): 467-472.[17] Hongbo Guo, Huibin Xu, Xiaofang Bi, et al.Preparation of Al2O32YSZ composite coating by EB-PVD [J].Mat Sci & Eng A, 2002, A 325:389-393.[18] Movchen B A, Rudoy Y.Composition, structure and properties of gradient thermal barrier coatings produced by EB-PVD [J].Materials and Design, 1998, 19: 253-258.[19] 关春龙.EB-PVD 制备大尺寸Ni-Cr-Al 合金薄板组织及性能研究 [D].哈尔滨工业大学博士论文.2005.6.[20] 武洪臣, 姚振, 冯建基, 等.先进的涂层技术—EB-PVD [J].航空制造技术, 2005, 13(5): 28-30.[21] Paglia C S, Buchheit R G.Microstructure, microchemistry and environmental cracking susceptibility of friction stir welded 2219-T87 [J].Mater Sci Eng A, 2006, 429: 107 [22] Paglia C S, Jata K V, et al.A cast 7050 friction stir weld with scandium: microstructure, corrosion and environmental assisted cracking [J].Mater Sci Eng A, 2006, 424: 196 [23] Movchen B A, V.Demchishin A.Study of structure and properties of thick vacuum condensates of Nickel, Titanium, Tungsten, Aluminum oxide and zirconium dioxide, Fiz.Metal [J].Metalloved.1969, 28: 83-90.[24] 郭洪波.电子束物理气相沉积梯度热障涂层热疲劳行为及时效机制 [D].北京航空航天大学博士论文.2001.7.

第三篇:纳米陶瓷涂层的典型应用领域

纳米陶瓷涂层的一些典型应用领域:

飞机发动机、燃气轮机零部件:

热障涂层(TBC)被广泛地应用在飞机发动机、涡轮机和汽轮机叶片上,保护高温合金基体免受高温氧化、腐蚀,起到隔热、提高发动机进口温度和发动机推重比作用的一种陶瓷涂层材料。8YSZ材料被用做热障涂层材料在军用发动机已应用几十年了,它的缺点是不能突破1200oC的使用温度,但现在军用发动机的使用温度已经超过1200oC,因此急需材料方面的突破。另外,地面燃气轮机的热障涂层材料基本受制于国外,也亟待国产化。国内外研究指出含锆酸盐的双陶瓷热障涂层被认为是未来发展长期使用温度高于1200oC的最有前景的涂层结构之一。用纳米结构锆酸盐粉体喂料制备的纳米结构双陶瓷型n-LZ/8YSZ热障涂层的隔热效果明显好于其它现有涂层,与相同厚度的传统微米结构单陶瓷型8YSZ热障涂层相比,隔热效果提高了70%。而且,纳米结构的双陶瓷型涂层具有比其它两种涂层层更好的热震性能。

军舰船舶零部件:

纳米结构的热喷涂陶瓷涂层早已广泛应用于美国海军装备(包括军舰、潜艇、扫雷艇和航空母舰)上的数百种零部件。纳米结构陶瓷涂层的强度、韧性、耐磨性、耐蚀性、热震抗力等均比目前国内外商用陶瓷涂层材料中质量好、销量大的美科130涂层的性能显著提高。有着高出1倍的韧性,高出4-8倍的耐磨性,高出1-2倍的结合强度和抗热震性能和高出约10倍的疲劳性能。表1给出了纳米结构的热喷涂陶瓷涂层在美国海军舰船上的一些典型应用。

表1 一些美国海军舰船上应用的热喷涂纳米Al2O3/TiO2陶瓷涂层

零部件 水泵轴 阀杆 轴

涡轮转子 端轴 阀杆 膨胀接头 支杆 流量泵

船上系统 储水槽 主柱塞阀 主加速器 辅助蒸汽 主推进发动机 主馈泵控制 弹射蒸汽装置 潜艇舱门 燃料油

基体材料 使用环境 NiCu合金 不锈钢 碳钢 碳钢 青铜 不锈钢 CuNi合金 不锈钢 碳钢

盐水 蒸汽 盐水 油 盐水 蒸汽 蒸汽 盐水 燃料油

柴油机、工程机械零部件:

