第一篇:典型农机具三维实体模型库建设
典型农机具三维实体模型库建设
唐茜 郭辉 韩长杰 杨宛章(新疆农业大学机械交通学院)
摘要:农业机械学课程是农业机械化专业及农业机械设计、制造专业的主要专业课程。典型农机具三维实体模型库的建立对提高农业机械学课程的教学质量有较大的辅助作用。典型农机具三维实体模型库建设目标是使用SolidWorks软件建立各种典型农机具的三维实体模型,然后使用CosmosWorks软件对实体模型进行运动模拟及受力分析,最终将三维实体模型及其运动分析结果应用到教学当中以提高农业机械学课程的教学水平。
关键词:课程
三维仿真技术
引言:农业机械是机械工程学科中的一个大门类,它与其他通用机械有许多不同之处。农业机械学的研究领域主要是根据农业生产的实际需要、自然条件等,利用机械动力学、控制论及优化设计、随机过程、可靠性设计、机械设计及理论等研究农业机械的理论、结构、设计、试验和应用等问题。农业机械学是一门讲述常用农业机械基本构造、工作原理、理论分析及设计计算等内容的专业课程。是农业机械化及其自动化专业和机械设计制造及其自动化专业的主干课程,通过学习,使同学们能够掌握典型农业机械的基本知识,为今后从事农机化事业或其他农业工程工作打下坚实的理论基础。农业机械学是一门实践性很强的专业课程,必要的典型结构认识与关键零部件的运动规律是使学生理解和掌握课堂授课内容的重要手段。
一、典型农机具三维实体模型库建设的必要性
农业机械化及其自动化是新疆农业大学重点建设学科之一,农业机械学是本专业的主干课程。近些年,由于课时不断压缩,大量的结构试验课被压缩,学生对各种农机具的认识只能通过认识实习、春耕实习来进行,而这些实习只能使学生了解到各种农机具的外表结构形式,对于农机具的主要工作部件的结构及工作原理、运动形式、动作方式等都无从了解。这样就使得我们的学生毕业后只能学到一些表象的知识,而对于知识的运用能力就有所欠缺,这一点在学生的毕业设计当中就表现的十分突出,很多学生对于一些相通的、类似的机构就无从下手。比如说有一个学生在设计吊篮移栽机的打穴装置时,就是想象不出打穴装置的运动是如何实现的(打穴装置要求鸭嘴在转动过程当中始终保持方向一致),其实该装置的结构形式与拨禾轮的结构形式类似,运动方式也相同。就是因为在上课时学生无法清楚机构的内部结构以及机构的具体动作过程。类似的问题还有很多。
在农业机械学课程授课过程中,需要有大量的结构教学来使学生了解各种农机具的工作原理及复杂机构的运动规律。而现在,农业机械学的教学课时少,使学生没有足够的时间来进行机械结构的试验课程,因此我们就利用各种机构的三维实体模型贯穿到课程讲授的各个环节。
三维实体模型在使用时,能够对其任意位置进行平面剖切,来表达任意截面的内部构造。同时,还可利用机构的三维模型进行运动仿真授课,这样就能够简单明了的表达清楚复杂机构当中的各零部件的运动关系,同时,还能利用相关软件将各关键构件的运动学、动力学的分析结果以视频图像形式直观表达。通过这种手段,就可以在有限的教学课时内使学生尽可能多的了解各种常用农业机械设备的结构及运动分析。
为保证授课内容的丰富、全面、直观,农业机械学科组的各位教师采用了各种方法,并使用多媒体教学代替了传统的黑板授课。但是,农业机械内容丰富,典型的机构工作、运动原理复杂,现有的多媒体视频及图片都不能详细的表达机械零部件的内部结构,更无法准确表达结构相关零部件之间的关系,部分复杂零部件通过拆装实习,学生仅是认识了其外观结构,而无法对运动关系、运动规律认识透彻。
因此,我们真正需要的是能够完整表达各种机具的主要工作部件的详细结构、运动关系,运动规律的三维实体模型来进行授课,该模型必须与机具的实物模型相一致,能够反映出实物的内部结构——零部件之间的装配、运动关系,能够从不同视角对模型进行观察,模型各零部件之间的运动关系应当与实物的相一致,模型的运动模拟、动力学分析应当与实物的运动、受力情况相一致,简单的说就是模型的各种状态、参数应当与实物完全一致,这样才能够保证在授课过程中能够完全贴近真实机具。
二、典型农机具三维实体模型库的建设
建立典型农机具三维实体模型库的软件平台是SolidWorks三维设计软件,该软件简单易用,在学生的三维实体造型课程当中也是使用该软件,该软件在学生当中也具有一定的基础。在机具的三维实体模型建立完成后,使用CosmosWorks软件对实体模型进行运动模拟,并得到模型上指定点的运动速度曲线及加速度曲线,以便对机具特殊点位置的运动、受力分析。
1、机具三维实体模型建立的一般步骤
(1)对所需建立实体模型的机具进行结构分析,将其拆解围若干独立的部分;
(2)对各独立的部分进行拆分,分解为最小的单元——零件,然后建立零件的三维实体模型;
(3)将完成的零件实体模型进行虚拟装配,完成独立部件的装配,然后将各相对独立的部分再结合成机具整机。
机具模型的建立如图1所示:
图1 拨禾轮模型
2、机具实体模型运动模拟的一般步骤
(1)首先设定个零部件之间的运动关系,如图2所示:
图2 零部件间运动关系的设定
(2)根据零部件的运动特征设定运动模拟所需的相关运动参数,如图3所示:
图3 零部件运动参数的设定
(3)设定完零部件的运动参数后就可以进行运动模拟了,使用者可以根据需要在运动模拟的过程中显示出指定点处的运动、加速度等曲线图,如图4所示:
图4 运动模拟图
图4是联合收割机中切割器装置的运动模拟图,其中的曲线图就是切割器动刀顶尖处的加速度图(上)和速度图(下),在模拟运动时,速度图和加速度图中的指针可以实时指示指定点处的速度和加速度值。
三、结束语
典型农机具三维模型库在教学中的应用,使学生更好的理解和掌握农业机械一些关键复杂机构的装配关系、运动关系以及不同时刻各部件所具有的速度加速度等关系。尤其是在给农学系的同学上课时,由于他们对机械方面的知识了解甚少,以前给他们上课往往要对某个机具、部件解释很长时间,学生也不一定能够理解,尤其涉及到机构的运动时更是如此,现在使用三维实体模型进行讲解,学生很容易明白各种机具的结构,利用三维模型模拟机构的运动学生更是一目了然。
目前农业机械化发展迅速,各种新型农机具不断涌现,为了能够使农业机械类课程紧跟农业机械化的最新发展,我们需要不断地补充最新型农机具的三维实体模型,这样才能使学生及时深入了解现在农业机械化发展的最新动态。
参考文献
[1] 王晓玲,李勇峰.机械设计三维建模的教学方法探索[J].中国新技术新产品,2009,8:211.[2] 徐超,葛红美.虚拟仿真技术在教学应用中关键技术的研究[J].福建电脑,2009,11:144.[3] 黄雁鹏.仿真模拟技术在职业教育中的应用[J].上海职业培训研发中心,2009,(02):76-78.[4] 郭燕,赵海峰.三维建模引入机械专业基础课程体系的改革与实践[J].科技创新导报,2009,6:174-175.[5] 王铮铮,贾世龙.三维建模理念的组合体构形在教学中的尝试[J].沈阳建筑工程学院(社会科学版),2004,5,6(1):87-88.[6] 曹琳.AutoCAD三维实体造型技术在制图教学中的应用[J].华北水利水电学院学报(社科版),2002,(18).[7] 钟良,刘传惠,沈良琼.多媒体教学中三维建模的方法研究[J].实验科学与技术,2004,9:76-78.[8] 崔盟军,宋英杰,李巍杭.三维建模软件在工程制图教学中的应用[J].承德石油高等专科学校学报,2010,3,12(1):68-71.作者简介:唐茜,女,讲师,主要从事教学管理工作。
郭辉,男,副教授,主要从事农业机械工程专业的教学和研究工作。
韩长杰,男,讲师,主要从事农业机械工程专业的教学和研究工作。
杨宛章,男,教授,主要从事农业机械工程专业的教学和研究工作。
第二篇:MasterCAMX3教案三维实体造型
Master CAM三维实体造型
实训任务书
加工十一班
任课教师: 李 树 清
目录
一、圆球、圆柱 ·························································································································4
