CVD的热力学原理及研究进展

时间:2019-05-13 07:06:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《CVD的热力学原理及研究进展》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《CVD的热力学原理及研究进展》。

第一篇:CVD的热力学原理及研究进展

化学气相沉积的热力学原理及研究进展

姓名:韩瑞山

指导教师:郭领军

摘要:本文主要介绍了制备碳/碳复合材料优秀的材料特性及其化学气相沉积制备工艺,并分析比较了化学气相沉积各操作工艺的优缺点,分析解释了化学气相沉积过程中的复杂反应的原因,包括用热力学的方法对化学气相沉积工艺参数的优化选择,及运用热力学基本原理对化学气相沉积过程中复杂反应路径的确定,最后总结了应用热力学来研究化学气相沉积的优缺点,提出了改进方案。

关键词:碳/碳复合材料,化学气相沉积,化学热力学,热解机理 前言

1.1 碳/碳复合材料及制备工艺介绍

碳/碳(C/C)复合材料是以碳作基体的碳纤维(CF)增强复合材料,它综合了炭材料的高温性能和复合材料优异的力学性能[1]。由于碳原子独特的电子和类石墨结构以及良好的生物相容性等特点,碳/碳复合材料不仅具有复合材料的优良的力学性能,而且碳/碳复合材料具有高温下强度和刚度高,耐烧蚀、腐蚀,尺寸稳定性好,化学惰性,高导电、导热率,低热膨胀系数以及生物相容性等优良特点,所以被认为是理想的导电材料、高温复合力学材[2]料和生物材料。目前碳/碳复合材料已经成功地应用于导弹的头锥,固体火箭发动机喷管、喉衬,航天飞机的结构部件、商用飞机、军用飞机、汽车的刹车装置,人工关节、心脏瓣膜等生物材料。

目前国内外碳/碳复合材料的制备普遍采用的是化学气相渗透(CVD)工艺,碳/碳复合材料化学气相沉积工艺是将炭纤维预成型体置于高温化学气相沉积炉中,气态碳氢化合物前驱体通过扩散、流动等方式进入预成型体内部,在一定温度和压力下裂解生成热解炭并沉积在炭纤维的表面,逐步沉积到多孔预制体骨架的孔隙中。

在化学气相沉积热解炭的过程中,包含复杂的气相反应、表面反应和扩散传质的物理化学过程,包括碳氢化合物气体裂解、聚合,碳-碳键的断裂,脂肪族或芳香族碳氢化合物的形成以及它们的脱氢、环化反应等化学过程,和反应物的扩散、吸附、反应缩聚成炭、副产物的脱附、炭沉积等物理过程[2]。如Glasier等[3]通过液相色谱、气相色谱及质谱在以乙烷为碳源的化学气相沉积炉内检测到70多种碳氢化合物。由上述可见,化学气相沉积碳/碳复合材料过程复杂,影响因素较多。

碳/碳CVD的方法有很多种,如等温法、压差法、热梯度法。但每种方法都有其优缺点和最佳的应用环境。

(1)等温法:是一种最通用的方法,该法工艺稳定,同一炉内可制备形状大小各异的各种部件。此外,采用大炉沉积,可形成规模效益。但由于气体在坯体表面的输送状态远好于内部,使得热解炭在表面优先沉积下来,过早的封闭了空洞,切断了内部气体的输送通道,造成明显的密度不均匀。

(2)热梯度法:一般沉积速度随温度呈指数变化,内部的温度高,大量的气体首先在内部沉积。此法能避免表面封孔现象,沉积速率快,密度较高。但由于存在较大的温度梯度,制品各部位会存在一定差异,对性能会有一定的影响。热梯度工艺是俄罗斯率先开发的。

(3)压差法:是对等温法的改进,与等温法相比,坯体内部的输气状况有所改善,沉积较快,制品的密度较高。但由于坯体进气面的气体浓度仍高于内部,还是会出现表面封孔现象。此法应用于沉积筒状件能得到很好的效果。(4)强制气流热梯度法(FCVD):它是结合了热梯度法和压差法的优点。上端面加热,下端面冷却,反应气体由下端向上输送。高温区因温度效应而沉积快,低温区则因浓度效应而使沉积加速,通过调整工艺条件,有可能使沉积在整个坯体范围内同步进行,能大大提高沉积速率,且保证密度的均匀性。FCVD法因沉积效率高,制品性能好,发展潜力很大。

1.2 化学热力学内容及其相关介绍

化学热力学是物理化学中最早发展起来的一个分支学科,主要应用热力学原理研究物质系统在各种物理和化学变化中所伴随的能量变化、化学现象和规律,依据系统的宏观可测性质和热力学函数关系判断系统的稳定性、变化的方向和限度[4]。

化学热力学的基本特点是其原理具有高度的普适性和可靠性。对于任何体系,化学热力学性质是判断其稳定性和变化方向及程度的依据。也就是说,相平衡、化学平衡、热平衡、分子构象的稳定性、分子间的聚集与解离平衡等许多重要问题都可以用化学热力学的原理和方法进行判断和解决[5]。

化学热力学主要是研究物质系统在各种条件下的物理和化学变化中所伴随着的能量变化,从而对化学反应的方向和进行的程度作出准确的判断。它具有如下特点:

一、它研究的对象是具有足够大量质点的宏观体系,讨论具体对象的宏观性质,不考虑物质的微观结构。

二、热力学只需要知道体系的始态和终态以及外界条件,就可进行相应的计算,不需要知道过程进行的机理。

三、热力学还能告诉我们一个反应能不能进行、进行的条件、能进行到什么程度。故而使用化学热力学原理来进行化学气相沉积技术的研究就可避免其复杂的反应过程对研究的干扰,从而提高研究的效率,增加研究结果的准确性。热力学原理在化学气相沉积技术中的研究进展

化学热力学研究的是化学反应的可能性、方向性及其限度和化学反应的能量转换及其转移。这就决定了该学科具有四个方面的重要用途:(1)在某种条件下,系统中物质是以什么状态存在的;(2)为了获得某些反应产物,应该如何控制外部反应条件;(3)某种反应条件下,化学反应能否发生;(4)某种化学反应发生时,和外界有何相互作用,做了多少功,产生多少热等等。由上述用处就可以解决实际的应用问题,如:通过使反应的吉布斯自由能最小来确定反应的最优条件,研究反应各步骤吉布斯自由能大小来确定那些是反应的主要步骤。

2.1 热力学在化学气相沉积工艺参数优选中的应用

文章中讲的是SiC复合材料的化学气相沉积制备方法的热力学原理,指的是利用化学热力学的方法进行计算分析,从而筛选出能得到最优结果的反应条件。文中首先利用量子化学计算获得热化学数据,然后运用吉布斯自由能最小化原理,计算在不同反应环境条件下的沉积产物相图,从而得到其最有条件的选择[6]。2.1.1 最佳沉积温度的选择

对于某一组设定的气体流量和压力,应该采用合适的制备温度以获得最佳的产率和经济成本。在不同气体流量和压力条件下,其通过计算不同温度对沉积产物的摩尔相对浓度的影响,绘制出图2-1。