高性能纳米结构陶瓷涂层可以大幅度提高材料或零部件的硬度、韧性、耐磨性、抗腐蚀性和耐高温性能,因此可广泛应用于柴油发动机、工程机械等领域。如缸体、泵轴、机轴、曲轴、凸轮轴、轴瓦、连杆瓦、柱塞、阀杆、阀座、液压支杆、缸盖、活塞销、活塞和活塞环等零部件。如:纳米陶瓷涂层来大幅度提高曲轴的抗疲劳强度、硬度和耐磨性;纳米陶瓷涂层用于活塞无疑会是最具有高性价比的工艺技术;纳米陶瓷涂层将给与主轴瓦及连杆瓦以更高的强度、硬度和韧性,显著提高其耐磨性能,极大地减小曲轴的磨损、有效地防止烧瓦、抱瓦及烧曲轴;纳米陶瓷涂层技术应该是目前用于活塞环的最佳表面改性技术。

汽车零部件:

每辆汽车有几十个零部件可以采用耐磨耐蚀的喷涂层,如曲轴、顶杆、阀杆、阀座、齿轮箱齿轮轴颈、活塞、柱塞等。高性能纳米结构陶瓷涂层无疑是解决这些零部件磨损和腐蚀问题的首选技术。

盾构机零部件:

盾构机被业界喻为地下航母,是挖掘地铁隧道、公路隧道、引水隧洞等工程的利器。按照50年的地下施工高峰期计算,我国盾构机市场的订单将高达上千亿元。然而,这种巨大、精密而复杂的工业产品一向是我国制造业的软肋。由于技术落后,盾构机的主轴和液压件这类关键部件耐磨抗蚀性能差,使用寿命低。目前国内生产的所有盾构机关键总成和零部件都只能依赖进口,亟需国产化。这就是为何当地铁建设狂潮正席卷中国大陆之时,作为关键施工设备的盾构机却因关键零部件受制于人而使国产盾构机行业难以摆脱窘境的原因。而针对盾构机的主轴和液压件这类关键部件耐磨抗蚀性能差,使用寿命低的问题,也许只有采用成熟的纳米结构涂层技术才能使我国盾构机关键件的制造走出困境。

高端轴承:

中国是全球第一轴承生产大国,但风电、高铁、轿车、精密机床等高端装备用轴承却是短板。如中国高铁每年产值数千亿,但高铁轴承却一直依赖进口,时速160公里以上客车用轴承全部靠进口。而纳米陶瓷涂层无疑是提高高端装备用轴承性能的最简易有效的途径。如将纳米陶瓷涂层制备于轴承套圈滚道上就可形成陶瓷轴承,尤其是大中型陶瓷轴承。如将纳米陶瓷涂层涂覆在轴承套圈外侧,就可成为耐磨绝缘轴承。

阀门:

目前我国企业生产的各种阀门寿命短、不可靠,部分产品只相当于上世纪80年代初的国际水平,一些高温高压和关键装置上需要的阀门仍然依赖进口。如在冶金工业中,煤粉调节阀使用工况恶劣,对核心零件(阀瓣,左、右阀座等)性能要求极其严格,国内煤粉调节阀市场完全被国外产品所垄断。而通过纳米结构陶瓷涂层在阀门核心零件上进行应用,有利于国内阀门市场的国产化。

液压缸活塞杆:

液压缸活塞杆是液压缸的重要部件,为了提高耐磨抗蚀性能,目前国内传统工艺是表面镀硬铬。由于镀铬对人和环境污染严重,属国家环保限制项目,且镀层不均匀,孔隙率高,容易起皮,镀铬费用也比较高,不能满足生产上的需要,因此采用合适的涂层或镀层取代镀铬一直是机械装备行业的重要课题。特别是舰船舷外液压缸活塞杆工作在-30oC~65oC温度范围内的潮湿海洋大气或海水介质中,并承受一定的环境压力,要求较高的物理、化学和力学性能。目前广泛采用的电镀硬铬层已不能满足对液压缸活塞杆的使用性能要求,常规的热喷涂涂层也难以满足这些性能要求,只有先进的纳米陶瓷涂层材料是液压缸活塞杆首选的涂层材料。

连铸结晶器:

我国钢产量约9亿吨,95%以上是连铸生产的,据统计,每生产20万吨钢板就要更换一个连铸结晶器。目前,国内连铸结晶器大多采用电镀硬铬层或合金镀层,也有一些是热喷涂合金层,而国外经过研究后已开始采用热喷涂普通陶瓷涂层。纳米陶瓷涂层无疑具有更大的应用优势。

冶金轧辊:

纳米结构陶瓷球形粉体可作为连铸机轧辊、炉底辊的高温耐磨涂层材料。不仅可作为冷轧机组工艺辊,还可作为连续退火机组炉辊,如在高温段,以CoNiCrAlY 为底层,ZrO2-Y2O3(或其他陶瓷材料)为面层。

3D打印:

