2018届中考数学一轮复习讲义 第14讲几何图形初步

时间:2019-05-13 00:10:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018届中考数学一轮复习讲义 第14讲几何图形初步》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018届中考数学一轮复习讲义 第14讲几何图形初步》。

第一篇:2018届中考数学一轮复习讲义 第14讲几何图形初步

2018届中考数学一轮复习讲义 第14讲平面几何图形初步

【知识巩固】

一、直线、射线、线段和角

(一)几何图形:

1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形。

2、立体

图形:这些几何图形的各部分不都在同一个平面内。

3、平面图形:这些几何图形的各部分都在同一个平面内。

4、虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。立体图形中某些部分是平面图形。

5、三视图:从左面看,从正面看,从上面看

6、展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。这样的平面图形称为相应立体图形的展开图。

7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;

⑵点无大小,线、面有曲直; ⑶几何图形都是由点、线、面、体组成的; ⑷点动成线,线动成面,面动成体; ⑸点:是组成几何图形的基本元素。

(二)直线、射线、线段:

1、直线公理:经过两点有一条直线,并且只有一条直线。即:两点确定一条直线。

2、当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

3、把一条线段分成相等的两条线段的点,叫做这条线段的中点。

4、线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。

5、连接两点间的线段的长度,叫做这两点的距离。

6、直线的表示方法:

7、在直线上取点O,把直线分成两个部分,去掉一边的一个部分,保留点0和另一部分就得到一条射线,如上图就是一条射线,记作射线OM或记作射线a. 注意:射线有一个端点,向一方无限延伸.

8、在直线上取两个点A、B,把直线分成三个部分,去掉两边的部分,保留点A、B和中间的一部分就得到一条线段.如图就是一条线段,记作线段AB或记作线段a. 注意:线段有两个端点.

(三)角:

1.角的定义:有公共端点的两条射线组成的图形叫角。这个公共端点是角的顶点,两条射线为角的两边。如图,角的顶点是O,两边分别是射线OA、OB.

2、角有以下的表示方法:

① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点,顶点的字母必须写在中间.如上图的角,可以记作∠AOB或∠BOA. ② 用一个大写字母表示.这个字母就是顶点.如上图的角可记作∠O.当有两个或两个以上的角是同一个顶点时,不能用一个大写字母表示. ③ 用一个数字或一个希腊字母表示.在角的内部靠近角的顶点

处画一弧线,写上希腊字母或数字.如图的两个角,分别记作∠、∠1

2、以度、分、秒为单位的角的度量制,叫做角度制。角的度、分、秒是60进制的。1度=60分 1分=60秒 1周角=360度 1平角=180度

3、角的平分线:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做 这个角的平分线。

4、如果两个角的和等于90度(直角),就说这两个叫互为余角,即其中每一个角是另一个角的余角;

如果两个角的和等于180度(平角),就说这两个叫互为补角,即其中每一个角是另一个角的补角。

5、同角(等角)的补角相等;同角(等角)的余角相等。

6、方位角:一般以正南正北为基准,描述物体运动的方向。

二、相交线

1、相交线中的角

两条直线相交,可以得到四个角,我们把两条直线相交所构成的四个角中,有公共顶点但没有公共边的两个角叫做对顶角。我们把两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角叫做临补角。临补角互补,对顶角相等。

直线AB,CD与EF相交(或者说两条直线AB,CD被第三条直线EF所截),构成八个角。其中∠1与∠5这两个角分别在AB,CD的上方,并且在EF的同侧,像这样位置相同的一对角

1叫做同位角;∠3与∠5这两个角都在AB,CD之间,并且在EF的异侧,像这样位置的两个角叫做内错角;∠3与∠6在直线AB,CD之间,并侧在EF的同侧,像这样位置的两个角叫做同旁内角。

2、垂线

两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。

三、平行线

1、平行线的概念

在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。

同一平面内,两条直线的位置关系只有两种:相交或平行。

2、平行线公理及其推论

平行公理:经过直线外一点,有且只有一条直线与这条直线平行。推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。

3、平行线的判定

平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。平行线的两条判定定理:

(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。

(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。

4、平行线的性质

(1)两直线平行,同位角相等。(2)两直线平行,内错角相等。(3)两直线平行,同旁内角互补。

四、命题、定理、证明

1、命题的概念

判断一件事情的语句,叫做命题。

2、命题的分类:按正确、错误与否分为:真命题和假命题 所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

3、公理

人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

4、定理

用推理的方法判断为正确的命题叫做定理。

5、证明

判断一个命题的正确性的推理过程叫做证明。【典例解析】 典例

一、几何图形

(2016·浙江省绍兴市·4分)如图是一个正方体,则它的表面展开图可以是(A. B. C. D.

【考点】几何体的展开图.)【分析】根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.

【解答】解:A、含有田字形,不能折成正方体,故A错误; B、能折成正方体,故B正确;

C、凹字形,不能折成正方体,故C错误; D、含有田字形,不能折成正方体,故D错误. 故选:B. 【变式训练】

4分)如图是一个正方体,则它的表面展开图可以是()(2016·浙江省绍兴市·

A. B. C. D.

【考点】几何体的展开图.

【分析】根据含有田字形和凹字形的图形不能折成正方体可判断A、C,D,故此可得到答案.【解答】解:A、含有田字形,不能折成正方体,故A错误; B、能折成正方体,故B正确;

C、凹字形,不能折成正方体,故C错误; D、含有田字形,不能折成正方体,故D错误. 故选:B.

典例

二、直线、射线和线段

(2016•金华)足球射门,不考虑其他因素,仅考虑射点到球门AB的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E均在格点上,球员带球沿CD方向进攻,最好的射点在()

A.点C B.点D或点E C.线段DE(异于端点)上一点 D.线段CD(异于端点)上一点 【分析】连接BC,AC,BD,AD,AE,BE,再比较∠ACB,∠ADB,∠AEB的大小即可.

【解答】解:连接BC,AC,BD,AD,AE,BE,通过测量可知∠ACB<∠ADB<∠AEB,所以射门的点越靠近线段DE,角越大,故最好选择DE(异于端点)上一点,故选C.