(一)、任务内容 ····················································································································4
(二)、任务目的: ················································································································4
(三)、任务实施: ················································································································4
(四)、任务相关知识 ············································································································5
二、圆锥 ·····································································································································5
(一)、任务内容 ····················································································································5
(二)、任务目的 ····················································································································6
(三)、任务实施 ····················································································································6
(四)、任务相关知识 ············································································································7
(五)、任务练习与拓展 ········································································································8 三.实体旋转 ·····························································································································8
(一)、任务内容 ····················································································································8
(二)、任务目的 ····················································································································8
(三)、任务实施 ····················································································································8
(四)、任务相关知识 ·········································································································· 10
(五)、任务练习与拓展 ······································································································ 11
四、实体倒角 ··························································································································· 12
(一)、任务内容 ·················································································································· 12
(二)、任务目的 ·················································································································· 12
(三)、任务实施 ·················································································································· 13
(四)、任务相关内容 ·········································································································· 15
(五)、任务练习与拓展 ······································································································ 15
五、布尔运算—结合 ················································································································ 16
(一)、任务内容 ·················································································································· 16
(二)、任务目的 ·················································································································· 16
(三)、任务实施 ·················································································································· 16
(四)、任务相关知识 ·········································································································· 17
六、布尔运算—切割 ················································································································ 17
(一)、任务内容 ·················································································································· 17
(二)、任务目的 ·················································································································· 17
(三)、任务实施 ·················································································································· 17
(四)、任务相关知识 ·········································································································· 18
七、布尔运算—交集 ················································································································ 18
(一)、任务内容 ·················································································································· 18
(二)、任务目的 ·················································································································· 18
(三)、任务实施 ·················································································································· 18
(四)、任务相关知识: ······································································································ 19
(五)、任务练习与拓展: ·································································································· 19
八、综合实体: ······················································································································· 19
(一)、任务内容 ·················································································································· 19
(二)、任务目的 ·················································································································· 20
(三)、任务实施 ·················································································································· 20
(四)、任务练习与拓展 ······································································································ 24
徐水职教中心机械加工工专业
一、圆球、圆柱
(一)、任务内容:根据图1-1利用圆球和圆柱体创建如图1-2所示哑铃实体
图1-1
图1-2
(二)、任务目的:
1.掌握三维实体(圆柱体、球体)的基本创建方法。2.能利用这两个基本图形创建复杂的图形。
(三)、任务实施:
1.单击文件工具栏中的【新建文件】按钮按钮,单击基本实体按钮,选择,在工具栏中单击等角视图,出现如图1-3所示的对话框,单击坐标原点在对话框中输入球体半径20单击【实体】,创建半径为20的球体如图1-4所示。
图1-3
图1-4 2.选择视角为右视图如图1-5所示。
3.基本实体按钮,选择,在坐标值为(80,0,0)处创建同样的圆球,出现圆柱体对
徐水职教中心机械加工工专业
话框,参数设置如图1-6所示(注意:单击实体,选择Y轴),选择【布尔运算-结合】,最终图形如图1-7所示。
图1-5
图1-6
图1-7
(四)、任务相关知识:
1.圆球和圆柱体有实体和曲面之分
2.圆球和圆柱体的旋转角度均为0到360度
二、圆锥
(一)、任务内容:根据图1-8和图1-9利用圆锥体创建如图1-10所示实体图形
徐水职教中心机械加工工专业
图1-8(中间大圆锥体)
图1-9(周边小圆锥体)
图1-10(小圆锥体共5个)
(二)、任务目的:
1.掌握三维实体中圆锥体的基本创建方法。2.能利用该图形创建复杂的图形。
(三)、任务实施:
1.单击文件工具栏中的【新建文件】按钮按钮,单击基本实体按钮,选择,在工具栏中单击等角视图,出现如图1-11所示的对话框,单击坐标原点在对话框中输入图1-11所示参数,单击【实体】,创建如图1-12所示的圆锥体。
2.再次单击,根据图1-11所示参数在点(20,0,0)处创建基部半径为10,顶部半径为5,高为10的圆锥体,如图1-13所示
3.选择旋转命令击,将小圆锥体复制4个,参数设置如图1-14所示,单,选择【布尔运算-结合】,最终图形如图1-15所示。
徐水职教中心机械加工工专业
图1-11
图1-12
图1-13
图1-14
图1-15
(四)、任务相关知识:
徐水职教中心机械加工工专业
1.圆锥体有实体和曲面之分 2.圆锥体的旋转角度为0到360度
(五)、任务练习与拓展: 利用基本实体命令创建如下图所示实体
1.三.实体旋转
(一)、任务内容:根据图2-1利用旋转实体命令创建如图2-2所示实体
图2-1
图2-2
(二)、任务目的:
1.了解三维实体中【实体旋转】的基本创建方法。2.掌握【旋转操作】和【薄壁设置】等命令的使用。
(三)、任务实施:
1.单击文件工具栏中的【新建文件】按钮。
2.然后单击【绘制任意线】按钮,创建如图2-3所示的二维图形。,在工具栏中单击前视图按钮
徐水职教中心机械加工工专业
图2-3
3.选择【实体】/【实体旋转】命令或单击实体设计工具栏中的【实体旋转】按钮打开【串联选项】对话框,绘图区系统提示,选取如图2-4所示的串连.,单击串连按钮
图2-4
图2-5 4.选取串联曲线后,单击【串联选项】中确定按钮示,然后单击工具栏中【等角视图】
。,绘图区系统提,如图2-5所示,出现方向对话框如图2-6所示,单击
徐水职教中心机械加工工专业
图2-6
图2-7 5.在出现的【旋转实体的设置】对话框中,参数设置如图2-7所示,再次单击示:,并且单击工具栏中【图形着色】按钮,实体如图2-8所
图2-8
(四)、任务相关知识:
1.【旋转实体】是将二维截面图形绕中心轴线旋转一定角度后,由截 面图形运动轨迹所形成的实体模型。