作为一种增材制造技术,3D打印技术将深刻影响制造业的未来,成为未来新的经济增长点。可是,3D打印金属相对容易,3D打印高强度合金相对难些,3D打印陶瓷相对更难些,3D打印纳米陶瓷可能更难。我公司生产的纳米结构球形微粒粉末不仅可用于传统的陶瓷制造技术,也适合于先进的3D打印技术。也就是说这种纳米结构球形微粒粉末能够作为3D打印的原材料,为3D打印纳米陶瓷材料制品提供了可能。

第四篇:金属纳米材料制备技术的研究进展

金属纳米材料制备技术的研究进展

摘要:本文从金属纳米材料这一金属材料重要分支进行了简要的阐述,其中重点讲述了强行塑性变形及胶束法制备纳米材料,并分析了金属纳米材料的现状及对今后的展望。

关键字:晶粒细化;强烈塑性变形;胶束法;块状纳米材料

引言:

金属材料是指金属元素为主构成的具有金属特性的材料的统称。包括金属、合金、金属间化合物和特种金属材料等。人类文明的发展和社会的进步同金属材料关系十分密切。继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。

现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。同时,人类文明的发展和社会的进步对金属材料的服役性能提出了更高的要求,各国科学家积极投身于金属材料领域,向金属材料的性能极限不断逼近,充分利用其为人类服务。

一种崭新的技术的实现,往往需要新材料的支持。例如,人们早就知道喷气式航空发动机比螺旋桨航空发动机有很多优点,但由于没有合适的材料能承受喷射出燃气的高温,是这种理想只能是空中楼阁,直到1942年制成了耐热合金,才使喷气式发动机的制造得以实现。

1金属纳米材料的提出

从目前看,提高金属材料性能的有效途径之一是向着金属结构的极端状态发展:一方面认为金属晶界是薄弱环节,力求减少甚至消除晶界,因此发展出了单晶与非晶态合金;另一方面使多晶体的晶粒细化到纳米级(一般<100 nm,典型为10 nm左右)[1]。细化晶粒是金属材料强韧化的重要手段之一,它可以有效地提高金属材料的综合力学性能,尤其是当金属材料的晶粒尺寸减小到纳米尺度时,金属表现出更加优异的力学性能[2]。因此,金属材料晶粒超细化/纳米化技术的发展备受人们关注,一系列金属纳米材料的制备技术相继提出并进行了探索,包括电沉积法、溅射法、非晶晶化法、强烈塑性变形法(Severe Plastic Deformation, SPD)、[3]粉末冶金法以及热喷涂法等。

金属纳米材料是指三维空间中至少有一维处于纳米尺度或由它们作为基本单元构成的金属材料。若按维数,纳米材料的基本单元可分为(类:一是零维。指在空间三维尺度均在纳米尺度,如纳米粉体、原子团簇等;二是一维。指在空间有两维处于纳米尺度,如纳米丝、纳米棒、纳米管等;三是二维。指在三维空间中有一维处于纳米尺度,如超薄膜、多层膜及超晶格等。超微颗粒的表面具有很高的活性,在空气中金属颗粒会迅速氧化而燃烧。利用表面活性,金属超微颗粒可望成为新一代的高效催化剂和贮气材料以及低熔点材料[4]。金属纳米颗粒表现出许多块体材料所不具备的优越性质,可用于催化、光催化、燃料电池、化学传感、非线性光学和信息存储等领域。

以金金属具体来说,与块状金不同,金纳米粒子的价带和导带是分开的。当金粒子尺寸足够小时,会产生量子尺寸效应,引起金纳米粒子向绝缘体转化,并形成不同能级间的驻电子波。若其能级间隔超出一定的范围并发生单电子跃迁时,将表现出特殊的光学和电子学特性,这些性质在晶体管、光控开关、传感器方面都有其潜在的应用前景。是因为金纳米粒子的特殊性质,使其在生物传感器、光化学与电化学催化、光电子器件等领域有着极其广阔的应用前景。近几年来,基于金纳米粒子在发生吸附后其表面等离子共振峰会发生红移这一性质,对担载金纳米粒子的DNA及糖类分子进行研究,发现其在免疫、标定、示踪领域中有着广阔的应用前景。此外,金纳米粒子作为一种新型催化剂在催化氧化反应中有着很高的催化活性,而担载金纳米粒子后,TiO2薄膜的光催化活性极大提高[5]。

