数量关系年龄问题

时间:2019-05-13 10:26:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数量关系年龄问题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数量关系年龄问题》。

第一篇:数量关系年龄问题

一、解答题

2、年龄问题例1:全家4口人,父亲比母亲大3岁,姐姐比弟弟大2岁。四年前他们全家的年龄和为58岁,而现在是73岁。问:现在父亲、母亲的年龄是多少?()

A.32,29 【答案】B 【解题关键点】73-58=15≠4×4,一般四个人四年应该增长了4×4=16岁,但实际上只增长了15岁,这是因为在4年前,弟弟还没出生。父亲、母亲、姐姐三个人4年增长了12岁,15-12=3,则现在在弟弟3岁。那么,姐姐3+2=5岁,父母今年的年龄和是73-3-5=65岁,则父亲是(65+3)÷2=34岁,母亲是65-34=31岁。

【结束】

3、年龄问题例2:哥哥5年后的年龄和弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍。哥哥今年几岁?()

A.10 B.12 C.15 D.18 【答案】 C 【解析】方法1,设今年哥哥x岁,弟弟y岁,则(x+5)+(y-3)=29,y=4(x-y),解得x=15.B.34,31 C.35,32

D.36,33 方法2,由第二个条件弟弟现在的年龄是两人年龄差的4倍,y=4(x-y),即可知4x=5y,即哥哥的年龄应是5的倍数,在A、C中选择,代入A项,哥哥5年后15岁,弟弟3年前14岁,可知A不符合题意。直接可以推出C项正确。

【结束】

4、年龄问题例3:爸爸在过50岁生日时,弟弟说:“等我长到哥哥现在的年龄时,那时我和哥哥的年龄之和正好等于那时爸爸的年龄。”问:哥哥现在多少岁?()A.24 B.25 C.34 D.36 【答案】 B 【解析】本题注意分析题干的关系。当弟弟长到哥哥现在的年龄时,如果哥哥与爸爸的年龄都同时减少到现在的年龄,那么弟弟与哥哥年龄和仍然等于爸爸的年龄,即爸爸现在的年龄是哥哥的2倍,所以哥哥现在的年龄是50÷2=25(岁)。

或直接列方程求解:设弟弟今年为a岁,经过k年和哥哥现在的年龄一样大,那时的哥哥为(a+k+k)岁,爸爸为50+k岁,则可得关系式:

(a+k)+(a+k+k)=50+k,即2(a+k)=50,a+k=25岁。【结束】

5、年龄问题例4:今年父亲的年龄是儿子年龄的10倍,6年后父亲的年龄是儿子年龄的4倍,则今年父亲、儿子的年内分别是()

A.60,6 B.50,5 C.40,4 D.30,3 【答案】D 【解析】法一:设今年父亲的年龄为X,儿子的年龄为Y,则X=10Y,X+6=4(Y+6)从而可以计算出答案X=30,Y=3.法二:此种类型题在考试的时候完全可以使用带入法,将四个选项都加上6,看看是否成4倍的关系很快就能够得出答案。此种方法很快!

【结束】

第二篇:数量关系之抽屉问题

2018年国家公务员行测备考:数量关系之抽屉问题

抽屉原理,又叫狄利克雷原理,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果。许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决。那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起。

将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放。这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果。虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果。

如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。

在数学运算中,考查抽屉原理问题时,题干通常有“至少……,才能保证……”这样的字眼。

我们下面讲述一下抽屉原理的两个重要结论:

①抽屉原理1

将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品件数不少于2。(也可以理解为至少有2件物品在同一个抽屉)

②抽屉原理2

将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+1。(也可以理解为至少有m+1件物品在同一个抽屉)

直接利用抽屉原理解题

(一)利用抽屉原理1

例题1:有20位运动员参加长跑,他们的参赛号码分别是1、2、3、…、20,至少要从中选出多少个参赛号码,才能保证至少有两个号码的差是13的倍数?

A.12 B.15 C.14 D.13

【答案详解】若想使两个号码的差是13,考虑将满足这个条件的两个数放在一组,这样的号码分别是{

1、14}、{

2、15}、{

3、16}、{

4、17}、{

5、18}、{

6、19}、{

7、20},共7组。还剩下号码8、9、10、11、12、13,共6个。考虑最差的情况,先取出这6个号码,再从前7组中的每一组取1个号码,这样再任意取出1个号码就能保证至少有两个号码的差是13的倍数,共取出了6+7+1=14个号码。

(二)利用抽屉原理2

例题2:一个口袋中有50个编上号码的相同的小球,其中编号为1、2、3、4、5的各有10个。一次至少要取出多少小球,才能保证其中至少有4个号码相同的小球?

A.20个 B.25个 C.16个 D.30个

【答案详解】将1、2、3、4、5五种号码看成5个抽屉。要保证有一个抽屉中至少有4件物品,根据抽屉原理2,至少要取出5×3+1=16个小球,才能保证其中至少有4个号码相同的小球。

利用最差原则

最差原则说的就是在抽屉问题中,考查最差的情况来求得答案。因为抽屉原理问题所求多为极端情况,故可以从最差的情况考虑。从各类公务员考试真题来看,“考虑最差情况”这一方法的使用广泛而且有效。

例题3:从一副完整的扑克牌中,至少抽出多少张牌,才能保证至少6张牌的花色相同?

A.21 B.22 C.23 D.24

【答案详解】一副完整的扑克牌包括大王、小王;红桃、方块、黑桃、梅花各13张,分别是A、2、3、4、5、6、7、8、9、10、J、Q、K。要求6张牌的花色相同,考虑最差情况,即红桃、方块、黑桃、梅花各抽出5张,再加上大王、小王,此时共取出了4×5+2=22张,此时若再取一张,则一定有一种花色的牌有6张。即至少取出23张牌,才能保证至少6张牌的花色相同。

例题4:一个布袋里有大小相同、颜色不同的一些小球,其中红的10个,白的9个,黄的8个,蓝的2个。一次至少取多少个球,才能保证有4个相同颜色的球?