2.【旋转实体的设置】对话框中【旋转】选项卡: 1).【旋转操作】选项组:
【建立实体】:按照设定的参数创建一个实体模型。
【切割实体】:按照设定的参数切割一个实体模型。
【增加凸缘】:按照设定的参数为实体模型增加浮雕。
2).【角度/轴向】选项组:
在【起始角度】和【终止角度】文本框中输入角度的设定值指定旋转的角度。
【重新选取】按钮用于重新设定旋转轴。
【换向】复选框用于自动生成反方向旋转的实体。
3.【旋转实体的设置】对话框中【薄壁】选项卡:设置与挤压内容相同。例:将上图创建为薄壁实体
1.将图3-7所示的【旋转实体的设置】对话框参数设置如图2-9所示,单击【薄壁设置】按钮出现如图2-10所示对话框,单击确定按钮,薄壁实体如图2-11所示。
徐水职教中心机械加工工专业
图2-9
图2-10
(五)、任务练习与拓展:
1.利用旋转命令创建如下图所示图形
图2-11
2.利用旋转命令创建如下图所示图形
徐水职教中心机械加工工专业
四、实体倒角
(一)、任务内容:绘制图3-1所示图形,利用【单一距离倒角】将其上表面倒角半径为5,利用【不同距离倒角】绘制图3-2所示图形和利用【距离/角度倒角】绘制图3-3所示图形,将其上表面倒角半径为5
图3-1
图3-2
图3-3
(二)、任务目的:
1.掌握单一距离倒角、不同距离倒角、距离/角度倒角的基本操作方法。2.掌握实体倒角的各参数的设置
徐水职教中心机械加工工专业
(三)、任务实施:
1.单一距离倒角
1).选择【实体】/【倒角】/【单一距离】命令,或单击实体设计工具栏中的【单一距离】按钮2).绘图区系统提示。
选取实体表面,按回车键,出现如图3-所示的对话框,设置倒角距离为5,单击3).图3-5是图3-6倒角后的效果。
3-4
图3-5
图
2.不同距离倒角
图3-6 1).选择【实体】/【倒角】/【不同距离】命令,或单击实体设计工具栏中的【不同距离】按钮2).绘图区系统提示
选取实体表面,按回车键,出现如图3-7
所示的对话框,设置第一倒角距离为4,第二倒角距离为8,单击3).图3-9是图3-8矩形倒角后的效果图。
徐水职教中心机械加工工专业
图3-7
图3-8
3.距离/角度倒角
图3-9 1).选择【实体】/【倒角】/【距离/角度】命令,或单击实体设计工具栏中的【距离/角度】按钮2).绘图区系统提示。
选取实体表面,按回车键,出现如图3-10
所示的对话框,设置第一倒角距离为5,角度为45度,单击3).图3-12是图3-11矩形倒角后的效果图。
图3-10
徐水职教中心机械加工工专业
图3-11
图3-12
(四)、任务相关内容:
1.倒角是在实体的边线处生成一个有一定角度的斜面,倒角有单一距离倒角、不同距离倒角、距离/角度倒角三种方法。
2.单一距离倒角:在倒角的两个表面截取相同的长度时,指定一个距离来倒角。
3.不同距离倒角:在倒角的两个表面截取不同的长度时,指定两个距离来倒角。
4.距离/角度倒角:在倒角的一个表面截取一定长度,并以一定的角度修剪另一表面时,需要指定距离和角度进行倒角。
(五)、任务练习与拓展:
1.拉伸实体,并且倒角和倒圆角
徐水职教中心机械加工工专业
五、布尔运算—结合
(一)、任务内容:利用【布尔运算—结合】命令创建图4-1所示图形
图4-1
(二)、任务目的:掌握布尔运算中结合运算的相关知识。
(三)、任务实施:
1).单击文件工具栏中的【新建文件】按钮按钮,选择,然后选择
以原点创,在工具栏中单击等角视图2).单击基本实体按钮建如图4-2所示图形
3).选择【布尔运算—结合】命令,出现,选中长方体和圆柱体,按回车键,长方体实体和圆柱体实体结合为一个实体。
4).线架实体原形如图4-3所示,线架实体最终图形如图4-4所示。
图4-2
徐水职教中心机械加工工专业
图4-3
(四)、任务相关知识:
图4-4
1.实体并集运算是指将图形中已存在的、部分重叠(至少共面)的多个三维实体无缝的连接成一个实体。
六、布尔运算—切割
(一)、任务内容:利用【布尔运算—切割】命令创建图4-5所示图形
图4-5
(二)、任务目的:掌握布尔运算中切割运算的相关知识。
(三)、任务实施:
1).单击文件工具栏中的【新建文件】按钮按钮。,选择
和画多边形,利用挤出命令创,在工具栏中单击等角视图2).单击基本实体按钮建如图4-6所示图形
3).选择【布尔运算—切割】命令,选中球体和六方体,按回车键
4).创建最终图形如图4-7所示。,出现
徐水职教中心机械加工工专业
图4-6
图4-7
(四)、任务相关知识:
1.实体差集运算是指两个实体有部分重叠,或者一个实体完全包含了另一个实体,可以从该实体中挖去一个实体,从而在该实体中产生一个凹坑,甚至一个空洞。
七、布尔运算—交集
(一)、任务内容:利用【布尔运算—切割】命令根据图4-8创建图4-9所示图形
图4-8
图4-9
(二)、任务目的:掌握布尔运算中交集运算的相关知识。
(三)、任务实施:
1).单击文件工具栏中的【新建文件】按钮按钮。,选择
和,在工具栏中单击等角视图2).单击基本实体按钮所示图形,创建如图4-103).选择【布尔运算—交集】命令,出现
徐水职教中心机械加工工专业,选中球体和圆柱体,按回车键
4).创建最终图形如图4-11所示
图4-10
图4-11
(四)、任务相关知识:
1.交集运算是获得两个实体的重叠部分,仅有公共面而没有重叠的两个实体无法通过交集运算,获得它们的公共平面(曲面)。
(五)、任务练习与拓展:
1.利用挤出,布尔运算等命令创建如图所示图形
八、综合实体:
(一)、任务内容:创建烟灰缸的三维造型,如图1所示
徐水职教中心机械加工工专业
图1
(二)、任务目的:
1.掌握挤出命令在实际图形中的运用。2.熟悉倒圆角命令的使用 3.掌握抽壳命令的运用
(三)、任务实施:
1).单击文件工具栏中的【新建文件】按钮钮键,按绘制矩形的快捷键,在工具栏中单击俯视图按
进行绘制长宽各为50的矩形,再按矩形的快捷进行绘制长宽各为40的矩形,对其倒圆角,半径为10,并对其进行定位于原点。如图2所示。
图2 2).选择菜单栏中的【实体】/【挤出】命令,弹出串联选项对话框如图3所示,并选择串联的快捷键,选择串联曲线50X50的矩形,再按下确定
徐水职教中心机械加工工专业
键,弹出实体挤出的设置对话框,如图4所示。并做以下设置:选中增加拔模角的复选框,设置角度为18度;选朝外的复选框;挤出的距离设置为20mm,再按确定键,得到图5的结果。
图3 图4
图5 3)、再次选择菜单栏中的【实体】/【挤出】命令,弹出串联选项的对话框(图6),并选择串联的快捷键定键,选择串联曲线40X40的矩形,并按下确,弹出实体挤出的设置对话框(图7),并对其做以下设置:增加拔模
徐水职教中心机械加工工专业
角的复选框角度设为10度;去除朝外的复选框;挤出的距离设置为18;选中 “切割实体”复选框,按确定键
得到图8所示结果。
图6
图7
图8(4)、分别选择
和,在原点各画半径为3的圆,然后执行菜单栏中的【实体】/【挤出】命令,弹出串联选项的对话框,如图6所示。并选择串联的快捷键,选择串联曲线R3圆,再按下确定键,弹出实体挤出的设置对话框如图9所示,并对其做以下设置:去除增加
徐水职教中心机械加工工专业
拔模角的复选框;选中“切割实体”和“两边同时延伸”的复选框再按确定键。再经过步骤(4)选择另串联曲线R3圆,得到如图10所示的图形。
图9
图10(5)、执行菜单栏中的【实体】/【倒圆角】命令,选择选择面,单击需要倒角的面,按回车键出现如图11所示图形,单击,图形如图12所示。
图11 图12 6).单击实体抽壳命令实体的底平面,按回车键,确定。,出现,选择 7).单击烟灰缸底平面,最终实体如图13所示(图14为烟灰缸底平面视图)。
徐水职教中心机械加工工专业
图13
图14
(四)、任务练习与拓展:
1.下图为玩具盒盖,材质为塑料,试做出其实体。
2.利用直线命令、圆弧命令、矩形命令和椭圆命令绘制台灯罩线架,并利用旋转实体命令、扫描实体命令和拉伸实体命令绘制三维实体模型。
徐水职教中心机械加工工专业
机动练习题:
练习1-基本实体