2金属纳米材料的制备技术

如今,金属纳米材料的制备技术已趋于多样化发展,按不同的分类标准具有不同的分类方法。其中基本的可分为物理法,化学法及其他方法,物理法大致包括粉碎法和构筑法,化学法由气相反应法和液相法。物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。常借助的外力有机械力、流能力、化学能、声能、热能等。一般的粉碎作用力都是几种力的组合,如球磨机和振动磨是磨碎和冲击粉碎的组合;雷蒙磨是压碎、剪碎和磨碎的组合;气流磨是冲击、磨碎与剪碎的组合。构筑法是由小极限原子或分子的集合体人工合成超微粒子。

气相法制备金属纳米微粒,主要有气相冷凝法、活性氢—熔融金属反应法、溅射法、流动液面上真空蒸镀法、通电加热蒸发法、混合等离子法、激光诱导化学气相沉积法、爆炸丝法、化学气相凝聚法和燃烧火焰—化学气相凝聚法。

液相法制备金属纳米微粒,主要有沉淀法、喷雾法、水热法、溶剂挥 发分解法、溶胶—凝胶法、辐射化学合成法。此外还包括物理气相沉积、化学气相沉积、微波等离子体、低压火焰燃烧、电化学沉积、溶液的热分解和沉淀等。

2.1块体材料制备

金属纳米块体材料制备加工技术:两种大块金属纳米材料的制备方法[6]-[8]。第一种是由小至大,即两步过程,先由机械球磨法、射频溅射、溶胶—凝胶法、惰性气体冷凝法等工艺制成纳米颗粒,再由激光压缩、原位加压、热等静压或热压制成大块金属纳米材料。凡能获得纳米粉末的方法一般都会通过后续加工得到大块金属纳米材料。第二种方法为由大变小,是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。使大块非晶变成大块纳米晶材料或利用各种沉积技术获得大块金属纳米材料。

大块金属纳米材料制备技术发展的目标是工艺简单,产量大及适应范围宽,能获得样品界面清洁且无微孔的大尺寸纳米材料制备技术。其发展方向是直接晶化法。实际上今后相当一段时间内块状纳米晶样品制备仍以非晶晶化法和机械合金化法为主[4]。现在需要克服的是机械合金化中微孔隙的大量产生,亦应注意其带来的杂质和应力的影响。今后纳米材料制备技术的研究重点将是高压高温固相淬火,脉冲电流及深过冷直接晶化法和与之相关的复合块状纳米材料制备及研究工作。

2.2 强烈塑性变形法(SPD技术)

强烈塑性变形法(SPD技术)是在不改变金属材料结构相变与成分的前提下,通过对金属材料施加很大的剪切应力而引入高密度位错,并经过位错增殖、运动、重排和湮灭等一系列过程,将平均晶粒尺寸细化到1μm以下,获得由均匀等轴晶组成、大角度晶界占多数的超细晶粒金属材料的一种工艺方法[9]。SPD是一种致力材料纳米化的方法,其特点是利用剧烈塑性变形的方式,在较低温度下(一般<0.4Tm, Tm为金属熔点)使常规金属材料粗晶整体细化为大角晶界纳米晶,无结构相变与成分改变,其主要的变形方式是剪切变形。它不仅是一种材料形状加工的手段,而且可以成为独立改变材料内部组织和性能的一种技术,在某些方面,甚至超过热处理的功效。它能充分破碎粗大增强相,尤其是在促使细小颗粒相均匀分布时比普通轧制、挤压效果更好,显著提高金属材料的延展性和可成形性。在应用方面,到目前为止,通过SPD法取得了纯金属、合金钢、金属间化合物、陶瓷基复合材料等的纳米结构,而且投入了实际应用并获得了认可[3]。譬如,通过SPD法制备的纳米Ti合金活塞,已用于小型内燃机上;通过SPD法制备的纳米Ti合金高强度螺栓,也已广泛应用于飞机和宇宙飞船上。这些零件可以满足高强度、高韧性、较高的疲劳性能的要求,从而大大提高了使用寿。

经过近年的快速发展,人们对采用SPD技术制备金属纳米/超细晶材料已经有了一定的认识。但是,不管是何种SPD法制备纳米材料,目前,还处在工艺可行性分析及材料局部纳米化的实验探索阶段,存在诸如成形效率低、变形过程中出现疲劳裂纹、工件尺寸小、显微组织不均匀、材料纳米化不彻底等问题,对SPD制备纳米/超细晶金属材料的成形机理没有统一的定论。