当MTS=30ml·min-1,H2=300 ml·min-1,Ar=200 ml·min-1,P=5 kPa时,由图2-1(a)可知,从800~1600K整个温度区间,H2和Ar:发生化学反应,其平衡浓度保持恒定值,产物以β-SiC和HCl为主。图2-1(b)采用对数坐标绘制,由该图可知最佳的制备温度范围为1200-1400K。低于1200K,则MTS和Si的平衡浓度开始增加,高于1400K,则工艺成本增加且MTS的平衡浓度开始增加。即对化学气相沉积技术而言获得纯净β-SiC的最佳温度区间为1200-1400K。

图2-1(a)沉积温度对沉积产物平衡浓度的影响

图2-1(b)沉积温度对沉积产物平衡浓度的影响(对数坐标图)

2.1.2 最佳沉积压力的选择

图4,4(b)、(d)和(f)为不同制备压力条件下,产物浓度与温度的关系曲线,由对数坐标绘制。由这三幅图可知,相同温度条件下,随着制备压力的升高,MTS和Si的平衡浓度增大。所以理论上应选择低压情况比较好,可维持较低压力也是比较难以做到的事情,并且压力小的时候,同时沉积速率也比较慢,需要花费更长时间进行沉积,降低了沉积效率,经济上也并不可取。通过分析发现当压力为5kPa情况下,在1000K以上的制备温度条件下,杂质浓度都降到ppm量级以下,能以较低的工艺成本获得较纯净的β-SiC。

图2-2(a)压力1Kpa条件下沉积温度对沉积产物平衡浓度的影响

图2-2(b)压力5Kpa条件下沉积温度对沉积产物平衡浓度的影响

图2-2(c)压力101.325Kpa条件下沉积温度对沉积产物平衡浓度的影响

2.2热力学在化学气相沉积法热解机理的应用

文章主要采用Gaussian 03程序中的密度泛函理论(DFT),在UB3LYP/6-31G*水平上对碳材料用碳源化合物乙苯的初期热裂解反应机理进行了研究。计算了不同温度下(298~1573 K)的热力学参数。结果表明:在298~1573 K下,热力学首先支持生成甲苯自由基和甲基自由基的反应为主反应路径。低温下,生成苯乙基自由基(α位脱氢)的反应比例大于生成苯基自由基的反应,而高温下(823 K),生成苯基自由基的反应比例大于苯乙基自由基(α位脱氢)的反应[7]。

已知乙苯在700℃左右分解得到的气体产物主要为:甲烷(36.6%)、乙烷(4%)、乙烯(9.6%)、氢(49.8%)。为了证实这一实验结果,并获得理论上的支持,对乙苯可能裂解的反应路径进行了模拟设计(见图2-3)。

图2-3 乙苯热解反应路径的设计 采用Gaussian 03程序计算了不同温度下(298,823,973,1123,1273,1423,1573K)各热裂解反应路径的各种标准热力学数据,列入表2-1中

表2-1 由UB3LYP/6-31G*方法计算得到的各反应路径的标准热力学量表

由表2-1可以看出,298 K时标准热力学量变ΔE0θ,ΔEθ,ΔHθ和ΔGθ的数值由小到大的顺序均为:路径3<路径2<路径4<路径1<路径5≈路径6≈路径7,且路径5,6,7的相关热力学量变值远大于路径1,2,3,4的热力学量变值。从能量的角度考虑,ΔEθ和ΔHθ越小反应越容易进行;从平衡的角度考虑,ΔGθ越小反应越容易进行,且反应达到平衡时反应物的转化率越大。所以,无论从能量还是从平衡的角度考虑,热力学计算结果都表明:在298 K时热力学数据首先支持生成甲苯自由基和甲基自由基的反应,其次是α位脱氢反应,第三是生成苯自由基和乙基自由基的反应,第四是β位脱氢反应,最后是苯环脱氢反应,即乙苯初期热裂解的热力学计算结果支持的主反应路径为路径3。

当温度分别为823,973,1123,1273,1423和1573K时,由表2-1亦可看出各热裂解反应的标准热力学量变的变化有所不同。由于ΔE0θ仅考虑了ZPE和电子能,所以不随温度而变化。而ΔHθ和ΔGθ都是温度的函数且ΔEθ与振动、转动等能量有关,故均随温度而变化。随着温度的升高,吉布斯自由能ΔGθ逐渐减小,这与反应是吸热反应的结果相一致。反应的内能变ΔEθ和标准焓变ΔHθ随着温度的改变而改变,但是变化不大。随着温度的升高,各热裂解反应的反应活性顺序略有所改变。当温度在823 K以上时,热力学支持的主反应路径仍是生成甲苯自由基和甲基自由基的反应,第二步则变成生成苯自由基和乙基自由基的反应,第三是α位脱氢的反应,第四是β位脱氢的反应,最后是苯环脱氢的反应。

高温下的计算结果表明主反应路径没有改变。我们知道,通常与苯环相联C—C键(α键)不容易断裂,而处于其次位置的β键容易断裂。这是因为与苯环相联的C—C键和苯环形成共轭体系,产生一定程度的双键性而不易断裂。这一点应该说与我们的计算结果一致,同时亦与Badger等在研究乙苯热裂解时甲烷(36.6%)含量最高的结果一致。

综上所述,热力学研究结果表明:

(1)在常温下,乙苯初期热裂解的7条路径的反应顺序是:路径3>路径2>路径4>路径1>路径5≈路径6≈路径7。

(2)在高温下(823 K以上),各热裂解反应路径的顺序是:路径3>路径4>路径2>路径1>路径5≈路径6≈路径7。即随着温度的升高,各热裂解路径的反应顺序略有所改变,但主反应路径没有变化。

3小结

由于热力学研究的是大量物质的宏观体系,不考虑物质的微观结构,热力学只需要知道体系的始态和终态以及外界条件,就可进行相应的计算,不需要知道过程进行的机理,故而应用化学热力学来进行化学气相沉积的计算研究有着广阔的前景,但又因为热力学的这些优点,同时也限制了化学热力学的应用范围,如热力学只能了解反应的可能性,而不能说明反应进行的可行性,而动力学计算结果才能说明反应是否可行,故而可以采用热力学与动力学相结合的方式来进行对化学气相沉积的研究,增大理论研究的范围,提高研究计算的准确性。

参考文献

[1]赵建国.炭/炭复合材料热梯度化学气相沉积致密化技术研究[D].西安:西北工业大学.2005.[2]赵建国,杨国臣,王海青,等.化学气相沉积炭/炭复合材料研究进展[J].现代化工,2006,26(z2):59-62,64.