【点评】本题考查了比较角的大小,一般情况下比较角的大小有两种方法:①测量法,即用量角器量角的度数,角的度数越大,角越大.②叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,观察另一边的位置. 【变式训练】

(2016•台湾)如图

(一),=1:3,:

为一条拉直的细线,A、B两点在折向,使得

上,且重迭在: =3:5.若先固定B点,将上,如图

(二),再从图

(二)的A点及与A点重迭处一起剪开,使得细线分成三段,则此三段细线由小到大的长度比为何?()

A.1:1:1 B.1:1:2 C.1:2:2 D.1:2:5 【分析】根据题意可以设出线段OP的长度,从而根据比值可以得到图一中各线段的长,根据题意可以求出折叠后,再剪开各线段的长度,从而可以求得三段细线由小到大的长度比,本题得以解决. 【解答】解:设OP的长度为8a,∵OA:AP=1:3,OB:BP=3:5,∴OA=2a,AP=6a,OB=3a,BP=5a,又∵先固定B点,将OB折向BP,使得OB重迭在BP上,如图

(二),再从图

(二)的A点及与A点重迭处一起剪开,使得细线分成三段,∴这三段从小到大的长度分别是:2a、2a、4a,∴此三段细线由小到大的长度比为:2a:2a:4a=1:1:2,故选B.

【点评】本题考查比较线段的长短,解题的关键是理解题意,求出各线段的长度. 典例

三、角

(2017广东)已知∠A=70°,则∠A的补角为()A.110° B.70° C.30° D.20°

【考点】IL:余角和补角.

【分析】由∠A的度数求出其补角即可. 【解答】解:∵∠A=70°,∴∠A的补角为110°,故选A 【变式训练】

(2017广西河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()

A.60° B.90° C.120° 【考点】IF:角的概念.

D.150°

【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数. 【解答】解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=60°,∴∠AOC=120°,故选:C. 典例

四、相交线

(2016·福建龙岩·4分)下列命题是假命题的是()A.若|a|=|b|,则a=b B.两直线平行,同位角相等 C.对顶角相等

D.若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根 【考点】命题与定理.

【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.

【解答】解:A、若|a|=|b|,则a﹣b=0或a+b=0,故A错误; B、两直线平行,同位角相等,故B正确; C、对顶角相等,故C正确;

D、若b﹣4ac>0,则方程ax+bx+c=0(a≠0)有两个不等的实数根,故D正确; 故选:A. 【变式训练】

(2016•贺州)如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为()

22A.70° B.100° C.110° D.120°

【分析】先根据补角的定义求出∠2的度数,再由平行线的性质即可得出结论.

【解答】解:∵∠1=60°,∴∠2=180°﹣60°=120°. ∵CD∥BE,∴∠2=∠B=120°. 故选D.

【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等. 典例

五、平行线

(2017毕节)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED=()

A.55° B.125° C.135°

D.140°

【考点】JA:平行线的性质.

【分析】根据平行线性质求出∠CAB,根据角平分线求出∠EAB,根据平行线性质求出∠AED即可.

【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=70°,∴∠CAB=180°﹣70°=110°,∵AE平分∠CAB,∴∠EAB=55°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣55°=125°. 故选:B. 【变式训练】

(2017湖南怀化)如图,直线a∥b,∠1=50°,则∠2的度数是()

A.130° B.50° C.40° D.150°

【考点】JA:平行线的性质. 【分析】利用平行线的性质得出∠1=∠3=50°,再利用对顶角的定义得出即可. 【解答】解:如图:∵直线a∥直线b,∠1=50°,∴∠1=∠3=50°,∴∠2=∠3=50°. 故选:B.

典例

六、命题、定理、证明

(2017广西百色)下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,其中假命题的有 ②(填序号)【考点】O1:命题与定理.

【分析】要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.

【解答】解:①对顶角相等是真命题; ②同旁内角互补是假命题;

③全等三角形的对应角相等是真命题; ④两直线平行,同位角相等是真命题; 故假命题有②,故答案为:②. 【变式训练】

(2017呼和浩特)下面三个命题: ①若是方程组

2的解,则a+b=1或a+b=0;

2②函数y=﹣2x+4x+1通过配方可化为y=﹣2(x﹣1)+3; ③最小角等于50°的三角形是锐角三角形,其中正确命题的序号为 ②③ . 【考点】O1:命题与定理.

【分析】①根据方程组的解的定义,把

代入,即可判断;

②利用配方法把函数y=﹣2x2+4x+1化为顶点式,即可判断; ③根据三角形内角和定理以及锐角三角形的定义即可判断. 【解答】解:①把

代入,得,如果a=2,那么b=1,a+b=3; 如果a=﹣2,那么b=﹣7,a+b=﹣9. 故命题①是假命题;

②y=﹣2x2+4x+1=﹣2(x﹣1)2+3,故命题②是真命题;

③最小角等于50°的三角形,最大角不大于80°,一定是锐角三角形,故命题③是真命题. 所以正确命题的序号为②③. 故答案为②③.

典例

七、平行相交的综合应用

(2017呼和浩特)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=48°,则∠AED为 114 °.

【考点】JA:平行线的性质;IJ:角平分线的定义.

【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可. 【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=48°,∴∠CAB=180°﹣48°=132°,∵AE平分∠CAB,∴∠EAB=66°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣66°=114°,故答案为:114. 【变式训练】

(2017湖北荆州)一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()

A.40° B.45° C.50° D.10° 【考点】JA:平行线的性质.

【分析】先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小. 【解答】解:由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:D. 【能力检测】

1.(2017贵州安顺)如图,已知a∥b,小华把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为()

A.100° B.110° C.120° D.130°

【考点】JA:平行线的性质.

【分析】先根据互余计算出∠3=90°﹣40°=50°,再根据平行线的性质由a∥b得到∠2=180°﹣∠3=130°.

【解答】解:∵∠1+∠3=90°,∴∠3=90°﹣40°=50°,∵a∥b,∴∠2+∠3=180°. ∴∠2=180°﹣50°=130°. 故选:D.

2.(2016•荆州)如图,AB∥CD,射线AE交CD于点F,若∠1=115°,则∠2的度数是()

A.55° B.65° C.75° D.85°

【分析】根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数. 【解答】解:∵AB∥CD,∴∠1+∠F=180°,∵∠1=115°,∴∠AFD=65°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=65°,故选B.

【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.

3.(2017四川南充)如图,直线a∥b,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为()

A.30° B.32° C.42° D.58° 【考点】JA:平行线的性质.

【分析】先利用平行线的性质得出∠3,进而利用三角板的特征求出∠4,最后利用平行线的性质即可; 【解答】解:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选B.

4.(2016•陕西)如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()

A.65° B.115° C.125° D.130°

【分析】根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可. 【解答】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.

【点评】本题考查了角平分线定义和平行线性质的应用,注意:平行线的性质有:①两条平行线被第三条直线所截,同位角相等,②两条平行线被第三条直线所截,内错角相等,③两条平行线被第三条直线所截,同旁内角互补. 5.(2017日照)如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()

A.120° B.30° C.40° D.60°

【考点】JA:平行线的性质.