2.3胶束法

胶束法是控制金属纳米颗粒形状的另一个重要方法[10]。胶束以一小部分增溶的疏水物质或亲水物质形式存在。如果表面活性剂的浓度进一步增大,增溶程度会相应提高。胶束尺寸可增大到一定的范围,此时胶束尺寸比表面活性剂的单分子层厚度要大很多,这是因为内池中的水或者油的量增大的缘故。如果表面活性剂的浓度进一步增大,胶束则会被破坏而形成各种形状,这也为合成不同形状的纳米粒子提供了可能。合成各种形貌的金属纳米颗粒的方法还包括高温分解法、水热法、气相沉积法、电化学法等。其中,高温分解法是在高温下分解前驱体;水热法是一种在高温高压下从过饱和水溶液中进行结晶的方法;气相沉积法是将前驱体用气体带入反应器中,在高温衬底上反应分解形成晶体。这3种方法均可以得到纯度高、粒径可控的纳米粒子,但是制备工艺相对复杂,设备比较昂贵。电化学方法中可采用石墨、硅等作阴极材料,在水相中还原制备不同金属纳米颗粒,也可采用模板电化学法制备金属纳米管、纳米线等不同形貌的纳米材料。这种方法的优点是反应条件温和、设备简单,但目前还没有大规模合成方面的应用。

2.4双模板法制纳米点阵[11]

采用先后自组装、沉积和溶解的方法,制成2种模板,然后在其中空球模板中电化学沉积得到纳米粒子点阵,溶去另外一种模板后得到纳米粒子点阵。这是目前获得粒子均匀排列有序纳米粒子点阵的最有效的方法,关键是如何控制粒子的大小和获得较窄且均匀的粒度分布。

3金属纳米材料的现状分析

纳米技术在生产方式和工作方式的变革中正在发挥重要作用,它对社会发展、经济繁荣、国家安定和人类生活质量的提高所产生的影响无法估量。鉴于纳米技术及纳米材料特别是金属纳米材料在未来科技中的重要地位及产业化的前景一片光明,目前世界上各国特别是发达国家非常重视金属纳米材料,从战略高度部署纳米技术研究,以提高未来10年至20年在国际上的竞争能力。

诺贝尔奖获得者罗雷尔说过:20世纪70年代重视微米研究的国家如今都成为发达国家,现今重视纳米技术和纳米材料的国家极可能成为下世纪的先进国家。最近美国在国家科学技术理事会的主持下,提出“国家纳米技术倡议”:纳米技术将对21世纪的经济、国防和社会产生重大影响,可能与信息及生物技术一样,引导下一个工业革命,应该置其于科技的最优先位置。世界各国制定纳米技术和纳米材料的战略是:以未来的经济振兴和国家的实际需求为目标,牵引纳米材料的基础研究和应用开发研究;组织多学科的科技人员交叉创举,重视基础和应用研究的衔接,重视技术集成;重视纳米材料和技术改造传统产品,提高高技术含量,同时部署纳米技术和纳米材料在环境、能源和信息等重要领域的应用,实现跨越式发展。我国纳米技术和纳米材料始于20世纪80年代末。“八五”期间,纳米材料科学列入国家攀登项目。纳米材料的应用研究自1996年以后在准一维纳米丝纳米电缆的制备等几个方面取得了重大成果。我国约有1万人从事纳米研究与发展,拥有20多条生产能力在吨级以上的纳米材料粉体生产线。生产的纳米金属与合金的种类有:银、钯、铜、铁、钴、镍、铝、钽、银-铜合金、银-锡合金、铟-锡合金、铜-镍合金、镍-铝合金、镍-铁合金、镍-钴合金[4]。

4结束语及展望

随着金属纳米科技的发展,金属纳米材料的制备已日渐成熟,并广泛应用于我们生活的各个方面,金属纳米科学也将成为受人瞩目的学科。但目前还存在一些不足,如在对复杂化学反应过程与机理的探索、金属纳米材料的规模化生产与应用等方面还需要我们进行更加深入和系统的研究。不过,我们有理由相信随着科学技术的不断发展进步,上述金属纳米材料化学制备的新技术和新方法将会得到不断创新与发展完善并将产生新的突破,它们将极大地推动金属纳米材料的规模制备与广泛实际应用,并最终在不久的将来产生较大的社会和经济效益。

今后金属纳米的发展趋势: 1在制备方面,大量的新方法、新工艺不断出现,希望找到产量大、成本低、无污染、尺寸可控的制备方法,为产业化服务。

2实用化研究提到日程上,出现基础研究和应用并行发展的问题,对传统金属材料进行纳米改性,以期获得优良性能。

3日益体现出多学科交叉的特点。纳米结构材料的研究不仅依赖于物理、化学等学科的发展,而且同电子学、生物学、测量学等产生越来越紧密的联系。

参考文献:

[1]GleiterH.Nanocrystalline materials [J].Progress in Materials Science, 1989, 33(4): 223-315.[2]王军丽,史庆南.纳米超细晶材料的制备方法[J].材料导报, 2005, 19(5): 15-19.[3]杨保健,夏琴香,张 鹏.SPD制备纳米/超细晶金属材料的成形方法[J].锻压技术,2011,36(2):48-51.[4]张代东,王钦清.金属纳米材料的发展动态研究[J].科技情报开发与经济,2002,12(5):89-91.[5] 姚素薇,邹毅,张卫国.金纳米粒子的特性、制备及应用研究进展[J].化工进展,2007,26(3):310-313.[6] 田春霞.金属纳米块体材料制备加工技术及应用[J].材料科学与

工程,2001,19(4):127-131.[7] 李景新,黄因慧,沈以赴.纳米材料的加工技术[J].材料科学与工

程,2001,19(4):117-121.[8] 刘建军,王爱民,张海峰.高压原位合成块体纳米镁-锌合金[J].材料研究学报,2001,15(3):299-302.[9] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nano-structured materials from severe plastic deformation [J].Prog.Mater.Sci., 2000, 45(2): 103-189 [10] 刘惠玉,陈 东,高继宁.贵金属纳米材料的液相合成及其表面等离子体共振性质应用[J].化学进展,2006,18(7/8):890-894.[11] 曹立新,屠振密,李宁.电沉积法制备单金属纳米晶材料的研究进展[J].材料保护,2009,42(6):47-52.

第五篇:压电陶瓷的制备与应用

压电陶瓷的制备与应用 【摘要】本文主要概述了国内外关于压电陶瓷材料的发展历史进程和研究现状,提出压电陶瓷材料的制备方法,探讨了其发展趋势和应用前景。指出了现代压电陶瓷材料正在向着复合化,薄膜化,无铅化及纳米化方向发展。该材料应用前景广阔,是一种极有发展潜力的材料。【关键词】 压电陶瓷性能参数 制备方法应用

压电陶瓷是指把氧化物混合(氧化锫、氧化铅、氧化钛等)高温烧结、固相反应后而成的多晶体.并通过直流高压极化处理使其具有压电效应的铁电陶瓷的统称,是一种能将机械能和电能互相转换的功能陶瓷材料。压电陶瓷是含高智能的新型功能电子材料,随着材料及工艺的不断研究和改良,压电陶瓷的技术应用愈来愈广。压电材料作为机、电、声,光、热敏感材料,在传感器、换能器、无损检测和通讯技术等领域已获得了广泛的应用,世界各国都高度重视压电陶瓷材料的研究和开发。

1、压电陶瓷的性能参数(1)机械品质因数

机械品质因数的定义是:Qm=×2∏,他表示在振动转换时,材料内部能量消耗的程度。机械品质因数越大,能量的损耗越小。机械品质因数可以根据等效电路计算而得:Qm=,式中R1为等效电阻,Ws为串联谐振频率,C1为振子谐振时的等效电容。当陶瓷片作径向振动时,可近似地表示为Qm=,式中C0为振子的静态电容,单位F;△f为振子的谐振频率fr与反谐振频率fa之差,单位Hz;Qm为无量纲的物理量。(2)基电耦合系数

机电耦合系数K是综合反映压电材料性能的参数,它表示压电材料的机械能与电能的耦合效应。机电耦合系数可定义为K2=(逆压电效应),K2=(正压电效应)没有量纲。机电耦合系数是压电材料进行机—电能量转换的能力反映,它与机—电效率是完全不同的两个概念。它与材料的压电常数、介电常数和弹性常数等参数有关,因此,机电耦合常数是一个比较综合性的参数。(3)弹性系数

根据压电效应,压电陶瓷在交变电场作用下,会产生交变伸长和收缩,从而形成与激励电场频率(信号频率)相一致的受迫振动。对于具有一定形状、大小和被覆工作电极的压电陶瓷称为压电陶瓷振子(简称振子)。实际上,振子谐振时的形变是很小的,一般可以看作是弹性形变。反映材料在弹性形变范围内应力与应变之间的参数为弹性系数。

压电陶瓷材料是一个弹性体,它服从胡克定律:在弹性限度范围内,应力与应变成正比。当数值为T的应力(单位为Pa)加于压电陶瓷片上时,所产生的应变S为S=sT、T=cS式中s为弹性柔顺系数,单位m2/N,c为刚性刚度系数,单位Pa。