徐水职教中心机械加工工专业
练习2-基本实体
练习3-挤出实体与布尔运算
徐水职教中心机械加工工专业
练习4-挤出实体与布尔运算
练习5-旋转建模
徐水职教中心机械加工工专业
练习6-扫描实体
练习7-实体薄壳
徐水职教中心机械加工工专业
练习8-综合练习
练习9-综合练习
第三篇:实体三维化平面设计拓展研究论文
摘要:本文在平面设计的基础概念上,提出“平面设计≠‘平面’设计”的观念,打破平面设计二维化的既定思维,将平面设计向三维空间拓展。使平面设计的含义不再狭隘,明确现代“平面设计”应该包括基于实体化三维空间的平面设计。通过结合不同领域的成功案例分析得出通过材料、工艺、媒体等形式使平面设计实体三维化。
关键词:平面设计;实体三维空间;拓展
在中国,“平面设计”是翻译于“graphicdesign”,“graphicdesign”是不带有维度概念的词,但中译后的“平面”一词,使我们对其的理解局限在二维上,使其平面设计概念也变得模糊化,含义变得狭隘。在一定程度上限制了我们对于“graphicdesign”的拓展[1]。加勒特埃克伯说:“人们生活在一个三维的空间中……人生最伟大的体验之一,就是置身在这个完美的三维体量之中”将“平面设计”融入三维,观者能更好地体验、感受、理解设计师所要表达的“平面设计”作品。所以平面设计的概念应该包括基于二维空间的平面设计、基于虚拟三维空间的平面设计和基于实体三维空间的平面设计。将平面设计向实体三维空间效果拓展,不仅可以提升作品的感官体验效果,同时还能增加与观者的互动性、融入性,增强观者的想象空间,拓展观者的思维。因此,本文结合三维空间的理论,以及应用于平面设计的“三维空间”实体案例进行分析,得出平面设计向三维设计拓展的必要。由此,研究二维、三维空间与平面设计的关系,能够更好地激发设计者创作的多样性,表达设计者所想表达的设计内容,也能够使观者能动地,带入性地了解作品,理解设计者的设计主题。
1平面设计中的“三维空间”与实体三维空间
在“平面设计”中,三维空间可以简单地分为虚拟三维空间和实体三维空间。虚拟三维空间是指依旧在二维的平面设计范畴内,利用错视觉的引导,所产生具有明确的轮廓的虚幻空间。换句话说,就是二维的平面设计里的“视觉”三维。
1.1二维设计里的“视觉”三维
“视觉”三维指的是视觉感官上平面内的“立体”空间。点线面、明暗、色彩作为平面设计的基本要素,它的变化往往能使平面设计具有律动感和空间感,使画面具有“立体”空间效果。图1是由KurtWenner(美国)通过透视原理在同个水平面内利用人的视错觉关系描绘了这幅立体街头绘画(3-DStreetPainting)——三维立体画《Reections》。它是利用人眼立体视觉的特点产生描绘的作品,利用人眼视觉空间的延续性,将二维作品以伪三维的形式展现,使作品的表现力丰富,意境深远。但是依旧没有脱离二维空间的局限,以一种平面的、单一的面的空间形式存在,并不是真正意义上的,真实的三维空间,“立体”的平面设计。平面设计师乔尔森泰说过“设计师在不断通过明暗手法、矛盾空间、色彩色调、叙事结合的手段来强化三维效果时,其实都被手法欺骗了眼睛”。也就是说,在“平面”二维空间内的制造出来的“视觉”感官的三维效果,是基于虚拟三维空间的平面设计。
1.2实体三维空间与平面设计
三维空间的概念是:日常生活中可指由长、宽、高三个维度所构成的空间[2]。三维设计是新一代数字化、虚拟化、智能化设计平台的基础,它是建立在平面和二维设计的基础上,让设计目标更立体化,更形象化的一种新兴设计方法[3]。平面设计向三维空间拓展既需要设计者突破“平面设计”的字面含义,更需要设计者不拘于既定思维,突破球星。与印刷形式的平面设计相比较,包括实体三维化的平面设计给我们带来更多的拓展空间,以书籍为例,书籍即是二维也是三维。就页面来说,每一页都是两个二维面的贴合,但翻阅的过程则是一个三维过程。1.2.1立体书籍封面单以页面来说,通常可见的书籍设计属于印刷作品,惯性在于无法摆脱传统的二维平面的束缚,通过印刷文字、图形对视觉感官的刺激来传达信息。而将二维的设计作品与实体三维空间中的真实元素相融合,如图2是来自拉脱维亚设计师艺术家MandarinDuck的书籍封面设计,除了增强视觉效果,也可以更全方位,多角度传递设计信息。图2设计师通过增加二维平面设计中没有的触觉体验,来增加作品的真实感与吸引力。1.2.2书籍内容立体化强化阅读的三维空间感,使阅读过程中的思维想象转变为一个观感过程,则在书籍中融入三维设计元素,例如图3Sabuda,Robert创作的立体书《绿野仙踪》的表现手法,给故事书建造了一个可看,可触碰的具体空间,使静态的书,具有动态的“趣味”效果。不管是表现形式,还是传达功能上也拓展了平面设计的领域。实体三维化的平面设计能够打破传统束缚,增强感官体验;融入观者参与,更好传达信息;增强趣味性,吸引观者目光。实体三维设计能够更好地将以人为本的设计思想进行贯彻,通过与观者的互动过程中,使作品更好地被了解,也更好地了解观者的需求[4]。传统的二维平面设计对观者来说只是以“局外人”的视角,看设计作品,因此不能很好地融入设计作品,甚至去影响设计作品。但是在遵循互动行为时,利用现代新型媒体手段或者融入观者的行为动作使平面设计完整等,来实现必要的互动性设计。总之,突破传统的印刷形式,空间束缚,使平面设计形成多方位可见,互动性强的实体三维化的平面设计。
2平面设计向实体三维设计拓展的方式
本身存在的空间(平面)+媒介=实体空间(三维)。本身存在的空间指的是通过印刷形式的二维平面设计作品。二维平面只是平面设计中的形式之一,对细致刻画作品的内在含义,是难以做到“完美”的。因此,设计者必须通过对引入媒介来探索平面设计的“实体三维”空间建设。通过“实体三维”建设的研究手法打破印刷形式的品面局限,从二维走向三维,从平面走向立体,从立体空间的多角度重新认识印刷形式的二维设计和实体媒介相结合的多样性表现,从真正意义上突破二维空间的传达设计,达到实体三维化设计[4]。陈逸飞先生在创立逸飞集团时说过:“我们致力于打破视觉局限,颠覆视觉惯性,创造一种全新的、“大视觉”的视觉文化。这是一个颠覆的时代,视觉艺术已经突破了传统平面美术的束缚,它的外延正在无限地扩展。”由此看来,平面设计突破印刷形式需要引入媒介[5]。对于媒介的映入我们可以通过以下的手法:运用材料本身的特性、手工艺的技法技巧,光与影与人的关系,突破二维平面设计的限制,真正实现三维视觉空间的立体设计。简单地将“媒介”分为以下3种:
2.1材料的运用
利用材料本身所属的三维空间在平面上设计,突破了传统、二维的印刷设计的范畴,平面设计师利用各种材料、工艺形成新的平面设计,即实体三维化的平面设计,在保留材料、工艺自身属性的基础上,改变了印刷形式的平面设计的视觉观感,创造出实体三维效果。图4原研哉设计的梅田医院视觉指示系统,巧妙地将印刷作品和实物进行结合,将作品中的印刷主体物或重点表达处用实物代替,能更直接、更有效地表达设计作品所要表达的重点、主题,也更具创意。将印刷与实物结合,拓宽平面设计领域。
2.2工艺技术
工,巧饰;艺,艺术。工艺可以理解为“巧饰的艺术”,那么工艺技术就是将原材料或半成品加工成产品、艺术品的方法、技术。用“工艺”的方式,结合材料的特性,来寻求生活和艺术相结合,使平面设计脱离全印刷的平面形式。在技术发展的今天,工艺技术不再那么复杂,图5是爱沙尼亚设计师EikoOjala的剪纸作品,就是依靠剪纸这种工艺技术完成的作品,使平面的山水画破纸而出,光影效果强烈的三维视觉感官,使作品的既视感更为强烈。
2.3媒体运用
“技术启发艺术,艺术挑战技术”当平面设计遇见光时,通过光艺术,使平面设计的表现形式丰富,视觉效果新颖,光的可变性也是平面设计变为具有动态效果的独创性设计,媒介也从实体材料扩展到了光学。开启了平面设计创作的新“空间”。图6是EMart的3DQRCode创意,利用正午时光的照射与长短不一的code的阴影形成一个完整的二维码。正是这种三维的效果使EMart中午时段的销售额大大提升,而且也带来了更大的曝光率。实体三维化的平面设计拓展方向在于打破印刷形式的二维束缚,但是印刷形式的二维设计也是推动平面设计由二维向实体三维设计拓展的有利因素,传统设计中在乎运用明暗颜色、虚实对比等并非是落后的手段,如果将其与真实效果结合,就能够完整地凸显三维效果[6]。
