中考反比例函数复习

2020-09-04 18:40:06下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《中考反比例函数复习》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《中考反比例函数复习》。

第16课时 反比例函数

(70分)

一、选择题(每题4分,共24分)

1.对于函数y=,下列说法错误的是

(C)

A.它的图象分布在第一、三象限

B.它的图象是中心对称图形

C.当x>0时,y的值随x的增大而增大

D.当x<0时,y的值随x的增大而减小

2.[2017·自贡]一次函数y1=k1x+b和反比例函数y2=(k1k2≠0)的图象如图16-1所示,若y1>y2,则x的取值范围是

(D)

图16-1

A.-2<x<0或x>1

B.-2<x<1

C.x<-2或x>1

D.x<-2或0<x<1

【解析】

观察函数图象可知,当x<-2或0<x<1时,直线y1=k1x+b在反比例函数y2=的图象上方,即若y1>y2,则x的取值范围是x<-2或0<x<1.图16-2

3.[2016·杭州]设函数y=(k≠0,x>0)的图象如图16-2所示,若z=,则z关于x的函数图象可能为

(D)

【解析】

∵y=(k≠0,x>0),∴z==(k≠0,x>0).

∵反比例函数y=(k≠0,x>0)的图象在第一象限内,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.

4.[2016·孝感]“科学用眼,保护视力”是青少年珍爱健康的具体表现.科学证实:近视眼镜的度数y(度)与镜片焦距x(m)成反比例.如果500度近视眼镜镜片的焦距为0.2

m,则表示y与x函数关系的图象大致是

(B)

5.[2017·兰州]如图16-3,反比例函数y=(x<0)与一次函数y=x+4的图象交

图16-3

点A,B的横坐标分别为-3,-1,则关于x的不等式<x+4(x<0)的解集为

(B)

A.x<-3

B.-3<x<-1

C.-1

D.x<-3或-1<x<0

6.[2017·潍坊]一次函数y=ax+b与反比例函数y=,其中ab<0,a,b为常数,它们在同一坐标系中的图象可以是

(C)

【解析】

∵ab<0,∴a,b异号.选项A中由一次函数的图象可知a>0,b<0,则a>b,由反比例函数的图象可知a-b<0,即a<b,产生矛盾,故A错误;选项B中由一次函数的图象可知a<0,b>0,则a<b,由反比例函数的图象可知a-b>0,即a>b,产生矛盾,故B错误;选项C中由一次函数的图象可知a>0,b<0,则a>b,由反比例函数的图象可知a-b>0,即a>b,与一次函数一致,故C正确;选项D中由一次函数的图象可知a<0,b<0,则ab>0,这与题设矛盾,故D错误.

二、填空题(每题4分,共24分)

7.[2017·淮安]若反比例函数y=-的图象经过点A(m,3),则m的值是__-2__.

【解析】

把A(m,3)代入y=-,得3=-,解得m=-2.8.[2016·山西]已知(m-1,y1),(m-3,y2)是反比例函数y=(m<0)图象上的两点,则y1__>__y2(选填“>”“<”或“=”).

9.[2017·眉山]已知反比例函数y=,当x<-1时,y的取值范围为__-2<y<0__.

【解析】

当x=-1时,y=-2,∵x<0时,y随x的增大而减小,图象位于第三象限,∴y的取值范围为-2<y<0.10.[2017·菏泽]直线y=kx(k>0)与反比例函数y=的图象交于A(x1,y1)和B(x2,y2)两点,则3x1y2-9x2y1的值为__36__.

【解析】

由图象可知点A(x1,y1),B(x2,y2)关于原点对称,∴x1=-x2,y1=-y2,把A(x1,y1)代入双曲线y=,得x1y1=6,∴3x1y2-9x2y1=-3x1y1+9x1y1

=-18+54=36.11.[2017·漳州]如图16-4,A,B是反比例函数y=上的点,分别过点A,B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为__8__.

图16-4

第11题答图

【解析】

由A,B为反比例函数图象上的两点,利用比例系数k的几何意义,求出矩形ACOG与矩形BEOF的面积,再由阴影DGOF的面积求出空白矩形面积之和.如答图,∵A,B是反比例函数y=图象上的点,∴S矩形ACOG

=S矩形BEOF=6,∵S阴影DGOF=2,∴S矩形ADFC+S矩形BDGE=6+6-2-2=8.12.[2017·扬州]已知点A是反比例函数y=-的图象上的一个动点,连结OA,若将线段OA绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为__y=__.

图16-5

第12题答图

【解析】

如答图,分别过点A、点B作x轴的垂线,垂足分别为G和H,很容易发现这是一个“K”字型全等三角形,根据反比例函数比例系数k的几何意义可以知道△AOG的面积是1,于是△BOH的面积也始终为1,再结合点B在第一象限的位置,可以知道动点B在反比例函数的图象上,且k=2,所以点B所在图象的函数表达式为y=.三、解答题(共22分)

13.(10分)[2017·常德]如图16-6,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;

(2)若点C(x,y)也在反比例函数y=的图象上,当-3≤x≤-1时,求函数值y的取值范围.

图16-6

解:(1)∵反比例函数y=的图象经过点A(4,m),AB⊥x轴于点B,△AOB的面积为2,∴OB×AB=2,×4×m=2,∴AB=m=1,∴A(4,1),∴k=xy=4,∴反比例函数的表达式为y=,即k=4,m=1;

(2)由(1)知反比例函数为y=.∵k=4>0,∴当-3≤x≤-1时,y随x的增大而减小,∵点C(x,y)也在反比例函数的图象上,∴当

x=-3时,y取最大值,ymax=-;当x=-1时,y取最小值,ymin=-4,∴y的取值范围为-4≤y≤-.14.(12分)[2017·内江]如图16-7,已知A(-4,2),B(n,-4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.