2、压电陶瓷的制备过程

I、生产中广泛采用的压电陶瓷工艺,主要包括以下步骤:配料混合预烧粉碎成型排胶烧结被电极极化测试,如图2所示。

(1)配料、球磨混合

原料选用纯度高、细度小和活性大的粉料,根据配方或分子式选择所用原料,并按原料纯度进行修正计算,然后进行原料的称量。按化学配比配料以后,使用行星式球磨机将各种配料混合均匀。实验室常采用的是水平方向转动球磨方式,震动球磨是另一种常用的球磨方法,此外还有气流粉碎法等混合方法。(2)预烧、粉碎、成型、排胶和烧结 混合球磨后的原料进行预烧。预烧是使原料间发生固相化学反应以生成所需产物的过程,预烧过程中应注意温度和保温时间的选择。将预烧反应后的材料使用行星式球磨机粉碎。成型的方法主要有四种;轧膜成型、流延成型、干压成型和静水压成型。轧膜成型适用于薄片元件;流延成型适合于更薄的元件,膜厚可以小于10 m;干压成型适合于块状元件;静水压成型适合于异形或块状元件。除了静水压成型外,其他成型方法都需要有粘合剂,粘合剂一般占原料重量的3%左右。成型以后需要排胶。粘合剂的作用只是利于成型,但它是一种还原性强的物质,成型后应将其排出以免影响烧结质量。烧结是将坯体加热到足够高的温度,使陶瓷坯体发生体积收缩、密度提高和强度增大的过程。烧结过程的机制是组成该物质的原子的扩散运动。烧结的推动力是颗粒或者晶粒的表面能,烧结过程主要是表面能降低的过程。晶粒尺寸是借助于原子扩散来实现的。(3)被电极、极化、测量

烧结后的样品要被电极,可选用的电极材料有银、铜、金.铂等,形成电极层的方法有真空蒸发、化学沉积等多种。压电陶瓷中广泛采用的是,在烧结后的样品涂上银浆,在空气中烧制电极。为了防止空气在高压下电离、击穿,极化一般是在硅油中进行。为了获得优良的压电性能,需要选择合适的电场强度,适当的极化温度。极化样品放置24小时后,用压电常数测量仪测量d33,用高频阻抗分析仪(Agilent4294A等)测量介电常数、介电损耗、谐振频率等。

II溅射法(sp ut tering)是利用高速运动的荷能离子把靶材上的原子(或分子)轰击下来沉积在基片(加热或不加热)上形成薄膜的方法,采用射频磁控溅射能进一步增加电子的行程,加强电离和离子轰击效果,从而能有效提高溅射效率及薄膜的均匀性。

III、脉冲激光沉积(PLD)是80年代后期发展起来的新型薄膜制备技术。相对于其它薄膜制备技术, PLD具有沉积速度快、靶材和薄膜成分一致、生长过程中可原位引入多种气体、烧蚀物粒子能量高、容易制备多层膜及异质结、工艺简单、灵活性大、可制备的薄膜种类多、可用激光对薄膜进行多种处理等优点

IV、sol-gel法是通过将含有一定离子配比的金属醇盐和其它有机或无机金属盐溶于共同的溶液中,通过水解和聚合形成均匀的前驱体———溶胶,再经提拉、旋转涂覆、喷涂或电沉积法等将前驱体溶胶均匀地涂覆在基片上,然后烘干除去有机物,最后退火处理得到具有一定晶相结构的无铅压电陶瓷薄膜。

3、压电陶瓷的应用

近年来,随着宇航、电子、计算机、激光、微声和能源等新技术的发展,对各类材料器件提出了更高的性能要求,压电陶瓷作为一种新型功能材料,在日常生活中,作为压电元件广泛应用于传感器、气体点火器、报警器、音响设备、超声清洗、医疗诊断及通信等装置中。它的重要应用大致分为压电振子和压电换能器两大类。前者主要利用振子本身的谐振特性,要求压电、介电、弹性等性能稳定,机械品质因数高。后者主要是将一种能量形式转换成另一种能量形式,要求机电耦合系数和品质因数高。压电陶瓷的主要应用领域如下表所示: 应用领域