[3]Glasier G F,Filfil R,Pacey P D.Formation of polycyclic aromatic hydrocarbons coincident with pyrolytic carbon deposition[J].Carbon,2001,39:497-506.[4]王元星,侯文华.化学热力学的建立与发展概略[J].大学化学, 2011,26(4):87-92.DOI:10.3969/j.issn.1000-8438.2011.04.024.[5] 韩布兴.中国化学热力学研究进展[J].中国科学: 化学 , 2010, 40(9):1197 1-1.[6]曾庆丰.C/SiC复合材料优化设计[D].西北工业大学,2004.DOI:10.7666/d.y811730.[7] 崔彦斌,王惠,冉新权等.碳/碳复合材料碳源化合物乙苯热裂解机理的热力学研究[J].有机化学,2004,24(9):1075-1081.DOI:10.3321/j.issn:0253-2786.2004.09.014.

第二篇:CVD技术的优缺点

1.2.1、CVD技术的优点

与其他沉积方法相比, CVD技术除了具有设备简单、操作维护方便、灵活性强的优点外,还具有以下优势:

(1)在中温和高温下,通过气态的初始化合物之间的气相化学反应而沉积固体;

(2)可以在大气压(常压)或者低于大气压下进行沉积,一般说低压效果更好些;

(3)采用等离子和激光辅助技术可以显著促进化学反应,使沉积可在较低的温度下进行;

(4)镀层的化学成分可以改变,从而获得梯度沉积物或者得到混合镀层;

(5)可以控制镀层的密度和纯度;

(6)绕镀性好,可在复杂形状的基体上以及颗粒材料上沉积;

(7)气体条件通常是层流的,可在基体表面形成厚的边界层;

(8)沉积层通常具有柱状晶结构,不耐弯曲,但通过各种技术对化学反应进行气相扰动,可以得到细晶粒的等轴沉积层;

(9)可以形成多种金属、合金、陶瓷和化合物镀层。只要原料气稍加改变,采用不同的工艺参数便可制备性能各异的沉积层;可涂覆各种复杂形状工件,如带槽、沟、孔或盲孔的工件;涂层与基体间结合力强等。

1.2.2、CVD 技术的缺点

(1)主要缺点是反应温度较高,沉积速率较低(一般每小时只有几μm到几百μm),难以局部沉积;

(2)参与沉积反应的气源和反应后的余气都有一定的毒性;

(3)镀层很薄,已镀金属不能再磨削加工,如何防止热处理畸变是一个很大的难题,这也限制了CVD法在钢铁材料上的应用, 而多用于硬质合金。

第三篇:材料热力学作业

1、什么是热力学?动力学?

热力学是研究热现象中物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的学科。工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。

热力学(thermodynamics)是自然科学的一个分支,主要研究热量和功之间的转化关系。热力学是研究物质的平衡状态以及与准平衡态,以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的物理、化学过程的学科。热力学适用于许多科学领域和工程领域,如发动机,相变,化学反应,甚至黑洞等等。

热力学,全称热动力学,是研究热现象中物态转变和能量转换规律的学科;它着重研究物质的平衡状态以及与准平衡态的物理、化学过程。

热力学是热学理论的一个方面。热力学主要是从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用。因此它是一种唯象的宏观理论,具有高度的可靠性和普遍性。热力学三定律是热力学的基本理论。热力学定律

* 热力学第零定律:说明热平衡和温度的关系。* 热力学第一定律:能量守恒定律的一种特殊形式——在一个封闭系统里,所有种类的能量,形式可以转化,但既不能凭空产生,也不会凭空消失。* 热力学第二定律:孤立系统熵(失序)不会减少——简言之,热不能自发的从冷处转到热处,任何高温的物体在不受热的情况下,都会逐渐冷却。* 热力学第三定律:不可能以有限程序达到绝对零度——换句话说,绝对零度永远不可能达到。

动力学(Dynamics)是经典力学的一门分支,主要研究运动的变化与造成这变化的各种因素。换句话说,动力学主要研究的是力对于物体运动的影响。运动学则是纯粹描述物体的运动,完全不考虑导致运动的因素。更仔细地说,动力学研究由于力的作用,物理系统怎样随着时间的演进而改变。动力学的基础定律是艾萨克·牛顿提出的牛顿运动定律。对于任意物理系统,只要知道其作用力的性质,引用牛顿运动定律,就可以研究这作用力对于这物理系统的影响。在经典电磁学里,物理系统的动力状况涉及了经典力学与电磁学,需要使用牛顿运动定律、麦克斯韦方程、洛伦兹力方程来描述。自20世纪以来,动力学又常被人们理解为侧重于工程技术应用方面的一个力学分支。动力学是机械工程与航空工程的基础课程。

动力学的基本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学,以及正在发展中的多刚体系统动力学、晶体动力学等。

2.材料热力学是从能量角度研究材料,试举出和你研究领域相近的两种应用热力学理论来研究材料的例子。1.Nb表面合金化对Ti6Al4V腐蚀行为的影响,钛合金具有比强度高等特性,是适合于航空航天等领域应用的先进材料.然而未加处理的钛合金通常存在耐磨性差及高温易氧化等问题,无法满足应用要求.此外,钛合金在大气、海水等一般环境下具有较强的耐蚀性,但是在一些特殊介质里,如还原性酸中容易受到腐蚀.为了解决上述问题,适当的表面改性处理是十分必要的.因此钛合金表面改性技术近年来成为材料科学热点研究领域之一.钛合金中加入铌元素可显著提高耐蚀性及高温抗氧性能.Ti-45 Nb就是一种新型耐蚀钛合金采用双辉技术在Ti6Al4V合金表面进行Nb表面合金化处理,形成具有类似Ti45 Nb成分的表面Ti-Nb合金层,提高其抗蚀性及高温抗氧化性能,同时又保留了基体材料比强度高的特性.基体Ti6Al4V和Ti-Nb合金层在5%H2SO4溶液中电化学腐蚀极化曲线如图4所示.由图4可以看出Ti-Nb合金层较基体Ti6Al4V自腐蚀电位提高约400mV,从电化学腐蚀热力学角度表明Ti-Nb合金层抗腐蚀能力提高了.由阳极极化曲线看出,两者趋势是一样的,都发生了钝化.图5是基体Ti6Al4V和Ti-Nb合金层在5%HCl溶液中电化学腐蚀极化曲线.由图可以看出Ti-Nb合金层较基体Ti6Al4V自腐蚀电位提高约60 mV,从热力学角度表明抗腐蚀能力提高了.基体Ti6Al4V和Ti-Nb合金层阳极极化曲线基本相似,均表现为电流密度随着电位的升高而增大,它没有发生钝化现象,始终处于活性溶解区

由图6可以看出Ti-Nb合金层在315%NaCl溶液中较基体Ti6Al4V自腐蚀电位提高约160 mV,表明Nb表面合金化后增加了Ti6Al4V热力学稳定性,耐蚀性提高.由Ti6Al4V阳极极化曲线看出,电流密度随着电位的升高而增大,也就是说它没有发生钝化现象,始终处于活性溶解区;由Ti-Nb合金层阳极极化曲线可以看出,在0121 V~0139 V左右发生钝化,在电位达113 V之后,发生二次钝化,说明Ti-Nb合金层在3.5%NaCl水溶液中出现钝化膜破裂后自修复的现 象。