【分析】根据对顶角的性质和平行线的性质即可得到结论. 【解答】解:∵∠AEF=∠1=60°,∵AB∥CD,∴∠2=∠AEF=60°,故选D.

6.(2017内江)如图,直线m∥n,直角三角板ABC的顶点A在直线m上,则∠α的余角等于()

A.19° B.38° C.42° D.52°

【考点】JA:平行线的性质;IL:余角和补角.

【分析】过C作CD∥直线m,根据平行线性质得出∠DCA=∠FAC=38°,∠α=∠DCB,求出即可.

【解答】解:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°. 故选D.

7.(2016·山东省滨州市·3分)如图,AB∥CD,直线EF与AB,CD分别交于点M,N,过点N的直线GH与AB交于点P,则下列结论错误的是()

A.∠EMB=∠END B.∠BMN=∠MNC C.∠CNH=∠BPG D.∠DNG=∠AME 【考点】平行线的性质.

【分析】根据平行线的性质,找出各相等的角,再去对照四个选项即可得出结论. 【解答】解:A、∵AB∥CD,∴∠EMB=∠END(两直线平行,同位角相等); B、∵AB∥CD,∴∠BMN=∠MNC(两直线平行,内错角相等); C、∵AB∥CD,∴∠CNH=∠MPN(两直线平行,同位角相等),∵∠MPN=∠BPG(对顶角),∴∠CNH=∠BPG(等量代换); D、∠DNG与∠AME没有关系,无法判定其相等. 故选D.

【点评】本题考查了平行线的性质,解题的关键是结合平行线的性质来对照四个选择.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或互补)的角是关键.

8.(2016海南3分)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()

A.30° B.45° C.60° D.75° 【考点】矩形的性质;平行线的性质.

【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.

【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°. 故选C.

【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.

第二篇:2012年中考数学二轮复习讲义专题几何图形的归纳,猜想,证明(精)

飘蓝工作室出品 版权所有 @Peuland.com 精英数学(www.xiexiebang.com 2012年中考数学二轮专题几何图形的归纳 , 猜想 , 证明问题 第一部分 真题精讲 【例 1】 2011,海淀,一模

如图, n +1个边长为 2的等边三角形有一条边在同一直线上,设 211B D C ∆的面积为 1S , 322B D C ∆的面 积为 2S , … , 1n n n B D C +∆的面积为 n S ,则 2S n S n 的式子表示.C 5C 4 C 3 C 2 C 1 B B B 2B A 【思路分析】 拿到这种题型,第一步就是认清所求的图形到底是什么样的。本题还好,将阴影部分标 出,不至于看错。但是如果不标就会有同学误以为所求的面积是 22B AC ∆, 33B AC ∆这种的 , 第二步就是看这

些图形之间有什么共性和联系.首先 2S 所代表的三角形的底边 2C 2D 是三角形 2AC 2D 的底边 , 而这个三角 形和△ 3AC 3B 是相似的.所以边长的比例就是 2AC 与 3AC 的比值.于是

212223S = 接下来通过

总结 , 我们发现所求的三角形有一个最大的共性就是高相等 ,B 点,将阴影部分放在 反过来的等边三角形中看。那么既然是求面积,高相等,剩下的自然就是底边的问题了。我们发现所有 的 B,C 点连线的边都是平行的, 于是自然可以得出 n D 自然是所在边上的 n+1等分点.例如 2D 就是 2B 2C 的 一个三等分点.于是 1121n n n D C n +-=⋅+(n+1-1是什么意思 ? 为什么要减

1? 11122n n n B D C n n S D C +∆= = 【例 2】 2011,山西,一模

在平面直角坐标系中,我们称边长为 1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如 图,菱形 ABCD 的四个顶点坐标分别是(80-, ,(04 , ,(80 , ,(04-, ,则菱形 ABCD 能覆盖的单位 格点正方形的个数是 _______个;若菱形 n n n n A B C D 的四个顶点坐标分别为(20-, n ,(0 , n ,(20 , n ,(0-, n(n 为正整数 ,则菱形 n n n n A B C D 能覆盖的单位格点正方形的个数为 _________(用含有 n 的式子 表示.飘蓝工作室出品 版权所有 @Peuland.com 精英数学(www.xiexiebang.com

【思路分析】 此题方法比较多,例如第一空直接数格子都可以数出是 48(笑。这里笔者提供一种方 法,其他方法大家可以自己去想想看。因为求的是菱形包涵的正方形个数,所以只需求出被 X,Y 轴所分的 四个三角形包涵的个数, 再乘以 4即可。比如我们来看第二象限那个三角形。第二象限菱形那条边过(-2n,0(0,n,自然可以写出直线解析式为

12y x n = +, 斜率 1 2 意味着什么 ? 看上图 , 注意箭头标注的那些空白三角形 , 这些 RT 三角形一共有 2n/2=n个 , 他们的纵直角边与横直角边的比是不是就是 12 ? 而且这些直角三角形都是

全等的 , 面积均为两个单位格点正方形的一半.那么整个的△ AOB 的面积自然就是 1 n n ⋅⋅, 所有 n 个空白小 三角形的面积之和为 1212 n ⋅⋅⋅, 相减之后自然就是所有格点正方形的面积 2 n n-, 也就是数量了.所以整个 菱形的正方形格点就是 2 44n n-.【例 3】 2011,平谷,一模

如图, 45AOB ∠=︒,过 OA 上到点 O 的距离分别为 1357911...,,, 的点作 OA 的垂线与 OB 相交,得 到 并 标 出 一 组 黑 色 梯 形 , 它 们 的 面 积 分 别 为 1234S S S S , , , ,.则 第 一 个 黑 色 梯 形 的 面 积

1S =;观察图中的规律,第 n(n 为 正 整 数 个 黑 色 梯 形 的 面 积 n S = 飘蓝工作室出品 版权所有 @Peuland.com 精英数学

(www.xiexiebang.com A...1311975310 【思路分析】 本题方法也比较多样。所有阴影部分都是一个直角梯形,而因为 45AOB ∠=︒,所以梯 形的上下底长度分别都对应了垂足到 0点的距离 , 而高则是固定的 2。第一个梯形上底是 1,下底是 3,所 以(1113242 S =⋅+⋅=.第二个梯形面积(21572122S =⋅+⋅=, 第三个是(319112202S =⋅+⋅=, 至此 , 我们发 现本题中梯形面积数值上其实就是上下底的和.而且各个梯形的上底都是前一个梯形上底加上 4。于是第 n 个梯形的上底就是 1+4(n-1=4n-3,(第一个梯形的上底 1加上(n-1个 4.下底自然就是 4n-1, 于是 n S 就是 8n-4.【例 4】 2011,丰台,一模