3结束语
设计无定式[7]。纸和印刷相结合的“平面”设计确实在平面设计领域中取得了很好的成绩,但是技术的发展,对平面设计师的要求在发生着变化。用空间的眼光看待“平面设计”,打破平面设计“平面”化的既定思维,将平面设计从二维空间向实体三维化空间拓展。实体三维化平面设计讲的是二、三维,虚实的结合。将实体材料放置于印刷作品中,形成一种新的视觉感官的平面设计。平面设计突破空间限制,突破单一的印刷形式,赋予更多的真实效果,实体视觉刺激,如此才能为其拓展更广泛的领域。
参考文献
[1]牛玉慧,刘方林.平面设计的空间性研究[J].包装工程.2007.11.192-194
[2]百度百科
[3]百度百科
[4]孙斐.二维平面设计中的三维视觉空间表现[J].美术大观.2010.11.206
[5]黄婷.平面设计向三维空间拓展研究[J].包装工程.2011.05.18-21
[6]姜昕.平面设计向三维空间拓展研究[J].艺术科技.2014.12.172
[7]李耀新.新时代新使命新格局——以创意设计引领创新转型的初步思考[J].设计.2015(22).148-149
第四篇:《3Done三维实体设计-桌面收纳盒》教学设计
《桌面收纳盒》教学设计
教学目标:
Science(科学):了解并掌握科学探究的基本方法和步骤
Technology(技术):学会使用拉伸命令构造三维实体的方法;熟练使用二维草图相关绘制工具;学会使用抽壳命令。
Engineering(工程):初步理解并掌握三视图的左视图绘制方法,合理设计收纳盒的结构和空间。
Arts(艺术):能够进行美观、独特的造型设计。
Maths(数学):对收纳盒整体的尺寸设计合理、比例协调。教学重点:
能够设计合理、美观的桌面收纳盒。教学难点:
理解并掌握三视图的绘制方法,合理设计收纳盒的结构和空间。教学准备:
3Done建模软件 课时安排:1课时 教学过程:
师:同学们,大家好,我们的生活中存在着许许多多的现象需要我们用眼睛去观察发现,爱提问的孩子,勤思考,爱学习,现在和老师一起走进今天的“生活观察室”。
一、生活观察室
1.请大家看一看这都是什么地方?
(出示厨房、书桌、茶几、餐桌杂乱的图片)2.这些地方有一个共同的问题你们发现是什么了吗?(桌面杂物较多、摆放凌乱)板书:发现问题—桌面凌乱
师:这就是今天需要我们共同来解决的问题——怎样才能使桌面变得整齐有序? 板书:提出问题—如何整理 出示课题:桌面收纳盒 师:今天就和老师一起利用3D打印技术,设计属于自己的独家订制《桌面收纳盒》。
二、我是设计师
师:创造物品最重要的就是规划设计,我们要结合实际情况进行分析,设计出满足需求的物品
板书:分析问题—合理收纳 师:小设计师们,准备好了吗? 课件出示:书桌收纳盒
师:这是我设计的书桌收纳盒,分为四部分。
师:打开桌面上的《学习活动单》,完成第一项需求分析。
三、创意实验室
师:结合实际情况完成需求分析就可以开始动手制作了。看一看这些已经设计好的收纳盒,你的脑海里呈现出的是什么样子的收纳盒呢?让我们赶快把它设计出来吧。
课件欣赏:各种各样的收纳盒 1.设计外形,草图绘制。
师:首先我们可以通过草图绘制,然后进行拉伸,绘制出收纳盒的外形。演示绘制外形。学生练习
2.划分空间,拉伸—减运算。
师:结合开始的需求分析,进行空间划分。演示草图绘制—减运算 学生练习
四.创意展示区(展示交流)
师:完成的同学结合“学习活动单”第二项准备展示交流。大家好,我是,我制作的收纳盒用途是:,它各部分的功能是:,我制作的体会是:,谢谢大家。
五、小结
师:今天我们通过观察生活中的现象,发现问题—桌面凌乱,提出问题—如何整理,分析问题—合理收纳,解决问题—整洁有序。
孩子们,思维无限、创意无限,希望你们在日常生活多观察、勤思考,用自己的知识来创造未来。板书(活动场地)设计:
发现问题
桌面凌乱
桌面收纳盒
提出问题
分析问题如何整理
合理收纳解决问题 整洁有序
第五篇:CAXA三维实体设计学习心得体会
CAXA实体设计实习报告
三周的CAXA实体设计实训转眼就过去了,虽然时间不长,但是我却学到了很多关于识图、制图的技巧,这对于我们学模具专业的同学来说是非常重要的。通过这次实习使我对CAXA有了较为全面的理解,对这学期学习的CAXA理论知识起到了强化巩固的总用。同时锻炼了我们看图、识图的能力,对我们大一学习得画法几何起到了复习的效果,也让我们对空间几何体有了更加形象清晰地意识。更让我们的精神上得到了鼓舞,一直以来总是感觉自己没有什么技能,到现在学习到将来可能吃饭都用到着的技能,那真是相当的振奋人心。
进入新的世纪以来,随着3D技术与网络化、信息化的飞速发展,产品创新更快、品质更优、成本更低、服务更好已经成为现代工业的基本特征。随着CAXA实体设计的推出,创新三维设计——CAD技术的第三次革命已经到来。
CAXA实体设计是具有世界最领先的创新三维CAD系统,它所代表的创新设计体系,是近20年来CAD技术发展的唯一突破,它全新地诠释了未来CAD技术的发展方向,使CAD真正成为普及化的傻瓜工具,使用者再也不需要花费大量时间与精力去学习和适应软件,从而真正做到了易用和创新。对此我们深有体会。
总之,作为一种制图软件,越简单越准确的就越好。CAXA 实体设计采用拖放图素的方式设计,就如同搭积木一样直观简单,可以随意拉伸、缩短,能轻松有趣的完成设计,并不需要花费很长时间去学习CAXA实体设计是一种基于创新设计的三维设计软件。它以智能图素为主体,通过添加、拖放智能图素,可以高效快速的完成产品的设计。它还具有的智能渲染和智能动画功能,通过智能渲染可使产品以电子样机的形式完美的展现在面前,通过智能动画可将产品的现场工作过程演示出来。但是,在作图过程中要特别注意细节,切不可看到图就开始盲目的去画。一定要读懂图,看清图的构造,在脑海里有个大概的样子,如果随便看看就开始画,那返工的概率是很大的,还有就是在画图过程中最好是想把整体画出来再去打孔,如果你一边做一边打孔,那样可能会影响你接下来的步骤,可能做不出预期效果,也可能孔不见了,另外,在打孔时要特别注意看图,一定要分清孔的大小,先后顺序,如果看到孔就打不想想它们之间的关系,那当你的两个孔有影响是,如果打的先后顺序不对,很可能与实际效果图不一样,我在做球阀阀体的时候就是孔的先后没分清,导致孔形状打完后和图明显不同。还有就是螺纹,有些孔是螺纹孔千万不能忘记。
CAXA实体设计在设计方法上更加贴近设计人员的设计思路,它可以将设计人员的模糊或不成熟的想法在三维环境下直接、快速的表达出来,然后再按自己的思路做动态修改(通过智能图素的添加、拖放来实现),最终形成产品。这应该是它与其它一些三维设计软件(如UG)最大的区别,也应该是较之其它软件最大的优势。而其它三维软件要求设计人员必须在头脑里先有一个清晰的产品模型,然后从二维草图开始,按部就班的进行拉伸、旋转、扫描或放样等特征形成实体,如此依次添加零件,形成最后产品。这对于我们刚开始接触设计软件是相当的重要,现在我们刚开始学习专业知识,看着图画都有很大的困难,如果还需要我们先自己设计再出图,那是何等的困难!CAXA的优点还不仅限于此,CAXA实体设计是唯一具有创新模式和工程模式两种几何建模方式的三维CAD软件,既可以帮助用户快速构建3D模型,又能方便用户进行基于历史特征的全参数化设计,实现零件设计中的任何变化,都可以反映到装配模型和工程图文件中,确保数据的一致性和准确性。创新模式简单易用,可大幅提高建模速度,尤其在开发新产品时具有无与伦比的优势;工程模式是和大多数3D软件一样采用全参数化设计思想,模型修改更加方便。用户可根据个人习惯或具体的零件/装配设计的需要,两种建模方式单独使用或结合应用,可显著加快设计速度。在设计工具方面,提供了各种实体特征造型工具,以及对局部特征或表面进行“移动”、“匹配”、“变半径”等操作的表面修改功能。借助独特的三维球、定位锚、约束等工具,可以对智能图素或特征及其基准面进行灵活的事后定向、定位和锁定,以实现搭积木式快速组合,以及严格精确的详细设计。CAXA实体设计软件,是具有国际先进水平的CAD辅助设计软件,它可以帮助设计人员在三维空间进行构思、布局和创意。CAXA实体设计软件可以应用在各个行业,使该行业的产品、工程和设计方案在实施前,以最短的时间在计算机上模拟出来,为企业在市场竞争、工程建设和设计方案等方面产生最佳效果。