结论:电化学腐蚀研究表明:在5% H2SO4、5% HCl、3.5%NaCl溶液中Ti-Nb合金层较基体Ti6Al4V抗腐蚀能力有一定的提高。2.分析法

基于溶液电化学性质的化学分析方法。电化学分析法是由德国化学家C.温克勒尔在19世纪首先引入分析领域的,仪器分析法始于1922年捷克化学家 J.海洛夫斯基建立极谱法。电化学分析法的基础是在电化学池中所发生的电化学反应。电化学池由电解质溶液和浸入其中的两个电极组成,两电极用外电路接通。在两个电极上发生氧化还原反应,电子通过连接两电极的外电路从一个电极流到另一个电极。根据溶液的电化学性质(如电极电位、电流、电导、电量等)与被测物质的化学或物理性质(如电解质溶液的化学组成、浓度、氧化态与还原态的比率等)之间的关系,将被测定物质的浓度转化为一种电学参量加以测量。根据国际纯粹化学与应用化学联合会倡议,电化学分析法分为三大类:①既不涉及双电层,也不涉及电极反应,包括电导分析法、高频滴定法等。②涉及双电层,但不涉及电极反应,例如通过测量表面张力或非法拉第阻抗而测定浓度的分析方法。③涉及电极反应,又分为两类:一类是电解电流为0,如电位滴定;另一类是电解电流不等于0,包括计时电位法、计时电流法、阳极溶出法、交流极谱法、单扫描极谱法、方波极谱法、示波极谱法、库仑分析法等。

3.金属的防腐蚀问题,大部分金属腐蚀是电化学腐蚀问题。

根据电化学腐蚀原理,依靠外部电流的流入改变金属的电位,从而降低金属腐蚀速度的一种材料保护技术。按照金属电位变动的趋向,电化学保护分为阴极保护和阳极保护两类。①阴极保护。通过降低金属电位而达到保护目的的,称为阴极保护。根据保护电流的来源,阴极保护有外加电流法和牺牲阳极法。外加电流法是由外部直流电源提供保护电流,电源的负极连接保护对象,正极连接辅助阳极,通过电解质环境构成电流回路。牺牲阳极法是依靠电位负于保护对象的金属(牺牲阳极)自身消耗来提供保护电流,保护对象直接与牺牲阳极连接,在电解质环境中构成保护电流回路。阴极保护主要用于防止土壤、海水等中性介质中的金属腐蚀。②阳极保护。通过提高可钝化金属的电位使其进入钝态而达到保护目的的,称为阳极保护。阳极保护是利用阳极极化电流使金属处于稳定的钝态,其保护系统类似于外加电流阴极保护系统,只是极化电流的方向相反。只有具有活化-钝化转变的腐蚀体系才能采用阳极保护技术,例如浓硫酸贮罐、氨水贮槽等。

3.你研究课题的研究内容是什么,拟用几种分析、检测方法,课题研究中有无热力学现象,试简单介绍。

课题: TiNi合金表面双辉等离子渗Mo合金化后的表面结构和性能

采用双辉等离子表面合金化技术对TiNi合金进行表面渗钼合金化处理;采用光学显微镜、辉光放电光谱仪和扫描电镜对合金化试样的截面及表面进行表征,采用显微硬度计、硬度计、往复磨损试验机及白光干涉仪对合金化试样的表面硬度、结合强度及摩擦学性能进行了测试。采用电化学测试对表面耐蚀性能进行研究。

金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。将计算机应用于图像处理,具有精度高、速度快等优点,可以大大提高工作效率。

计算机定量金相分析正逐渐成为人们分析研究各种材料,建立材料的显微组织与各种性能间定量关系,研究材料组织转变动力学等的有力工具。采用计算机图像分析系统可以很方便地测出特征物的面积百分数、平均尺寸、平均间距、长宽比等各种参数,然后根据这些参数来确定特征物的三维空间形态、数量、大小及分布,并与材料的机械性能建立内在联系,为更科学地评价材料、合理地使用材料提供可靠的数据。

辉光放电光谱仪: 主要用途:

 导电材料和非导电材料的基体、镀层(涂层)中的化学元素含量分析;  热处理工件(渗碳、渗氮)等的元素深度定量分析;

 导电材料表面覆盖有一层或多层导电或不导电镀层(涂层)中化学元素的分析; 非导体材料表面覆盖有一层或多层导电或不导电镀层(涂层)中化学元素的分析;扫描电镜:

扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、电子振荡(等离子体)。原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。显微结构的分析

在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用。

由于扫描电子显微镜可用多种物理信号对样品进行综合分析,并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点,当陶瓷材料处于不同的外部条件和化学环境时,扫描电子显微镜在其微观结构分析研究方面同样显示出极大的优势。主要表现为: ⑴力学加载下的微观动态(裂纹扩展)研究 ;⑵加热条件下的晶体合成、气化、聚合反应等研究 ;⑶晶体生长机理、生长台阶、缺陷与位错的研究; ⑷成分的非均匀性、壳芯结构、包裹结构的研究; ⑸晶粒相成分在化学环境下差异性的研究等。纳米尺寸的研究 纳米材料是纳米科学技术最基本的组成部分,可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒 ”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在一定的程度上也可增加韧性、改善脆性等,新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸,因此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。纵观当今国内外的研究状况和最新成果,该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等技术,但高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势被大量采用。另外如果将扫描电子显微镜与扫描隧道显微镜结合起来,还可使普通的扫描电子显微镜升级改造为超高分辨率的扫描电子显微镜。铁电畴的观测

压电陶瓷由于具有较大的力电功能转换率及良好的性能可调控性等特点在多层陶瓷驱动器、微位移器、换能器以及机敏材料与器件等领域获得了广泛的应用。随着现代技术的发展,铁电和压电陶瓷材料与器件正向小型化、集成化、多功能化、智能化、高性能和复合结构发展,并在新型陶瓷材料的开发和研究中发挥重要作用。铁电畴(简称电畴)是其物理基础,电畴的结构及畴变规律直接决定了铁电体物理性质和应用方向。电子显微术是观测电畴的主要方法,其优点在于分辨率高,可直接观察电畴和畴壁的显微结构及相变的动态原位观察(电畴壁的迁移)。

扫描电子显微镜观测电畴是通过对样品表面预先进行化学腐蚀来实现的,由于不同极性的畴被腐蚀的程度不一样,利用腐蚀剂可在铁电体表面形成凹凸不平的区域从而可在显微镜中进行观察。因此,可以将样品表面预先进行化学腐蚀后,利用扫描电子显微镜图像中的黑白衬度来判断不同取向的电畴结构。对不同的铁电晶体选择合适的腐蚀剂种类、浓度、腐蚀时间和温度都能显示良好的畴图样。

在实际分析工作中,往往在获得形貌放大像后,希望能在同一台仪器上进行原位化学成分或晶体结构分析,提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析。为了适应不同分析目的的要求,在扫描电子显微镜上相继安装了许多附件,实现了一机多用,成为一种快速、直观、综合性分析仪器。把扫描电子显微镜应用范围扩大到各种显微或微区分析方面,充分显示了扫描电镜的多种性能及广泛的应用前景。