主要用途举例

电源

压电变压器 雷达、电视显像管、阴极射线管、盖克计数管、激光管和电子复印机等高压电源和压电点火装置

信号源

标准信号信号源

振荡器、压电音叉、压电音片等用作精密仪器中的时间和频率标准信号源

信号转换

电声换能器

拾声器、送话器、受话器、扬声器、蜂鸣器等声频范围的电声器件

超声换能器

超声切割、焊接、清洗、搅拌、乳化及超声显示等频率高于20Hz的超声器件

发射与接收

超声换能器

探测地质构造、油井固实程度、无损探伤和测厚、催化反应、超声衍射、疾病诊断等各种工业用的超声器件

水声换能器

水下导航定位、通信和探测的声呐、超声探测、鱼群探测和传声器等

信号处理

滤波器

通信广播中所用各种分立滤波器和复合滤波器,如彩电中频率波器;雷达、自控和计算机系统所用带通滤波器、脉冲滤波器等

放大器

声表面波信号放大器以及振荡器、混频器、衰减器、隔离器等

表面波导

声表面波传输线

4、结束语

压电陶瓷是一种重要的功能材料,具有优异的压电、介电和光电等电学性能,被广泛地应用于电子、航空航天、生物等高技术领域。近年来,各国都在积极研究和开发新的压电功能陶瓷,研究的重点大都是从老材料中发掘新效应,开拓新应用;从控制材料组织和结构入手,寻找新的压电材料。特别值得重视的是随着材料技术和工艺的发展,目前国际上对压电材料的应用研究十分活跃,许多新的压电器件,包括过去认为是难以实现的器材也被研制出来了。随着对材料的组成、制备工艺及结构的不断深入研究,更加新颖的压电器件将不断的映现出来。

【参考文献】

[1]张沛霖,钟维烈.压电材料与器件物理[M].济南t山东科学技术出版社.1994. [2]陆雷、肖定全、田建华、朱建国.无铅压电陶瓷薄膜的制备及应用研究.[3]张雷、沈建新.压电陶瓷制备方法的研究进展.硅酸盐通报.[4]肖定全.关于无铅压电陶瓷及其应用的几个问题.电子元件与材料.2004.材料合成与制备方法论文 压电陶瓷的制备与应用 院系:物理与电子工程学院 专业:材料物理 姓名:李鹏洋

下载生物活性陶瓷涂层材料的制备及研究进展word格式文档
下载生物活性陶瓷涂层材料的制备及研究进展.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    生物基环氧树脂研究进展[5篇范文]

    国内生物基环氧树脂研究获新进展,各项性能达到或优于石油基产品。研究人员将阻燃性好、又能与碳碳双键反应的9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)引入到了衣康酸环氧结......

    石墨烯强韧陶瓷基复合材料研究进展

    石墨烯强韧陶瓷基复合材料研究进展 赵琰 建筑工程学院 摘要:石墨烯具有优异的力学性能,可作为强韧相引入陶瓷材料中,解决陶瓷材料的脆性问题。本文综述了石墨烯强韧的陶瓷基复......

    超高温陶瓷复合材料的研究进展(共五则)

    超高温导热陶瓷复合型材料的研究进展 超高温导热陶瓷复合材料主要包括一些过渡族金属的难熔硼化物、碳化物和氮化物,它们的熔点均在3000℃以上。在这些超高温导热陶瓷中,ZrB2......

    碳化硅陶瓷的特种制备技术烧结工艺

    碳化硅导热陶瓷的特种制备技术烧结工艺 碳化硅导热陶瓷材料具有高温强度大,高温抗氧化性强,耐磨损性能好,热稳定性,热彭胀系数小,热导率大,硬度高,抗热震和耐化学腐蚀等优良特性。......

    污泥制造生物发酵活性有机肥料技术

    污泥制造生物发酵活性有机肥料技术 查新项目的科学技术要点: 为了利用城市废弃污泥等有机固体废弃物料,解决环境保护和生态农业问题,本项目采用物理和微生物工程方法进行科学的......

    毕业论文 纳米Fe3O4粒子的制备及其表面改性研究进展

    纳米Fe3O4粒子的制备及其表面改性研究进展 摘要:Fe3O4纳米粒子应用广泛,它的合成有球磨法、高温分解法、沉淀法、水热法、微乳液法、溶胶-凝胶法、生物模板合成法、微波水热法......

    碳纤维增强SiC陶瓷复合材料的研究进展(精)[范文模版]

    碳纤维增强SiC陶瓷复合材料的研究进展 邹世钦,张长瑞,周新贵,曹英斌 (国防科技大学 410073航天与材料工程学院国防科技重点实验室,湖南长沙) 摘 要: 碳纤维增强 SiC 陶瓷基复合材料具......

    晶须增韧陶瓷基复合材料研究进展

    晶须增韧陶瓷复合材料研究进展 芦珊(学号07093095) 电力系统及其自动化09-1班 信息与电气工程学院 摘要 综述了晶须增韧陶瓷复合材料的制备方法和分类;讨论了晶须陶瓷基复合......