机械工业是一切工业的基础,各种机械又是有数量不等的零件所组成,如蜗轮、齿轮、轴、弹簧等等。用CAXA实体设计软件制作机械的各种零件图,即快又好。特别是用零件组成构件和一部完整的机器三维图,就更加快捷,因为CAXA实体设计软件有神通广大的三维球工具,使得三维图绘制更加方便灵活。
在实际的生产中,经常会有这样那样的问题,虽然我们的脑子里有着深刻的三维形象,由于每个人的语言表达能力的不同,说不清楚。所以人们创造了二维图纸,作为工程语言来相互交流。但有些物品或零件较复杂时,二维图也不好表达,这时我们用CAXA实体设计把某个物体制作成三维的虚拟图,就是没学过制图的人也可以和你交流。
通过此次CAXA实体设计的实训,我感觉到这门学科的功能是十分强大的,是其它的许多学科无法比拟的,它对我们专业的帮助更是其它学科不可替代的。同时经过一个学期的学习,觉得自己对这门课的兴趣越发的强烈。俗话说,兴趣是一门最好的老师。既然现在兴趣已经产生了,而且是一发不可收拾。尽管从此次学习中,感觉到老师讲的许许多多的知识自己都不怎么的懂,各项操作也是有那么点儿是懂非懂。看图的时候也是很模糊,很难想象出它的立体图。但是当自己把所有零件画好,一步步装配好,干涉检查没有,动画做好。一副图的成功带给我们的成就感是相当强烈的。
经过三个星期的实训,感觉到自己之前几乎不存在的成就感一下子好像增添了好几倍。以前总是不知道自己的专业是干些什么,将来毕业能有什么技能,对这些问题总是很郁闷。但是通过这次实习,心里突然之间就感觉到自己其实不是自己想的那般一无是处。就在那一霎那,仿佛自己一夜之间就看到了自己那遥远的未来,而且是赋有一片光明的未来在闪烁着金光迎接着自己的到来。
这次实训是我上大学以来强烈的感觉自己的前途也是金光闪烁的,虽然仅仅只是三个星期,但是其中学到的自己能操作的知识是何等的宝贵,一直以来大家都说“大学生说什么都懂,一做就不会。”但是通过这次实习加上我们一学期的实体设计理论课程学习。我觉得我们是实践与理论结合完美的结合到一起了!以后再也不是仅仅只能纸上谈兵,我们也能做出一些日常生活中的实体图,那种从实际生活中转化到图纸上的快感是无法用语言表达的。
此次实训中,也要特别感谢老师,毕竟刚开始自己接触,每个同学总是有许多问题要问,但是不管是简单的,复杂的。老师总是细心的一步一步的教我们直到我们操作懂了。在刘老师的耐心讲解与精心辅导下,每一位同学都是一心一意的听,认认真真的画。其中没有任何一位学生在中途退场,更没有一位学生在课堂之上扰乱教学秩序。在那段时间的每一分,每一秒,每位学生心目中只有一个目标,搞懂老师所教那个软件中的每一项指令,搞懂每个图的来龙去脉。
在这三个星期里,每一位同学都感悟到了自己确切的不足,理解到了这个社会的种种残酷。觉得在这样一个环境下,自己再也不能像原先那般虚度自己的光阴了,当今社会是绝对不可能允许一个虚度时光的人徘徊在这样一个竞争空前激烈的环境下。其它的可能现在已经是为时已晚,无法挽回,但至少这项在今后可能是吃饭都用得着的东西一定要拿下它,而且自己心里也明白,它更是自己所学的专业并不可或缺的一项重要的辅助工具,更为以后步入社会提供一技之长。
成功永远只属于那些有准备的人,幸福永远只属于那些经过艰辛付出的人。这句话,似乎一下子被所有同学都理解了,而且是进一步的揣摩出了它所包含的更高层次的意义。总之,CAXA是相当的强大的,但是再强大的软件对于操作者来说也会越到许多困难,下面我就这次实习过程中越到的问题、CAXA的一些基本操作方法以及总结出的一些技巧操作一一列出:
CAXA的一些基本操作方法:
一、目录式设计元素库
有鼠标拖放标准件和自定义的设计元素,这些设计元素包括三维特征、零件、装配件、自定义工具、轮廓、颜色、纹理、动画等等。这种鼠标操作是相当简单快捷的,对于制图人员来说,越准确越快捷的方法便是最好的,CAXA的图素、高级图素、钣金、工具、动画、表面光泽、材质、凸痕、颜色中包含了许多制图过程中可能要用到的元素,有了这些我们可以简单的脱出来就可以,不必要自己在画,下面就拿用的图素一栏说明,这个工具栏可也说是很全面的它里面有各种基本的实体图也有各种孔类零件,有了这个工具栏我们省去了简单元素自己画的时间,同时在打孔时更是方便了不少。这么多的元素就能体现它的强大与简捷、精准。同时工具一栏也不得不提,工具里面看着好像囊括的不多,就只有12个按钮。但是每个按钮里的丰富多彩再制图中你就能深刻体会,我们现在还不是很了解,仅仅是用了自定义孔和紧固件,这两个按钮也是非常方便的,自定义孔里面有各种我们越到的孔类形状,用它我们在实习中就从没有打不出的孔,这四种孔基本就能满足我们的制图范围了。而在紧固件里则有各种我们需要的螺纹、螺栓、螺母、螺钉、垫圈。但是在调用紧固件是要特别注意单位,紧固件只能用毫米做单位如果用其它单位则调不进去,这里要注意。另外,内螺纹的设计用鼠标的拖放方式操作也很简单:从工具中拖放“自定义孔”到所要生成孔的零件上,跳出“定制孔”对话框,选择螺纹,填入相应的参数确定就
可
生
成螺
纹
孔
单击。
总之,在CAXA的这几个工具栏里总以体现它的简单、精准、快捷。
智能捕捉与驱动手柄 智能捕捉是一个动态的三维约束算法工具,它为图形方式下的特征和图素拖动提供精确定位和对齐功能。操作者只需同时按下 Shift 键就可实现捕捉棱边、面、顶点、孔和中心点等。这种定位方式是相当简单和准确的。
调出三维模型后拖动操作手柄,可修改智能图素的几何尺寸。动态观察曲面或平面立体的表面相贯线或平面截交线的空间形状,随尺寸改变形状的变化情况,进行组合体的线、面分析。
直接拖动操作手柄修改零件的尺寸,对进行相切、相交、共面,不共面等组合体表面关系分析时非常直观。屏幕上的可见驱动手柄可实现对特征尺寸、轮廓形状和独立表面位置的动态、直观操作,并可以动态修改尺寸或通过鼠标右键输入尺寸的精确值。
特有的三维球
实体设计中三维球工具的作用用途广泛,但是其具体的细节操作及作用,并不是全面知道,其实三维球工具能为各种对象平移、旋转、镜像、拷贝、阵列或各种复杂三维变换提供了精确定位方法。结合几何智能捕捉工具可实现对复杂零件的装配与修改。三维球的这些功能可以说是CAXA的标志,是其它制图软件所不能取代的、超越的。在实习过程中给我感触最多的也便是三维球,它几乎无时无刻都伴随着我们,每一幅图都不能离开它。不管是制作,装配都要用到它。它的镜像、拷贝功能也是非常强大的,在做一些对称图时它为我们省去了不少时
间,就
拿
我们
做的泵
体
做
说
明
通过简单的拷贝就能把另一边也做出来,这样不仅节省了时间,也更加准确。在镜像方面同样是强大无比的,拿我们的阀体说明,在打四个螺纹孔时,只要做好一个螺纹孔,其余阵列即可。
零件的装配
CAXA实体设计的装配设计与零件设计是一个设计环境下完成,可以自由组合、解散装配体。其装配分为无约束装配和约束装配,无约束装配可快速定位零件,并且可以根据设计意图修改、解除、改变装配。约束装配可保留配合关系。其装配设计比较快速、自由,动态修改方便(尤其是将一个零件调整到另一个装配体时更为方便)。说到装配又不得不提CAXA另一个强的的功能:提供干涉检查。提供干涉检查也就避免了我们的错误,在实体设计中准确性是相当重要的,如果我们仅仅是看看外表很难知道错误,但是有了这个功能,我们就能自己检查自己,方便改正。另外,装配过程中除了用到约束装配和无约束装配,还经常要用到三维球,在有些时候我觉得三维球还比较简单,快捷。总之,可以说三维球无处不在。装配过程中还有个优点上面已经说过,那就是CAXA在添加螺栓联结时很方便,找到需要添加的点,可以直接将螺栓、垫圈、螺母作为一个装配体加到适当的位置。
曲面设计功能