目前扫描电子显微镜的最主要组合分析功能有:X射线显微分析系统(即能谱仪,EDS),主要用于元素的定性和定量分析,并可分析样品微区的化学成分等信息;电子背散射系统(即结晶学分析系统),主要用于晶体和矿物的研究。随着现代技术的发展,其他一些扫描电子显微镜组合分析功能也相继出现,例如显微热台和冷台系统,主要用于观察和分析材料在加热和冷冻过程中微观结构上的变化;拉伸台系统,主要用于观察和分析材料在受力过程中所发生的微观结构变化。扫描电子显微镜与其他设备组合而具有的新型分析功能为新材料、新工艺的探索和研究起到重要作用。

成像 二次电子和背散射电子可以用于成像,但后者不如前者,所以通常使用二次电子

课题中的热力学现象:

电化学分析:电化学腐蚀中金属电位高低与金属活动性之间一般还是有规律可循的,在特定的介质条件下,电位较负的金属活泼性比较大,电位较正的金属活泼性较小。电位较负的金属在电化学腐蚀的过程中通常作为阳极,而电位较正的金属通常作为阴极;作为阳极的金属就会因腐蚀而受到破坏,而阴极却没有太大的破坏。

化学腐蚀与电化学腐蚀有着本质的不同,化学腐蚀通常发生在高温,干燥的环境下。

电化学腐蚀是金属因发生了电化学反应而受到的破坏,通常要有第二类导体(即离子导体)的参与,阳极和阴极通常要分区域进行(均匀腐蚀阳极,阴极区域很难区分),这是与化学腐蚀一个重要的区别。

极化曲线:

表示电极电位与极化电流或极化电流密度之间的关系曲线。如电极分别是阳极或阴极,所得曲线分别称之为阳极极化曲线(anodic polarization curve)或阴极极化曲线(cathodic polarization curve)。

极化曲线分为四个区,活性溶解区、过渡钝化区、稳定钝化区、过钝化区。极化曲线 可用实验方法测得。分析研究极化曲线,是解释金属腐蚀的基本规律、揭示金属腐蚀机理和探讨控制腐蚀途径的基本方法之一。

极化曲线以电极电位为纵坐标,以电极上通过的电流为横坐标获得的曲线称为极化曲线。它表征腐蚀原电池反应的推动力电位与反应速度电流之间的函数关系。直接从实验测得的是实验极化曲线。而构成腐蚀过程的局部阳极或者局部阴极上单独电极反应之电位与电流关系称为真实极化曲线,即理想极化曲线。

第四篇:材料热力学论文

马氏体强化机制及相变研究

摘要:马氏体(martensite)是黑色金属材料的一种组织名称。本文以马氏体的组织形态以及马氏体相变过程为出发点,主要阐述了马氏体的主要强韧化机制以及马氏体相变研究中的一些新进展,包括马氏体相变特性、马氏体相变热力学、马氏体相变晶体学等。

关键词:马氏体,强化机制,马氏体相变,相变热力学,相变晶体学。

1.马氏体概述

马氏体(martensite)是黑色金属材料的一种组织名称。将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。

马氏体最先由德国冶金学家 Adolf Martens(1850-1914)于19世纪90年代在一种硬矿物中发现。马氏体的三维组织形态通常有片状(plate)或者板条状(lath),但是在金相观察中(二维)通常表现为针状(needle-shaped),这也是为什么在一些地方通常描述为针状的原因。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高的强度和硬度是钢中马氏体的主要特征之一。20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。

2.马氏体形态

人们在马氏体形态方面进行了大量研究,发现了马氏体的许多不同形态,并找出了马氏体及其精细结构与性能之间的关系,对马氏体的晶体结构也有了比较深刻的认识。马氏体形态虽然多种多样,但从其形态特征上基本可归纳为条状马氏体和片状马氏体两大类,其精细结构可划分为位错和孪晶。同时发现马氏体与母相保持严格的晶体学位向关系。2.1 条状马氏体

主要形成于含碳量较低的钢中,又称低碳马氏体。因其形成于200℃以上的较高温度,故又称高温马氏体;因其精细(亚)结构为高密度(一般为0.3~0.9×1012cm/cm2)位错,故又称位错马氏体。

在光学显微镜下观察,条状马氏体的主要形态特征为:呈束状排列。近于平行而长度几乎相等的条状马氏体组成一束,或称为马氏体“领域”(即板条群)。板条群的尺寸约为20~35μm,由若干个尺寸大致相同的板条在空间位向大致平行排列所作组成,在原奥氏体的一颗晶粒内,可以发现几团马氏体束(即几个板条群,常为3~5个,每一个板条为一个马氏体单晶体,其尺寸约为0.5μm× 5.0μm ×20μm),马氏体板条具有平直界面,界面近似平行于奥氏体的{111}γ,即惯习面,相同惯习面的马氏体板条平行排列构成马氏体板条群。现已确定,这些稠密的马氏体板条多被连续的高度变形的残余奥氏体薄膜(约为20μm)所隔开,且板条间残余奥氏体薄膜的碳含量较高,在室温下很稳定,对钢的机械性能会产生显著影响。马氏体束与束之间以大角度相界面分开,一般为60°或120°角,马氏体束不超越原奥氏体晶界。同束中的马氏体条间以小角度晶界面分开。每束内还会有黑白色调反差,同一色调区的板条具有相同位向,称之为同向板条区。

2.2 片状马氏体

片状马氏体主要形成于含碳量较高的钢中,又称为高碳马氏体;因其形成于200℃以下的低温,故又称低温马氏体;因其精细(亚)结构为大量孪晶,故又称其为孪晶马氏体。这种孪晶在靠近马氏体片的边界处消失,不会穿过马氏体边界,而边界上的亚结构则为复杂的位错网络,现已查明:马氏体片的中脊仍是密度更高的极细孪晶。

片状的马氏体的空间形态为双凸透镜状。在光学显微镜下观察的乃是截面形状,因试样磨面对每一马氏体片的切割角度不同,故有针状、竹叶状,所以又称针(竹叶)状马氏体,马氏体片之间不平行,相交成一定角度(如60°、120°)。在原奥氏体晶粒中,首先形成的马氏体片是贯穿整个晶粒的,但一般不穿过晶界,只将奥氏体晶粒分割,以后陆续形成的马氏体由于受到限制而越来越小。所以片状马氏体的最大尺寸取决于原奥氏晶粒大小,原奥氏体晶粒越粗大,马氏体片越大,反之则越细。当最大尺寸的马氏体片小到光学显微镜无法分辨时,便称为隐晶(或称为隐针)马氏体。

片状马氏体的基本特征是在一个奥氏体晶粒内形成的第一片马氏体针较粗大,往往横贯整个奥氏体晶粒,将奥氏体晶粒加以分割,使以后形成的马氏体针大小受到限制,因此针状马氏体的大小不一,但其分布有一定规律,基本上马氏体按近似60°角分布。且在马氏体针叶中有一中脊面,含碳量愈高,愈明显,并在马氏周围有残留奥氏体伴随。由于针状马氏体形成于较低温度,故自回火现象很弱,在相同试剂浸蚀时,总是比板条马氏体显得明亮。