在平面直角坐标系中, 横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形 A 1B 1C 1D 1, A 2B 2C 2D 2, A 3B 3C 3D 3…… 每个正方形四条边上的整点的个数.按此规律推算出正方形 A 10B 10C 10D 10四条边上的整点共有 个.【思路分析】此题看似麻烦,但是只要把握住“正方形”这个关键就可以了。对于 n n n n A B C D 来说 , 每

条边的长度是 2n, 那么自然整点个数就是 2n+1, 所以四条边上整点一共有(2n+1x4-4=8n(个(要减去四个 被重复算的顶点 , 于是 10101010A B C D 就是 80个.【例 5】 2011,河北,一模 如图, △

ABC 中,∠ ACB=90°, AC=BC=1,取斜边的中点,向斜边做垂线,画 出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与 △

ABC 的 BC 边重叠为止,此时

飘蓝工作室出品 版权所有 @Peuland.com 精英数学(www.xiexiebang.com 这个三角形的斜边长为 _____.【思路分析】 本题依然要找出每个三角形和上一个三角形之间的规律联系。关键词 “中点” “垂线” “等 腰直角”。这就意味着每个三角形的锐角都是 45度,并且直角边都是上一个三角形直角边的一半。绕一圈 是 360度,包涵了 8个 45°。于是绕到第八次就可以和 BC 重叠了,此时边长为△ ABC 的 1 ,故而得解。【例 6】 2010,上海,二模

如图,以等腰三角形 AOB 的斜边为直角边向外作第 2个等腰直角三角形 1 ABA ,再以等腰直角三角形

1ABA 的斜边为直角边向外作第个等腰直角三角形 11A BB ,„„,如此作下去,若 1OA OB ==,则第 n 个等

腰直角三角形的面积 n S = ________(n 为正整数.B 2 B 1 A 1 B O A 【思路分析】和上题很类似的几何图形外延拓展问题。还是一样慢慢找小三角形面积的规律。由题可 得

123124...222S S S ===, , , 分子就是 1,2,4,8,16这样的数列。于是 22 n n S = 【总结】 几何图形的归纳总结问题其实就包括了代数方面的数列问题,只不过需要考生自己找出图形 与图形之间的联系而已。对于这类问题,首先就是要仔细读题,看清楚题目所求的未知量是什么,然后找 出各个未知量之间的联系,这其中就包括了寻找未知量的拓展过程中,哪些变了,哪些没有变。最后根据 这些联系列出通项去求解。在遇到具体关系很难找的问题时,不妨先写出第一项,第二项,第三项然后去 找数式上的规律,如上面例 6就是一例,如果纠结于几何图形当中等腰三角形直角边的平方,反而会使问 题复杂化,直接列出前几项的面积就可以大胆的猜测出来结果了。这类题目计算量往往不大,重在思考和 分析的方法,还请考生细心掌握。

第二部分 发散思考

飘蓝工作室出品 版权所有 @Peuland.com 精英数学

(www.xiexiebang.com 【思考 1】 2011,浙江,二模

如图,在平面直角坐标系 xOy 中, 1B(0,1, 2B(0,3, 3 B(0,6, 4B(0,10,„,以 12B B 为对角线作第一个正方形 1112A B C B ,以 23B B 为对角线作第二个正方形 2223A B C B ,以 34B B 为对角线作第

三个正方形 3334A B C B ,„,如果所作正方形的对角线 1n n B B +都在 y 轴上,且 1n n B B +的长度依次增加 1个单位,顶点 n A 都在第一象 限内(n ≥ 1,且 n 为整数.那么 1

A 的纵坐标为;用 n 的代数式表示 n A 的纵坐标:.【思考 2】 2011,朝阳,一模

如图,在平面直角坐标系中,一颗棋子从点 P 处开始跳动,第一 次跳到点 P 关于 x 轴的对称点 1 P 处,接着跳到点 1 P 关于 y 轴 的对称点 2P 处,第三次再跳到点 2P 关于原点的对称点处, … , 如此循环下去.当跳动第 2009次时,棋子落点处的坐标是.【思考 3】 2011,昌平, 一模

对于大于或等于 2的自然数 n 的平方进行如下“分裂” ,分裂成 n 个连续奇数的和,则自然数 72 的分

裂数中最大的数是 ,自然数 n 的分裂数中最大的数是.【思考 4】 2011,湖北,一模

一个质点在第一象限及 x 轴、y 轴上运动,在第一秒钟,它从原点运动到(01 , ,然后接着按图中箭头 所示方向运动 , 即(00(01(11(10 →→→→, , , , … ,且每秒移动一个单位,那么第 35秒时质点所在位 置的坐标是 _______ 1 3 1 3 5 本站部分资源网友上传,来源于网络,如果涉及版权问题,请及时联系我站,我们会第一时间删除,精英部落 QQ 群: 172077288 y 3 2 1 0 1 2 3 „ x 【思考 5】2011,海淀,二模 如图,将边长为 其对应的正方形的中心依 的正方形纸片从左到右顺次摆放,次为 A1, A2, A3, „.①若摆放前 6 个正方形纸片,则图中被遮盖的线段(虚线部分)之和为 ;②若摆放前 n(n 为大于 1 的正.A1 A2 A3 A4 整数)个正方形纸片,则图中被遮盖的线段(虚线部分)之和为 第三部分 思考题解析 【思考 1 答案】2;

【思考 2 答案】(3,-2)

【思考 4 答案】(5,0)【思考 3 答案】13;2n-1 【思考 5 答案】10,飘蓝工作室出品 版权所有@Peuland.com 精英数学(www.xiexiebang.com

第三篇:2017安徽中考数学一轮复习卷

2017安徽中考一轮复习卷·数学

(四)一、选择题(本题共10题,每题4分,共40分)

1.已知三角形的两边长分别是4和10,则此三角形第三边的长可能是()。A: 5 B: 6 C: 11 D: 16

2、如图,在ABC中,D、E分别是AB、AC的中点,若BC2cm,则DE

A、0.5cmB.1cmC.1.5cmD.2cm

第2题图 第3题图 第4题图

3、如图,在△ABC中,C=90°,若BD∥AE,DBC=20°,则 CAE的度数是()A.40°B.60°C.70°D.80°

4、如图,已知在ABC中,CD是AB边上的高线,BH平分ABC,交CD于点E, BC5,DE2,则BCE的面积等于()A.4 B.5 C.7 D.10

5、如图所示,一个60角的三角形纸片,剪去这个60角后,得到一个四边形,则12的度数为()。A: 120B: 180C: 240D: 300

第5题图 第6题图 第7题图

6.如图,在四边形ABCD中,ACBD,ABAD,CBCD,若连接AC、BD相交于点O,则图中全等三角形共有()。A: 1对B: 2对C: 3对D:4对

7.轮船从B处以每小时50海里的速度沿南偏东30方向匀速航行,在B处观测灯塔A位于南偏东75方向上,轮船航行半小时到达C处,在C处观测灯塔A位 于北偏东60方向上,则C处与灯塔A的距离是()。A: 253海里B: 252海里C: 50海里D: 25海里