实体设计提供灵活的曲面设计手段,曲面的生成方式有直纹面、旋转面、导动面、放样面、边界面、网格面以及曲面过渡、裁剪等编辑手段。通过这些曲面手段,用户可以设计各种复杂零件的表面。其增强的3D空间曲线的设计编辑能力,可帮助用户绘制出真正的空间曲线,完成更多复杂形状的设计。渲染与动画功能
CAXA动画制作很简单,将动画设计元素中动作加到相应的零部件上,通过智能动画编辑器设置其动画属性,可以很容易的完成动画效果。还可利用光线实现跟踪、阴影、纹理、凸痕、贴图映射和图形保真,生成具有相片真实感的图象。可生成任意数量的平行光、点光源或聚光光源;其特殊效果包括雾化效果和胶体效果。CAXA实体设计所具有的动画功能不同于其它三维CAD中的爆炸图,CAXA实体设计不仅可进行零件复杂的动作设计,而且有我们所熟悉动画播放工具,调出模型库中已完成带动画设计的零件,就可直接观察运动情况。在零件图或装配学习中,可以清楚地描述图纸上各零件的作用或装配件的工作情况。这是泵体的装配图,从动画效果中可以清晰的看到各个零件。对我们学习装配原理非常有用。
多环境操作性
自动特征识别功能可识别和生成导入的特征。所支持的特征类型包括过渡、基于平面的智能图素、带有轮廓重建的拉伸智能图素和草图。
另外,CAXA还带有自动特征识别功能,可识别和生成导入的特征。还可从零件和装配生成相互关联的多视图二维工程图。总之,CAXA的许多功能还不是我仅仅三个星期就能学完的,今后的路还很长,也还有许多更加强大的功能等着我们去学习,探索,应用。
实习中遇到的一些问题:
一、打孔的时候,一定不要画完一部份就打,一定画完整体在打,我在画这个阀体的时候就是因为先把中间的孔打了,到后来做杆的时候就导致影响到了孔,出现了错误。所以,打孔时,千万注意要画完整体再一个一个打,这样能避免出错。
二、在画外螺纹是要注意选择渲染的面是特征面而不是任意,这就是选择任意按钮导致的结果;
而选择特征面,我们就能想要哪个面是螺纹就是螺纹,而不是像上一个一样,一渲染就导致整个零件,要么相邻的两部分都被渲染。
三、制作动画效果如果要它从一个方向直线运动一定注意不要在同一个零件加多条路径,如果改
动,一
定
把
要
以
前的删
除。
现在这个路径是水平向左的,如果要使它向上运动,则一定要先把这个路径删了,不然就是两条路径叠加,不会直直的向上。现在就是向上的了。
四、避难就易,在制作一些有圆柱体或者长方体的零件时,不必要选择旋转啊,拉伸啊等等这些功能,虽然也能做出来,但只是增加工作量而已,完全没必要,只要直接从任务栏里托出来修改尺寸即可。
五、一定要看清图,在使用三维球时要注意看三维球的位置,我在制作齿轮减速器时,在使用三维球到点时没注意到的是长方体的上面的点还是下面的电,导致最后尺寸不对,两个圆的圆心不重合,直接导致错误,最后只能从画。
六、在使用旋转按钮时要注意不能把线画了封闭,还有有些地方,比方圆弧和直线相交时一定要注意把多余的线头删掉,一般不放大是很难看出的,因此一定要放大检查,像这样是很难看清还有一点线头,不过软件还是会提示你红点告诉你有错误,这也是一个强大的地方。
一放大就看的清楚了!另外,在有些时候有些地方没连接起来,软件也会提示红点,那样同样要放大连接,或者直接对着连接的地方右键点连接。
七、在倒圆角的时候要注意顺序和数量,机房的电脑配置比较一般,一次倒多个圆角可能出现错误,我们可以选择少量多次。倒得时候还要特别细心的看选中的是线还是面,因为选择线或面的时候是很容易混淆的。
八、在装配过程中一定要注意干涉检查,最好装好一个零件就检查一次,那样便于我们改正。
九、重中之重的就是看图、懂图,做实体设计看不懂图你就是能在熟练地操作CAXA也是徒劳,看不懂图就不知道怎么入手,连你要画什么都不知道,那何谈绘制了。所以,一定要认真仔细的看图,琢磨懂了再开始画。我们实训的这几幅图都还是有难度的,特别是箱体那幅,只要看懂图基本问题就不大了,但是要看懂是相当的困难。
实训制图过程:
这次实训我们总共画了六幅图,分别是:齿轮油泵,球阀,泵体,齿轮减速器、安全阀和箱体。
一. 齿轮油泵
在这幅图中,泵体是比较难的,因为是实训的第一幅图,好多东西还不懂,操作也不熟悉,刚开始感觉比较的困难,无从下手,但是老师以这幅图作为列子讲解各种操作后,我们做起来就比较得心应手。就用到拉伸就能完成。先把上部分的用拉伸做出来,在从工具栏托个长方体出来到底部就可,当然底部也可以用拉伸绘制,但是完全没必要。底座和上部完成后就开始走背部,背面也比较简单,只要找好圆心,继续拉伸即可。待整体基本完成就开始打孔,打孔可以用拉伸里的除料,但是也没必要,只要托孔类圆柱体找好位置,调整孔类圆柱体尺寸即可。孔一一完成。但切记尺寸要对,位置要对。在打内螺纹时上面已经说过,直接从工具里脱即可,这就不细细的说明了。
这幅图的其他小零件比较简单,像垫片只需一次拉伸,托两个孔类圆柱体,打几个小孔即可。在打小孔的时候,可以用三维球拷贝。无需一个一个打。这幅图相对其他简单,别的小零件就不一一说明。
装配过程因为零件少,用三维球或者约束装配都很简单。
二、球阀
这幅图比起第一幅困难,其中阀体又是最难画的。
绘制阀体时,先不管上部分的圆柱体,先用旋转把前面的板和后面的球形体画出,在找准位置在上部分托一个圆柱体。接着在打孔,打孔时要注意看图,另外上部分的圆柱体有个小凸起要注意尺寸。板上面的四个内螺纹只 要在工具里托出一个,其他三个用三维球拷贝即可完成。
这幅图扳手也是个难点,其中要用到放样才能完成。而其要注意圆盘的下面是实体半圆切掉一半,并不是只有一个圆弧轨道。
其他几个小零件也没太大问题,只是在绘制阀杆是要注意看清图,它的顶部是在圆柱体上切一个长方体出来。
三、泵体
绘制这幅图就比较的困难了,特别是主体。
绘制主体时,一定要看清图,它内部的孔太多了。而且不易看出来。但是在绘制外壳是可以直接托几个长方体修改尺寸即可。其他小零件多用到旋转,像柱塞这样高度对称的用旋转一步就可画出。
装配过程因为零件比较多,所以比较困难、复杂。而且容易出现干涉,一定要看准图一个一个检查,一步一步装。
后面的三幅基本都用到差不多的手段,就不一一列出。只是后面的难度基本上都比较大,而其图形比较复杂,在看图上有很大的难度,像齿轮减速器就不单单像前面一样简单了,必须用放样或者扫描才能完成。有一个简便是,当你做完上半个壳体时,下部分只要基于上部份做修改即可,不必要在绘制。像箱体这幅图,那难度是相当的大,也是困难重重,在看图上都不知花去了我们多长时间,而其在打内部的孔是,很难选中要打的面。但是经过自己的思考加上同学老师的细心指导最后还是做出了。
实训已经结束了,但是在实训中学到的东西却是不会结束的。这次实训带给我的太多太多,对我而言不仅仅是知识上的,还有在对待事物的态度上都给我很大启发。在知识方面,那是不言而喻的,大一我们学习画法几何,大部分时间都是看图,画二维图,大二开始CAXA的理论教学,虽然在思想上觉得有那么个东西,但是自己一动手还是什么都不知道,有时候觉得自己真是没用,大学这样下去以后我们还能干什么啊!什么都是嘴上功夫,实际行动拿不出来,但是通过这次实训,我再也不这么认为了,我们学会了基本的CAXA操作方法,虽然我们刚开始离大师的操作还有很远的距离,但是我相信万事开头难,只要你开始了,就会有结果,俗话说的好“师傅领进门,修行靠个人”,老师已经把基本的东西都教给我们了,以后的路就要靠自己多练多想多看。这次实训再一次帮我们复习了画法几何的识图能力,培养了我们的空间想象力。所有我们绘制的图,前提条件都是一定要看懂图,在自己的脑海有个大概的样子,才能入手;而在绘制过程中,每次遇到困难,就给我们提高了一次,CAXA虽然强大无比,但是要熟练地掌握它还需要我们付出大量的心血,而实训过程中每一次克服困难都让我们多了解了它一点。通过这次实训,让我们的理论和实际很好的结合在一起,让我们对于理论的东西不在模糊不清。在做事方面,这次实训也给了我很大帮助,在绘制过程中,稍有哪里不注意将导致我们的图是错误的,所以这次实训也培养了我仔细,认真的态度。有些图,像箱体,开始总感觉无从下手,甚至有放弃的念头,但是看着别的同学都认真的琢磨着,也就忍了,最后,通过自己的坚持还是做出来了!所以这次实训也让我体会到了什么叫做坚持就是胜利。实训结束了,但是实训里学到的东西永远都不会结束,它将伴随我迈向明天,迎接每一次挑战!