马氏体的硬度主要取决于它的含碳量。随碳含量增加,马氏体硬度升高,当碳含量质量分数达0.6%时,淬火钢的硬度值接近峰值。当碳含量进一步增加时,虽然马氏体硬度有所升高,但由于残余奥氏体的含量也增加,会使钢的硬度有所下降。合金元素含量对马氏体的硬度影响不大,但可以提高它的强度。

2.3 其它形态马氏体

(1)隐晶(或隐针)马氏体

在实际生产中,高碳钢或高碳高合金钢正常加热淬火时,由于原始奥氏体晶粒非常细小,所形成的马氏体晶体极细,在光学显微下看不出马氏体针的形态,称为隐晶(或隐针)马氏体。一般中碳钢快速加热时,也会得到极细的奥氏体晶粒,淬火后得到极细的条状和片状马氏体的混合组织,在光学显微镜下也看不出马氏体形态特征,也是一种隐晶马氏体。(2)蝶状马氏体

在Fe-Ni合金和Fe-Ni(-Cr)-C合金中,当马氏体在板条状马氏体的形成温度范围之间的温区形成时,会出现具有特异形态的马氏体,这种马氏体的立体形态为“V”形柱状,其断面呈蝴蝶状,故称为蝶状马氏体或多角状马氏体。蝶状马氏体两翼的惯习面为{225}γ,两翼相交的结合面为{100}γ。电子显微镜观察表明,蝶状马氏体的内部亚结构为高密度位错,无孪晶存在,与母相的晶体学位向关系大体上符合K-S关系。(3)薄片状马氏体

在Ms点极低的Fe-Ni-C合金中,可观察到一种厚度约为3~10μm的薄片状马氏体,其立体形态为薄片状,与试样磨面相截呈宽窄一致的平直带状,带可以相互交叉,呈现曲折、分枝等形态,薄片状马氏体的惯习面为{259}γ,与奥氏体之间的位向关系为K-S关系,内部亚结构为{112}α/孪晶,孪晶的宽度随碳含量升高而减小。平直的带中无中脊,这是它与片状马氏体的不同之处。(4)ε马氏体

上述各种马氏体都是具有体心立方(正方)点阵结构的马氏体(α/)。而在奥氏体层错能较低的Fe-Mn-C(或Fe-Cr-Ni)合金中有可能形成具有密排六方点阵结构的ε马氏体。ε马氏体呈极薄的片状,厚度仅为100~300nm,其内部亚结构为高密度层错。ε马氏体的惯习面为{111}γ,与奥氏体之间的位向关系为{111}γ//{0001}ε,<110>γ//<1120>ε。

2.4 影响马氏体形态的因素

实验证明,钢的马氏体形态主要取决于马氏体形成温度和过冷奥氏体中碳及合金元素的含量。对碳钢而言,随着钢中含碳量的增加,条状马氏体相对量减少,片状马式体数量则相对增加。一般来说,当奥氏体含碳量大于1%时,淬火后几乎完全是片状马氏体;当奥氏体中含碳量小于0.2%时,淬火后几乎完全是条状马氏体。含碳量在0.20~0.40%之间时,则以条状马氏体为主;含碳量在0.40~0.80%之间时,则为条状和片状马氏体的混合组织。除钴、铝以外,多数合金元素均使Ms点下降,故都增加马氏体的孪晶倾向。钴虽提高Ms点,但却不能减少马氏体内部的孪晶。

此外,应力和变形也能改变马氏体形态,在高的静压力下,可显著降低Ms,可在低碳钢中获得大片马氏体。若在Ms点以上不太高的温度进行塑性变形,则会显著增加条状马氏体的含量。

3.马氏体的强化机制

金属的强化机制大致可分为固溶强化机制、第二相强化、形变强化及细晶强化等。近年来对马氏体高强度、高硬度的本质进行了大量研究,认为马氏体的高强度、高硬度是多种强化机制综合作用的结果。主要的强化机制包括:相变强化、固溶强化、时效强化、形变强化和细晶强化等。

3.1 相变强化

马氏体相变的强化重庆316L不锈钢管研究认为:在不锈钢中具有最高硬度的SUS 440(2(13Cr-IC)(640-700[1V)属于马氏体系不锈钢,马氏体组织的结构非常微细,而且在其内部存在高密度的位错,若使碳过饱和固溶还能提高强度。另方面,经过最后的回火处理可以得到碳化物等析出物弥散细微分布的组织。马氏体系不锈钢用固溶碳量和加火处理可以调整其强度。例如,SUS 420J2(13Cr-O.3C)从i000~C的高温奥氏体区急冷时,发生固溶0.3%C的马氏体相变,再经回火热处理就会使碳化物等析出物呈微细弥散分布。其强度可达到约550HV。

3.2 细晶强化

人们早己知道晶粒大小影响金属强度。铁素体晶粒大小对退火的软钢屈服强度的影响,可以看出晶粒直径d与屈服强度间有着直线关系,晶粒越细屈服强度越高。这种屈服强度与晶粒大小间的关系称霍尔佩琪法则,因变形在晶粒内运动的位错在晶界其运动被阻,所以晶界大量存在的细晶粒材料,其强度很高。前述的固溶强化、析出强化及加工硬化若过分提高强度,则会使韧性受损。所以,有时根据加工、使用条件使强度有一定限制。另一方面,当晶粒细化时不但不损坏韧性,而且还能提高强度。现在,对钢铁材料的晶粒细化的研究非常盛行,并以“超级金属的技术开发。为题进行着开发,通常不锈钢的晶粒直径为数十微米,但在这些课题中正在研究一种制造方法,使金属晶粒有1/100到数百毫微米(nm),例如,晶粒直径为300nm的奥氏体系不锈钢其拉伸强度为1100 N/mm2,约是通常粒径材料的2倍。为了能在不损害韧性的前提下得到高强度,对这种方法寄予了很大的希望。在JIS规定的不锈钢中存在具有微细组织的不锈钢,这是把不同组织复合的双相系不锈钢。SUS329J4L(25Cr—6Ni—3Mo—N)具有在铁素体母相中分布着岛状奥氏体相的组织,由于为复合组织故各组织很细微。另外,由于加入了氮使之固溶强化提高了强度,耐点蚀性也得到改善。由于晶粒细化和固溶强化的复合作用,使得双相钢的屈服强度等强度特性好于奥氏体系和铁索体系。

3.3 固溶强化

纯金属由于强度低, 很少用作结构材料, 在工业上合金的应用远比纯金属广泛。合金组元溶入基体金属的晶格形成的均匀相称为固溶体。纯金属一旦加入合金组元变为固溶体,其强度、硬度将升高而塑性将降低, 这个现象称为固溶强化。固溶强化的机制是: 金属材料的变形主要是依靠位错滑移完成的, 故凡是可以增大位错滑移阻力的因素都将使变形抗力增大, 从而使材料强化。合金组元溶入基体金属的晶格形成固溶体后, 不仅使晶格发生畸变, 同时使位错密度增加。