8、如果三角形的一个内角是另一个内角的 2 倍 , 那么称这个三角形为“倍角三角形”。例如 , 在 △ABC 中 , 如果∠A = 50∘,∠B = 100∘,那么△ABC 就是一个“倍角三角形”。对于∆ABC,下列条件不能说明它是“倍角三角形”的是()

A、三边之比为 1:2:3 B、AB120 C、三边之比为 1:1:2 D、三角之比为1:2:3

9.如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与 ∠ACE的平分线CD相交于点D,连接AD,则 ∠ADB为()A.55° B.25° C.30° D.35°

第9题图 第10题图

ABC90,10、如图,已知在RtABC中,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径画弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①EDBC;②AEBA;③EB平分AED;④ED1AB中,一定正确的是()。2A:①②③B:①②④C:①③④D:②③④

二、填空题(本题共4小题,每题5分,共20分)

11.王师傅在做完门框后,常常在门框上斜钉两根木条,这样做的数学原理是 . 12.如图所示,ABDB,ABDCBE,请你添加一个适当的条件_____,使ABCDBE。(只需添加一个即可)

13.如图,在RtABC中,ACB90,B30,BC3。点D是BC边上的一动点(不与B、C重 合),过点D作DEBC交AB于点E,将B沿直线DE翻折,点B落在射线BC上的点F处。当AEF为直角三角形时,BD的长为_____。

第12题 第13题 第14题 14.如图,在ABC中,BMAC于点M,CNAB于点N,P为BC边的中点,连接PM,PN,则下列结论:若A60,PMPN;若A60 ,PNM为等边三角形;③当ABC45时,BN2PC;④当ABC45时,MPN45.其中正确的是 .

三、(本题共2小题,每小题8分,共16分)

15.已知:如图,点E、A、C在同一直线上,AB∥CD,ABCE,ACCD。求证:BCED。

16.三角板由两个特殊直角三角形组成,采用不同的方法摆放可以画出很多角,(1)若按图1摆放,则得到(直接写出结果)(2)若按图2摆放,求出∠1的度数

四、(本题共2小题,每小题8分,共16分)17.如图,M是ABC的边BC的中点,AN平分BAC,BNAN于点N,延长BN交AC于点D,已知 AB10,BC15,MN3。

(1)求证:BNDN ;(2)求ABC的周长 A 1 2

D

N

B

18.如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BMCN,AM交BN于点P。M C(1)求证:ABMBCN。(4分)(2)求APN的度数。(4分)

五(本题共2小题,每小题10分,共20分)

19、如图,在△ABC中,AB=AC,D是BA延长线上的一点,E是AC的中点.(1)利用尺规按下列要求作图,并在图形中标明相应字母(保留作图痕迹,不写作法);

①作∠DAC的平分线AM; ②连接BE并延长交AM于点F;

(2)试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.20.定义:将一个等腰三角形分割成n个等腰三角形,我们称为该等腰三角形的n阶剖分。

例:一个等腰直角三角形,如图可以分割成2个等腰三角形(2阶剖分),可以分割为3个等腰三角形(3阶剖分),也可以分割成4个等腰三角形(4阶剖分),„。

按要求作出图形(每题只作一种图形即可,标出每个等腰三角形的顶角度数,不需说明作图理由和过程)

(1)如图1,将等边三角形进行3阶剖分;

(2)如图2,将顶角是36°的等腰三角形2阶剖分;(3)如图3,将顶角是45°的等腰三角形3阶剖分。

六、(本题满分12分)21.我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.可是在很多情况下,它们会全等。如①当这两个三角形均为直角三角形时,显然他们全等;②当这两个三角形均为钝角三角形时,我们可以证明他们两个全等(证明略);③当这两个三角形均为锐角三角形时,它们也全等,可证明如下: 已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,C= Cl. 求证:△ABC≌△A1B1C1.

证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.

则 ∠BDC= ∠B1D1C1=90°,(1)请你将下列证明过程补充完整;

(2)归纳与叙述:由(1)可得到一个正确结论,请你写出这个结论.

(3)请你画图并说明“两边及其中一边的对角分别对应相等的两个三角形不全等”。(保留作图痕迹,不用写作法)

七、(本题满分12分)22.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程: 将两个全等的直角三角形按图1所示摆放,其中DAB90,求证:a2b2c2 证明:连接DB,过点D作BC边上的高DF,则DFECba.S四边形ADCBSACDSABC 又S四边形ADCBSACDSDCB ∴

∴a2b2c

2解决问题:请参照上述证法,利用图2完成下面的证明:将两个全等的直角三角形按图2所示摆放,其中DAB90,.求证:.a2b2c2

八、(本题满分14分)23.(1)问题发现

如图1,ACB和DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求AEB的度数.(2)拓展探究

如图3,ACB和DCE均为等腰三角形,顶角ACBDCE,点A、D、E在同条一直线上,求AEB的度数(3)如图2,ACB和DCE均为等腰直角三角形,ACBDCE90,点A、D、E在同条一直线上,CM为DCE中DE边上的高,连接BE.①AEB的度数为 ;②线段CM,AE,BE之间的数量关系为。

2017安徽中考一轮复习卷·数学

(四)答案

一、选择题

1、C 本题主要考查三角形的三边关系。

根据三角形的三边关系,两边之和大于第三边,两边之差小于第三边,设第三边的长为,则,得,可知仅有C项符合题意。故本题正确答案为C。

2、B 解:D、E分别是AB、AC的中点.DE是ABC的中位线, BC2DE,又BC2cm,所以DE1cm 因此,本题正确答案是:B

3、此题答案为:C.解:过点C作CF∥BD,则CF∥BD∥AE.∠BCF=∠ DBC=20°.∵ C=90°,∠FCA=90°-20°=70°.∵CF∥AE,∠CAE=∠ FCA=70°.故选C.4、B 解:作

平分 , 的面积

所以B选项是正确的

5、C

.,, 于F, 本题主要考查角的概念及其计算。如图所示,根据三角形内角和定理可得,又因为,所以

故本题正确答案为C。

6、C 本题主要考查全等三角形的判定与性质。

在在

中,和,所以

故本题正确答案为C。

7、D.根据题意,可知度沿南偏东

(海里);因为轮船从处以每小时

方向上,所以,所以

海里的速;