图16-7

(1)求一次函数和反比例函数的表达式;

(2)求△AOB的面积;

(3)观察图象,直接写出不等式kx+b->0的解集.

解:(1)把

A(-4,2)代入y=,得m=2×(-4)=-8,∴反比例函数的表达式为y=-.把B(n,-4)代入y=-,得-4n=-8,解得n=2.把A(-4,2)和B(2,-4)代入y=kx+b,得解得

∴一次函数的表达式为y=-x-2;

(2)在y=-x-2中,令y=0,则x=-2,即直线y=-x-2与x轴交于点

C(-2,0),∴OC=2.∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;

(3)由图可得,不等式kx+b->0的解集为x<-4或0<x<2.(20分)

15.(6分))[2017·威海]如图16-8,正方形ABCD的边长为5,点A的坐标为

(-4,0),点B在y轴上,若反比例函数y=(k≠0)的图象经过点C,则该反比例函数的表达式为

(A)

A.y=

B.y=

C.y=

D.y=

图16-8

第15题答图

【解析】

∵如答图,过点C作CE⊥y轴于E,则△BCE≌△ABO,∴CE=OB=3,BE=AO=4,OE=1,则点C坐标为(3,1),∴k=3,反比例函数表达式为y=.图16-9

16.(6分)[2017·温州]如图16-9,矩形OABC的边OA,OC分别在x轴,y轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B和B′分别对应),若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为____.【解析】

由点B在反比例函数上且AB=1,可得OA=k,由对称性质可知OA′=OA=k,∠AOA′=2∠AOD=60°,∴点A′的坐标为,∵点A′在反比例函数上,∴k×k=k,∴k=.17.(8分)[2016·宁波]如图16-10,A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,C是x轴上一点,且AO=AC,则△ABC的面积为__6__.

图16-10

【解析】

设点A的坐标为,点B的坐标为,∵C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A的直线的表达式为y=kx,∴=k·a,解得k=,又∵点B在y=x上,∴=·b,解得=3或=-3(舍去),∴S△ABC=S△AOC-S△OBC=-=9-3=6.(10分)

18.(10分)[2016·湖州]已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.

(1)k的值是__-2__;

(2)如图16-11,该一次函数的图象分别与x轴,y轴交于A,B两点,且与反比例函数y=-的图象交

于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是__3__.

图16-11

【解析】

(1)设点P的坐标为(m,n),则点Q的坐标为(m-1,n+2),代入y=kx+b,得

解得k=-2;

(2)∵BO⊥x轴,CE⊥x轴,∴BO∥CE,∴△AOB∽△AEC.又∵=,∴==.令一次函数y=-2x+b中,x=0,则y=b,∴BO=b,令一次函数y=-2x+b中,y=0,则0=-2x+b,解得x=,即AO=.∵△AOB∽△AEC,且=,∴==.∴AE=AO=b,CE=BO=b,OE=AE-AO=b.∵OE·CE=|-4|=4,即b2=4,解得b=3或-3(舍去).

下载中考反比例函数复习word格式文档
下载中考反比例函数复习.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人教版中考数学专题复习反比例函数

    2021年人教版中考数学专题复习反比例函数(满分120分;时间:90分钟)一、选择题(本题共计9小题,每题3分,共计27分,)1.若双曲线y=k-1x分布在二、四象限,则k的值可为A.0B.1C.2D.32.下列函数......

    初中数学复习反比例函数

    第十一章《反比例函数》1.已知点都在反比例函数的图像上,则A.B.C.D.2.如图,四边形的顶点都在坐标轴上,若与的面积分别为20和30,若双曲线恰好经过的中点,则的值为A.3B.-3C.-6D.6......

    反比例函数复习课教学设计

    反比例函数复习课教学设计 一、 教材与学情分析 本课内容是鲁教教版八年级(下)数学第九章《反比例函数》的复习课。函数本身是数学学习中的重要内容,而反比例函数又是基础函数......

    反比例函数复习课教学设计

    《反比例函数》教学设计 登封市嵩阳中学 九年级教学组 反比例函数复习课教学设计 复习内容:反比例函数的形式、性质、应用。 复习目标:1、了解并掌握反比例函数的定义; 2、掌握......

    反比例函数复习课教学反思

    《反比例函数复习课》教学反思 公开课上完了,总的感觉有成功的地方,也有不足之处。我认为本堂课成功的做法有以下几方面: 一、定位较准,立足于本校学情。由于学生基础较差,本节复......

    《反比例函数》测试题

    《反比例函数》测试题一、选择题(本大题共10小题,每小题3分,共30分)1.下列函数中,不是反比例函数的是(  )A.y=-B.y=C.y=D.3xy=22.已知点P在反比例函数y=(k≠0)的图象上,则k的值是(  )A.-B.2......

    《反比例函数》说课稿

    一、 说教学内容(一)、本课时的内容、地位及作用本课内容是苏科版八年级(下)数学第九章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中......

    反比例函数小结与复习5篇范文

    反比例函数小结与复习【复习目标】: 1.巩固反比例函数的概念,会求反比例函数表达式并能画出图象. 2.熟记反比例函数图象及其性质,并能运用解决有关的实际问题. 3.熟练求解反比例函......