结果表明,在碳含量小于0.4%时,马氏体的屈服强度随碳含量增加而升高;碳含量大于0.4%时,马氏体的屈服强度不再增加。这一现象的普遍解释为,固溶的间隙C 原子处于Fe 原子组成的八面体的中心位置,马氏体中的八面体为扁八面体(奥氏体中为正八面体),C 原子溶入后形成以C 原子为中心的畸变偶极应力场,该应力场与位错产生强烈的交互作用,令位错运动使马氏体强度升高。当含碳量高于0.4%时,C 原子间距太近,产生的畸变偶极应力场彼此抵消,降低了强化效果。

3.4 形变强化

生产金属材料的主要方法是塑性加工, 即在外力作用下使金属材料发生塑性变形, 使其具有预期的性能、形状和尺寸。在再结晶温度以下进行的塑性变形称为冷变形。金属材料在冷变形过程中强度将逐渐升高, 这一现象称为形变强化。

钢变形时给结晶加上了剪断应力,在位错运动的同时,给结晶导入了大量的位错。加工硬化加工轧制和拔丝这种塑性变形使晶体内的位错密度增加,是强化钢的方法。据重庆304不锈钢卷板研究证明这种加工硬化作用奥氏体系比铁素体系大得多。在18Cr-8Ni组成的亚稳定奥氏体系,因位错密度增大的硬化和马氏体的生成(加工引起相变)容易得到高强度。利用加工硬化的材料称硬化材,其强度可根据轧制率的变化按H(硬级)、3/4H和1/2H的强度水平划分,SUS 301(17Cr-TNi)硬化材在家庭电器机械的压簧和汽车的引擎垫圈、通信机械的连接器材等板弹簧制品方面使用非常普及。由加工硬化引起的马氏体具有磁性,所以SUS 301和SUS 304的硬化材也有磁性。非磁性的弹簧用材料有含高锰的不锈钢AISl205(17Cr-15Mn-1.5Ni-O.35N),该钢是用锰取代了SUS 301中的镍,由于其性质的不同,可以固溶更多的氮。就是说,可以得到前述的固溶强化的效果。在固溶化处理状态下SUS 304的硬度约1801tV,而AISl 205的硬度约2701]V,再进行加工时可发现显著的加工硬化特性。所有钢种随着压下率增加的同时,硬度也上升。3.5时效强化

时效强化也是马氏体强化的一个重要因素,马氏体相变是无扩散相变,但在马氏体形成后,马氏体中的碳原子的偏聚(马氏体自回火)就能发生,碳原子发生偏聚(时效)的结果,碳含量越高,时效强化越显著。

时效强化是由C 原子扩散偏聚钉扎位错引起。因此,如果马氏体在室温以上形成,淬火冷却时又未能抑制C 原子的扩散,则在淬火至室温途中C 原子扩散偏聚已自然形成,而呈现时效。所以,对于MS 高于室温的钢,在通常淬火冷却条件下,淬火过程即伴随自回火。

3.6 亚结构强化

亚结构强化主要指孪晶或层错的强化作用,其表现在以下几个方面:(1)位错与孪晶的弹性交互作用;(2)位错穿过孪晶构成滑移轨迹的曲折;(3)孪晶阻挡位错运动。

应当指出,孪晶的强化,据认为是由于碳原子在孪晶界面上的偏聚所造成的,其强化作用的贡献与钢的含碳量关系密切:当碳含量小于0.3%时,马氏体的强化主要寄托于间隙原子的固溶强化;当碳含量为0.3%-0.6%时,马氏体强度的提高除得益于固溶强化外,还可有孪晶和位错亚结构的强化贡献;当碳含量大于0.6%时,孪晶的强化作用显得很弱。

4.马氏体相变

4.1.1马氏体相变概念

马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。4.1.2马氏体概念提出

马氏体这一概念最先由德国冶金学家Adolf Martens(1850-1914)于19世纪90年代在一种硬矿物中发现。奥氏体中含碳量≥1%的钢淬火后,马氏体形态为片状马氏体,当奥氏体中含碳量≤0.2%的钢淬火后,马氏体形状基本为板条马氏体。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。

4.2 马氏体相变特征

马氏体转变的一般定义为:过冷奥氏体以较快的速度冷却,抑制其扩散性分解,在较低的温度下发生的无扩散型相变称为马氏体相变。其主要特点有以下几点:

1)马氏体相变是无扩散相变。马氏体相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移是切变式的。原子位移的结果产生点阵应变(或形变)。这种切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。

2)产生表面相变时浮突。马氏体形状改变使先经抛光的试样表面形成浮突。马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度以及完整尖锐的边缘。

3)新相(马氏体)和母相之间始终保持一定的位向关系。马氏体相变时在一定的母相面上形成新相马氏体,这个面称为惯习(析)面,它往往不是简单的指数面,如镍钢中马氏体在奥氏体(γ)的{135}上最先形成。马氏体形成时和母相的界面上存在大的应变。为了部分地减低这种应变能,会发生辅助的变形,使界面改变。由于马氏体相变时原子规则地发生位移,使新相(马氏体)和母相之间始终保持一定的位向关系。

4)马氏体相变具有可逆性。当母相冷却时在一定温度开始转变为马氏体,把这温度标作Ms,加热时马氏体逆变为母相,开始逆变的温度标为As。

5)马氏体转变是在一个温度范围内完成的。当奥氏体到达马氏体转变温度(Ms)时,马氏体转变开始产生,母相奥氏体组织开始不稳定。在Ms以下某温度保持不变时,少部分的奥氏体组织迅速转变,但不会继续。只有当温度进一步降低,更多的奥氏体才转变为马氏体。最后,温度到达马氏体转变结束温度Mf,马氏体转变结束。