。故图中全等三角形共有对。中,所以,有

。在和和 中,所以,有。

方向匀速航行,在处观测灯塔位于北偏东

方向上,所以因为在处观测灯塔位于南偏东,所以答案为D

9、答案为C 因为、分别是、(海里)。所以处与灯塔的距离是海里。的平分线,所以是的外角平分线,所以ADB180ABDBACCAD18025705530

10、B 本题主要考查直角三角形。

①项,依据题意可知,②项,因为为正确。

③项,因为,由①知,故,所以,所以不一定平分,但根

。故③项错误。为

为的垂直平分线,故,则,所以

。故①项正确。

。因。故②项

的垂直平分线,所以,据已知条件无法证明

④项,因为因为是,所以的中垂线,所以

。由①知,的中位线,则,故为的中点。

。故④项正确。

综上所述,正确的结论是①②④。

故本题正确答案为B。

二、填空题

11、三角形具有稳定性

12、本题主要考查全等三角形的判定与性质。

因为,在

和 中,所以

。,所以故本题正确答案为

13、或。

本题主要考查图形变换的应用。

根据题意得,因为在中,①如图1所示,若,所以,所以,所以,②如图2所示,若,则,所以

。,因为在中。,,,因为,所以,所以。

故本题正确答案为“或”。

14、(1)(2)(3)(4)解:(1), ,正确;

(2)

点P是BC的中点,, ,、, 中, ,于点M,于点N, , 于点M,于点N,P为BC边的中点, PMN是等边三角形,正确;(3)当于点N, 时,, ,为BC边的中点,,为等腰直角三角,正确.(4)同(2),可得MPN90 因此,本题正确答案是:(1)(2)(3)

三、15 因为以,所以

16、(1)75°

(2)1=180°-3 3=180°-30°-(180°-2)则1=30°+180°-2=165°

四、17、(1)在中,因为,在

和(2)在故中,中,因为,因为,又因为

周长为:

18、(1)由正五边形

得。,在和

中,点,所以是

中点,所以

为,故,故。

平分,所以,因为,所以,所以。

。在和

中,所的中位线,所以,所以 ABBCABMC,所以BMCN(2)由正五边形的性质可得角形外角和性质可得,所以

。,根据三,又因为,所以。

22.答案

解:(1)如图所示

(2)AF∥BC且AF=BC证明:∵AB=AC ∴∠ABC=∠C ∵∠DAC=∠ABC+∠C ∴∠DAC=2∠C 由作图可知∠DAC=2∠FAC ∴∠C=∠FAC ∴AF∥BC; ∵E是AC的中点 ∴AE=CE.

在△AEF和△CEB中,∴△AEF≌△CEB(ASA)∴AF=BC. 故答案为:(1)如图:

(2)AF∥BC且AF=BC;理由略.20、(1)(2),六、21 证明:(1)证明:分别过点B,B1作BD CA于D,B1D1⊥C1A1于D1.

则 ∠BDC= ∠B1D1C1=90°,∵BC=B1C1,C= C1,△BCD≌△B1C1D1,BD=B1D1.

补充:∵AB=A1B1,∠ADB= ∠A1D1B1=90°.△ADB≌△A1D1B1(HL),∠A= ∠A1,又∵ ∠C= ∠C1,BC=B1C1,在△ABC与△A1B1C1中,∵,△ABC≌△A1B1C1(AAS);

(2)解:若两三角形(△ABC、△A1B1C1)均为锐角三角形或均为直角三角形或均为钝角三角形,则它们全等(AB=A1B1,BC=B1C1,C= C1,则△ABC≌△A1B1C1).(3)略

七、22 证明:连结BD,过点B作DE边上的高BF,可得 ,又,.八、23 ,解:(1), 和均为等边三角形, ,., 在..为等边三角形,.点A,D,E在同一直线上, ,..(2)理由: ,.,.和

均为等腰直角三角形, ,.和

中, 在 和中, ,.,为等腰直角三角形,.点A,D,E在同一直线上, ,..,.., ,.

第四篇:2018年中考数学一轮复习:分式方程

分式方程

一、选择题(每题3分,共30分)1.下列方程是分式方程的是()A.1x40

B.

2C.x21

3D.2x+1=3x 23x12的解是()x1x【答案】B 2.方程A.0

B.1

C.2

D.3 【答案】C 3.关于的方程2ax33的解为x=1,则a的值为()ax4A.1

B.3

C.-1

D.-3 【答案】D 4.若分式方程3xm2无解,则m=()x1x1A.-1

B.-3

C.0

D.-2 【答案】B 5.将分式方程21去分母后得到正确的整式方程是()x2xA.x﹣2=x

B.x2﹣2x=2x

C.x﹣2=2x

D.x=2x﹣4 【答案】C x442x的值和的值互为倒数,则x的值为(). x54x1A.0

B.-1

C.D.1 26.要使【答案】B 7.速录员小明打2500个字和小刚打3000个字所用的时间相同,已知小刚每分钟比小明多打50个字,求两人的打字速度.设小刚每分钟打x个字,根据题意列方程,正确的是()A.******00

B.C.D.xx50xx+50x50xx+50x【答案】C 8.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,施工时对“”,设实际每天铺设管道x米,则可得方程

3000300015.根据此情景,题中用“x10x”表示的缺失的条件应补为().

A.每天比原计划多铺设10米,结果延期15天才完成 B.每天比原计划少铺设10米,结果延期15天才完成

C.每天比原计划多铺设10米,结果提前15天才完成[来源:学*科*网] D.每天比原计划少铺设10米,结果提前15天才完成 【答案】C 9.某学校食堂需采购部分餐桌,现有A,B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()

A.117元

B.ll8元

C.119元

D.120元 【答案】A 10.若关于x的分式方程的解为非负数,则a的取值范围是()

A.a≥1

B.a>1

C.a≥1且a≠4

D.a>1且a≠4 【答案】C

二、填空题(每题3分,共30分)11.当x=________时,分式 【答案】1 12.若方程 2x3的值为1 x223 的解是x=5,则k= ________.

kx1【答案】1 6a14的解为非负数,则a的取值范围是_____________.x11kx1 无解,则k的值为________.x22x13.已知关于x的分式方程【答案】a≥-3且a≠1

14.若关于x的分式方程2【答案】2或1 15.若关于x的分式方程【答案】a>1且a≠2 2x-a=1的解为正数,那么字母a的取值范围是_______.x-116.端午节当天,“味美早餐店”的粽子打九折出售,小红的妈妈去该店买粽子花了54元,比平时多买了3个.求平时每个棕子卖多少元?设平时每个棕子卖x元,列方程为____.【答案】54543 0.9xx17.甲、乙二人做某种机械零件.已知甲每小时比乙多做4个,甲做60个所用的时间比乙做40个所用的时间相等,则乙每小时所做零件的个数为_____. 【答案】8 18.甲、乙承包一项任务,若甲、乙合作,5天能完成,若单独做,甲比乙少用4天,设甲单独做x天能完成此项任务,则可列出方程________________. 【答案】111

xx4519.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,则每天应多做_________件.【答案】24 20.若关于x的方程 xbbb22 x2,那么方程 x 的x1_______,a 的解是 x1a,axaax1a1x2______.【答案】

a a3 a

1三、解答题(共40分)21.(本题10分)解分式方程:

x3x14.

(2)121.

x12x2x1x15【答案】(1);(2)无解.41aa122.(本题6分)已知方程的解为x=2,求的值. 2x1x1a1aaa14【答案】,.a3(1)23.(本题5分)列方程或方程组解应用题:

某中学为迎接校运会,筹集7000元购买了甲、乙两种品牌的篮球共30个,其中购买甲品牌篮球花费3000元,已知甲品牌篮球比乙品牌篮球的单价高50%,求乙品牌篮球的单价及个数。【答案】乙品牌篮球的单价为200元/个,购买了20个.24.(本题5分)列方程解应用题:

甲、乙同学帮助学校图书馆清点一批图书,已知甲同学清点200本图书与乙同学清 点300本图书所用的时间相同,且甲同学平均每分钟比乙同学少清点10本,求甲同 学平均每分钟清点图书的数量. 【答案】20本

25.(本题5分)为靓化家园,改善生活环境,我县农村实行垃圾分类集中处理.现某村要清理卫生死角垃圾,若用甲、乙两车运送,两车各运15趟可完成,已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的3倍.求甲、乙两车单独运完此堆垃圾各需运多少趟?

【答案】甲车单独运完此堆垃圾需运20趟,乙车单独运完此堆垃圾需运60趟.

26.(本题9分)某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元(1)甲、乙两种款型的T恤衫各购进多少件?

(2)若甲种款型T恤衫每件售价比乙种款型T恤衫的售价少40元,且这批T恤衫全部售出后,商店获利不少于7400元,则甲种T恤衫每件售价至少多少元?

【答案】(1)甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)甲种T恤衫每件售价至少200元.

第五篇:2018年中考数学习题专题4.1几何图形初步(含解析)

专题4.1 几何图形初步

一、单选题

1.【湖南省长沙市2018年中考数学试题】将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()

A. 【答案】D B. C. D.

点睛:本题考查立体图形的判断,关键是根据面动成体以及圆台的特点解答.

2.【河北省2018年中考数学试卷】如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()

A. 北偏东30° B. 北偏东80° C. 北偏西30° D. 北偏西50° 【答案】A 【解析】【分析】根据平行线的性质,可得∠2,根据角的和差,可得答案. 【详解】如图,AP∥BC,∴∠2=∠1=50°,∵∠EBF=80°=∠2+∠3,∴∠3=∠EBF﹣∠2=80°﹣50°=30°,∴此时的航行方向为北偏东30°,故选A.

【点睛】本题考查了方向角,利用平行线的性质得出∠2是解题关键.

3.【江苏省徐州巿2018年中考数学试卷】下列平面展开图是由5个大小相同的正方形组成,其中沿正方形的边不能折成无盖小方盒的是()

A. 【答案】B B. C. D.

【点睛】本题考查了正方体的展开图,熟记正方体的特征以及正方体展开图的各种情形是解题的关键.4.【浙江省湖州市2018年中考数学试题】如图所示的几何体的左视图是()

A. 【答案】D B. C. D.

【解析】从左边看是一个正方形,正方形的左上角是一个小正方形,故选C.

5.【湖南省怀化市2018年中考数学试题】如图,直线a∥b,∠1=60°,则∠2=()

A. 30° B. 60° C. 45° D. 120° 【答案】B

点睛:本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.

6.【吉林省长春市2018年中考数学试卷】如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.若∠A=54°,∠B=48°,则∠CDE的大小为()

A. 44° B. 40° C. 39° D. 38° 【答案】C 【解析】【分析】根据三角形内角和得出∠ACB,利用角平分线得出∠DCB,再利用平行线的性质解答即可. 【详解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=×78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选C.

【点睛】本题考查了三角形内角和定理、角平分线的定义、平行线的性质等,解题的关键是熟练掌握和灵活运用根据三角形内角和定理、角平分线的定义和平行线的性质.

7.【湖南省郴州市2018年中考数学试卷】如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()

A. ∠2=∠4 B. ∠1+∠4=180° C. ∠5=∠4 D. ∠1=∠3 【答案】D

【点睛】本题主要考查了平行线的判定,熟记平行线的判定方法是解题的关键.解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放型题目,能有效地培养“执果索因”的思维方式与能力.

8.【湖北省荆门市2018年中考数学试卷】已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()

A. 80° B. 70° C. 85° D. 75° 【答案】A 【解析】【分析】如图,先根据三角形外角的性质求出∠4的度数,再根据平行线的性质求出∠5的度数,最后根据邻补角的定义进行求解即可得.【详解】如图,【点睛】本题考查了平行线的性质,三角形内角和定理,三角形的外角的性质等知识,结合图形灵活运用相关的知识解决问题是关键.9.【湖南省邵阳市2018年中考数学试卷】如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()

A. 20° B. 60° C. 70° D. 160° 【答案】D

【点睛】本题考查对顶角、邻补角,熟知对顶角、邻补角的图形特征以及对顶角相等的性质是解题的关键.10.【江苏省淮安市2018年中考数学试题】如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()

A. 35° B. 45° C. 55° D. 65° 【答案】C 【解析】分析:求出∠3即可解决问题; 详解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选:C.

点睛:此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.

11.【台湾省2018年中考数学试卷】如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC与∠A互补,其作法分别如下:

(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;

(乙)作过B点且与AB垂直的直线l,作过C点且与AC垂直的直线,交l于P点,则P即为所求.对于甲、乙两人的作法,下列叙述何者正确?()

A. 两人皆正确 B. 两人皆错误 C. 甲正确,乙错误 D. 甲错误,乙正确 【答案】D 【解析】分析:甲:根据作图可得AC=AP,利用等边对等角得:∠APC=∠ACP,由平角的定义可知:∠BPC+∠APC=180°,根据等量代换可作判断; 乙:根据四边形的内角和可得:∠BPC+∠A=180°. 详解:甲:如图1,乙:如图2,∵AB⊥PB,AC⊥PC,∴∠ABP=∠ACP=90°,∴∠BPC+∠A=180°,∴乙正确,故选:D.