4.3 马氏体相变热力学

马氏体相变热力学研究的主要任务在于理论上求出材料开始发生马氏体相变的温度MS。这个温度不但是制定材料热处理工艺的一个主要参数,也往往表征材料经淬火后的性能如脆性。马氏体相变热力学的研究不但揭示材料相变(以及由此而引发的内部组织改变和性能改变)的一些自然规律,解释一些实验现象,更重要的是为新材料的成分设计和加工工艺设计提供基础。铁基合金马氏体相变热力学在40年代已具雏形,但不能由热力学直接计算出MS;铜基合金马氏体相变的热力学问题仅在1979年略为涉及,很不成熟。近10年来我们对铁基合金和铜基合金马氏体相变热力学研究取得了重要的发展,可由热力学计算出铁碳合金、铁合金(如Fe-Ni)、三元合金钢(如Fe-Ni-C)、多元合金钢以及铜基合金(如Cu-Zn)的MS,并与实验值很好符合。还能预测(实验方法目前还无法胜任的)钢经渗碳后在渗层中不同部位的MS(以及残余奥氏体的含量),以及铜合金在热弹性马氏体相变中,母相原子的有序状态对MS的影响。对于铁基合金中,面心立方奥氏体变为体心立方(或四方)马氏体热力学研究,以往由于对非化学自由能项估算困难,以致不能成功地由热力学直接求得MS,几十年来这项研究停滞不前。根据新近研究结果,提出非化学自由能以母相的屈服度和马氏体内储存能(后果几乎为常数项)为参数;改进和发展了热力学模型(包括Fisher模型、KRC模型以及中心原子模型),得到了满意的结果。对B-Cu基合金的研究,解决了有序化热力学,利用相图或原子间交换作用可建立规则溶液模型,奠定了热弹性马氏体相变热力学的基础。发展了Cu-基合金马氏体相变中测定非化学自由能的实验方法,丰富了相变学科的内容,也对发展和应用形状记忆材料大有裨益。国内外研究工作得出Cu-Zn-Al在略低于MS等温时,会形成所谓“等温马氏体”。经证明,这绝不是等温马氏体,而是在等温母相的有序态改变,是MS不断升高,继续形成变温马氏体。通过热力学计算可直接求出工程界所需要的MS,判别和解释现有的实验现象和数据,以及定量预测不同淬火态时MS的变化。这些对铜基形状记忆合金的成分设计、热处理工艺的制定至关重要。

4.4 马氏体相变晶体学

40年来马氏体相变晶体学表象理论被广泛应用,它对Au-Cd合金及铁基的(3,10,15)马氏体中马氏体相变晶体学参数的预测与实验值相符,这证明了理论的正确性;但对Cu-Zn和Cu-Al-Ni合金则需加以发展。我们应用W-L-R理论于Cu-Zn-Al合金,求得其热弹性马氏体的惯习面为(1,7.71,9.32)与实验值(1,6.88,7.90)相差仅1.6°,吻合得较好,证明原始的表象理论有其生命力。马氏体相变过程中,新、旧相之间具有对称联系。在Cu-Zn-Al形状记忆合金中的对称关系,应尝试以群伦计算Cu-Zn-Al合金中马氏体的变态数。群论对马氏体相变晶体学的应用还有待延伸和深化。

5.总结

马氏体从其诞生到至今已有多年的历史,但人们对马氏体相变的认识还不够深入,有很多问题亟待解决。最近,将由科学出版社出版刘宗昌等人的专著《马氏体相变》一书涉及的内容包括金属整合系统,相变过程中原子的移动方式,相变热力学动力学组织学晶体学,相变机制,性能及淬火应用等该书采用继承与创新相结合的方法,综合国内外的最新研究成果,补充完善更新内容,以适应建设21世纪创新型社会,由于马氏体相变应用有重要的前景,科学界应当继续给予关注,不断提高我国相变研究工作发展我国材料科学。

参考文献

[1]徐祖耀. 马氏体相变与马氏体[M]. 北京: 科学出版社,1980. [2]陈景榕,李承基. 金属与合金中的固态相变[M]. 北京: 冶金工业出版社,1997.

[3]徐祖耀,马氏体相变与马氏体(第2版)[M]. 北京: 科学出版社,1999. [4]刘宗昌.马氏体切变学说的评价[J]. 内蒙古科技大学学报,2008,27(4):293-300.

[5]刘宗昌,王海燕,任慧平. 再评马氏体相变的切变学说[J]. 内蒙古科技大学学报,2009,28(2):99-105.

[6]刘宗昌,计云萍,林学强,等. 三评马氏体相变的切变机制[J]. 金属热处理,2010,35(2):1-6.

[7]刘宗昌,计云萍,王海燕,等. 四评马氏体相变的切变机制[J]. 金属热处理,2011,36(8):63-66.

[8]刘宗昌,任慧平,王海燕. 奥氏体形成与珠光体转变[M]. 北京: 冶金工业出版社,2010. [9]刘宗昌,计云萍,段宝玉,等. 板条状马氏体的亚结构及形成机制[J].材料热处理学报,2011,32(3):56-62.

[10]刘宗昌,计云萍,任慧平. 马氏体相变形核机制的研究[J]. 科技成果管理与研究,2011,(2):48-51.

[11]程晓农,戴启勋,邵红红. 材料固态相变[M]. 北京: 化学工业出版

社,2006 [12]姜越,尹钟大,朱景川,李明伟.超高强度马氏体时效钢的发展[J].特殊钢,2004,25(2):1-5.[13]张慧杰,李鸿美.高强度超低碳马氏体钢的强化机理[J].上海金属,2010,32(2):42-45.

第五篇:热力学统计物理

热力学统计物理(目录)

第一章 热力学的基本规律

第二章 均匀物质的热力学性质

第三章 单元系的相变

第四章 多元系的复相变平衡和化学平衡 热力学平衡

第五章 不可逆过程热力学简介

第六章近独立粒子的最概然分布

第七章 波尔茨曼统计

第八章 玻色统计和费米统计

第九章 系宗理论

第十章 涨落理论

第十一章 非平衡态统计理论初步

下载CVD的热力学原理及研究进展word格式文档
下载CVD的热力学原理及研究进展.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    热力学统计物理试题

    热力学·统计物理试题 适用于200×级本科物理学专业 (200×-200×学年度第×学期)1.(10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关. 2. (20分) dL dT试证明,相......

    工程热力学讲稿

    工程热力学讲稿 一、基本知识点 基本要求 理解和掌握工程热力学的研究对象、主要研究内容和研究方法 〃理解热能利用的两种主要方式及其特点 〃了解常用的热能动力转换装置......

    中科大工程热力学

    工程热力学 1 绝热热力系:若热力系与外界之间无热量交换,则该热力系称为绝热热力系.平衡状态:若热力系在不受外界的作用下,宏观性质不随时间变化而变化。 准静态过程:在热力......

    材料热力学与动力学

    材料热力学与动力学 参考书目:1. Peter Atkins , Julio de Paula .Oxford University Press 2002. 2. William F.Smith 2006. 3.WilliamD.Callister2009. ※1.Cp为什么是个......

    工程热力学报告

    工程热力学(2015 秋) 课程论文姓名: 班级: 学号: 日期:纳米晶材料的热力学函数研究一、 摘要......................................................................................

    化工热力学教学大纲

    《化工热力学》教学大纲 一、课程简介 课程名称:化工热力学 课程编号:01C0263 开课院系:化学工程系 总 学 时:48 课程类型:学科基础课,必修 先修课程:基础化学、物理化学课程简介:......

    聚氨酯研究进展

    聚氨酯树脂的研究进展 摘要:本文综述了聚氨酯目前研究热点,其中包括氟硅改性、水性化、非异氰酸酯聚氨酯和聚氨酯纳米复合材料的研究,指出了聚氨酯未来研究方向。 关键词:聚氨酯......

    药用植物研究进展

    植物是药物的重要来源之一,人类利用药用植物的历史渊远流长。今天,尽管科学家已经能够利用化学方法研制品类繁多的药品,但开发利用植物药的热情在世界范围内却有增无减。这主要......