点睛:本题考查了垂线的定义、四边形的内角和定理、等腰三角形的性质,正确地理解题意是解题的关键.

12.【湖北省恩施州2018年中考数学试题】如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()

A. 125° B. 135° C. 145° D. 155° 【答案】A 【解析】分析:如图求出∠5即可解决问题. 详解:

点睛:本题考查平行线的性质、三角形内角和定理,邻补角的性质等知识,解题的关键是灵活运用所学知识解决问题.

13.【山东省聊城市2018年中考数学试卷】如图,直线点,若,则的度数是(),点是直线

上一点,点是直线

外一

A. B. C. D.

【答案】C

详解: 延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°. 故选:C.点睛:此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.14.【山东省菏泽市2018年中考数学试题】如图,直线上,若,则的度数是(),等腰直角三角形的两个顶点分别落在直线、A. B. C.

D.

【答案】C 【解析】分析:根据平行线的性质和等腰直角三角形的性质进行计算即可.详解:

根据等腰直角三角形的性质可知:

故选C.点睛:考查平行线的性质和等腰直角三角形的性质,掌握两直线平行,同旁内角互补是解题的关键.15.【湖北省孝感市2018年中考数学试题】如图,直线(),若,则的度数为 A. B. C.

D.

【答案】C

点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.

16.【湖北省随州市2018年中考数学试卷】如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是()

A. 25° B. 35° C. 45° D. 65° 【答案】A

【点睛】本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键. 17.【湖北省襄阳市2018年中考数学试卷】如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为()

A. 55° B. 50° C. 45° D. 40° 【答案】D 【解析】【分析】如图,根据平行线的性质求出∠3的度数即可解决问题.【详解】如图,∵AB//CD,∴∠3=∠1=50°,∵∠2+∠3=180°-90°=90°,∴∠2=90°-∠3=40°,故选D.

【点睛】本题考查了平行线的性质,三角板的性质等知识,解题的关键是灵活运用所学知识解决问题. 18.【新疆自治区2018年中考数学试题】如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()

A. 85° B. 75° C. 60° D. 30° 【答案】B

点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.

二、填空题

19.【黑龙江省大庆市2018年中考数学试卷】已知圆柱的底面积为60cm,高为4cm,则这个圆柱体积为

3_____cm. 【答案】240 【解析】【分析】根据圆柱体积=底面积×高,即可求出结论. 【详解】V=S•h =60×4 =240(cm),故答案为:240.

【点睛】本题考查了圆柱体的体积,熟练掌握圆柱体的体积公式是解题的关键.20.【云南省昆明市2018年中考数学试题】如图,过直线AB上一点O作射线OC,∠BOC=29°18′,则∠AOC的度数为_____. 3

【答案】150°42′

点睛:此题主要考查了角的计算,正确理解互为邻补角的和等于180°是解题关键.

21.【贵州省(黔东南,黔南,黔西南)2018年中考数学试题】∠α=35°,则∠α的补角为_____度. 【答案】145 【解析】分析:根据两个角的和等于180°,则这两个角互补计算即可. 详解:180°﹣35°=145°,则∠α的补角为145°,故答案为:145.

点睛:本题考查的是补角,若两个角的和等于180°,则这两个角互补.

22.【湖南省湘西州2018年中考数学试卷】如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.

【答案】60°

【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等. 23.【山东省淄博市2018年中考数学试题】如图,直线a∥b,若∠1=140°,则∠2=__________°.

【答案】40 【解析】分析:由两直线平行同旁内角互补得出∠1+∠2=180°,根据∠1的度数可得答案. 详解:∵a∥b,∴∠1+∠2=180°,∵∠1=140°,∴∠2=180°﹣∠1=40°,故答案为:40.

点睛:本题主要考查平行线的性质,解题的关键是掌握两直线平行同旁内角互补.

24.【2018年湖南省湘潭市中考数学试卷】如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)

【答案】∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE

点睛:本题主要考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.

三、解答题

25.【湖北省宜昌市2018年中考数学试卷】如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;

(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.

【答案】(1)65°;(2)25°. 【解析】

分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;

(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.

点睛:本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.

下载2018届中考数学一轮复习讲义 第14讲几何图形初步word格式文档
下载2018届中考数学一轮复习讲义 第14讲几何图形初步.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2012年中考数学一轮精品复习教案:四边形

    初中数学辅导网:http://www.xiexiebang.com/ 初中数学辅导网:http://www.xiexiebang.com/ 初中数学辅导网:http://www.xiexiebang.com/ BH8-9ECAD初中数学辅导网:http://www.xie......

    中考现代文复习第28讲:论据

    中考现代文复习第28讲:论据 【考点概说】 论点必须用论据来证明。论据有点面之分,正反之分,事实和道理之分,它们之间的运用特点和意义是各不相同的,但都要为论点服务,都必须典型真......

    成人高考数学精讲第29讲讲义[5篇]

    高中起点升本、专科数学 概率与统计初步 一、 随机事件及其概率 1.试验时可能发生,也可能不发生的结果称为随机事件,简称事件;一定要发生的结果称为必然事件;不可能发生的结果称......

    2012中考数学一轮复习【代数篇】2整式(范文模版)

    演讲稿 工作总结 调研报告 讲话稿 事迹材料 心得体会 策划方案 2012中考数学一轮复习【代数篇】2整式 中考复习之整式 知识考点: 整式是初中代数的基础知识,也是学习分式、根......

    中考数学复习圆精讲(含答案)

    圆知识点一、圆的定义及有关概念[来源:学&科&网Z&X&X&K]1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半......

    2013届一轮政治复习讲义第六讲投资理财的选择[范文]

    2012—2013年第一轮政治复习讲义第六讲投资理财的选择一 考点梳理(一)储蓄存款和商业银行利息、利率与本金存款利息是银行因为使用储户存款而支付的____,是____________的增......

    中考现代文复习第18讲:描写手法

    中考现代文复习第18讲:描写 【考点概说】 描写手法种类甚多,涉及范围很广,既可相对独立,亦可互相包容,还可同时交织,运用频率高,综合性强,它们直接作用于人事物景。有了这些认识,了解......

    中考政治专题复习第110讲室内公共场所禁烟

    第110讲 室内公共场所禁烟 室内公共场所禁烟 材料:2011年5月1日,按照卫生部要求,室内公共场所将全面禁烟,经营者须在这些公共场所设置醒目的禁烟警语和标志。 1、中国对世界卫生......