A.12 B.13 C.14 D.15

【答案详解】从最坏的情况考虑,红、白、黄三种颜色的球各取了3个,蓝色的球取了2个,这时共取球3×3+2=11个,若再取1个球,那么不管取到何种颜色的球,都能保证有4个相同颜色的球,故至少要取12个。

与排列组合问题结合

例题5:某区要从10位候选人中投票选举人大代表,现规定每位选举人必须从这10位中任选两位投票,问至少要有多少位选举人参加投票,才能保证有不少于10位选举人投了相同两位候选人的票?

A.382 B.406 C.451 D.516

【答案详解】从10位候选人中选2人共有C =45种不同的选法,每种不同的选法即是一个抽屉。要保证有不少于10位选举人投了相同两位候选人的票,由抽屉原理2知,至少要有45×9+1=406位选举人投票。与几何问题结合

例题6:在一个长4米、宽3米的长方形中,任意撒入5个豆,5个豆中距离最小的两个豆距离的最大值是多少米?

A.5 B.4 C.3 D.2.5

【答案详解】将长方形分成四个全等的小长方形(长为2米,宽为1.5米),若放5个豆的话,则必有2个豆放在同一个小长方形中,二者之间的距离不大于小长方形对角线长,因此5个豆中距离最小的两个豆距离的最大值是2.5米。

第三篇:数量关系解题技巧:日期问题

日期问题首先涉及到的是闰年,平年。一般能被4整除的年份是闰年,不能被4整除的年份是平年。如:1988年、2008年是闰年;2005年、2006年、2007年是平年。但是如果是世纪年(也就是整百年),就只有能被400整除才是闰年,否则就是平年。如:2000年是闰年,1900年是平年。闰年是366天,平年是365天。

还有大月,小月问题。一年中有7个大月,分别是1月、3月、5月、7月、8月、10月、12月,大月有31天。一年中有4个小月,分别是4月、6月、9月、11月。其中的二月比较不同,平年的二月有28天,闰年二月有29天。这也是闰年比平年多一天的原因。

另外就是星期的问题。一星期七天,周一到周日。接下来,我们一起来看看考题类型。

一、星期几问题

【例1】 已知昨天是星期一,那么过200天后是星期几? A星期一 B星期二 C星期六 D星期四 【答案】 C 【解析】 昨天星期一,今天就是星期二,每过七天一个周期,总共两百天,则总共有28个周期还剩下4天,所以再过四天就是星期六。选C。

【例2】 2003年7月1日是星期二,那么2005年7月1日是()。A星期三 B星期四 C星期五 D星期六 【答案】C 【解析】平年一年有365天,总共52周余1天,因此每过一个平年星期数往前推一天,其中2004年是闰年,总共52周余两天,所以2005年7月1日跟2003年7月1日比,总共星期数推迟了3天,是星期五。选C。

二、星期与日期

【例3】 根据国务院办公厅部分节假日安排的通知,某年8月份有22个工作日,那么当年的8月1日可能是:

A.周一或周三 B.周三或周日 C.周一或周四 D.周四或周日 【答案】 D 【解析】 8月有31天,如果工作日为22天,那么休息日应该为9天。正常情况下周六、周日两天是在一起的,但是最终休息日为9天。应该是两种情况,要么是5天周日,4天周六;要么是5天周六,4天周日,分为两种情况来分别思考,如果是周日多一天,就应该是多在月初,周六是上月最后一天,周日为本月1号,如果是周六多一天,就多在月末,还没等到周日,已经到了9月,最后一天为周六,往前去推算8月1号就是周四,所以有两种情况,8月1日可能是周四,也可能是周日。故选D。

三、星期与年份

【例4】 某一年中有53个星期二,并且当年元旦不是星期二,那么下年的最后一天是()。

A星期一 B星期二 C星期三 D星期四 【答案】 C 【解析】 某一年中有53个星期二,首先假设是平年的情况,365/7=52……1,中间隔着52个星期,那么最后一天应该是周二,往前推算到元旦也就是1月1日,应该是刚好364天,应该同为周二,但与条件不符,说明本年应该不是平年,而是闰年,并且最后一天为周二,那么下一年应该是平年,而我们不难推出,下年的最后一天与本年的最后一天差365天,那么365/7余数是1,所以应该是周三。选C。

日期问题并非年年出现,虽然不是重点题型,但也要引起考生注意,若对此类题型知识点不熟悉,就会浪费很多时间去求解,若把此类问题掌握之后,则日期问题就成为简单问题,一分钟之内可以轻松搞定!

第四篇:行程问题的基本数量关系

《行程问题的基本数量关系》评课稿

主评人: 林春

路程、时间与速度在日常生活中的应用十分广泛,是学生今后学习行程问题应用题的基础。本节课,陈天慧老师独特新颖的教学设计,优美精炼的教学语言,敏捷灵活的教学机智,给我们留下了深刻的印象。她通过创设情境激活了学生原有的一些感性认识和生活经验,引导学生在自主探究中不断反思,归纳总结,使学生理解了速度以及速度单位的含义,掌握了路程、时间与速度之间的相互关系,并进行拓展延生,帮助学生运用所学知识更好地解决了生活中的一些实际问题,进一步体会到数学与生活的密切联系,培养了学生对数学的积极情感。

本节课有这样几个亮点:

一、创设情境,激发自主探索的兴趣

兴趣是人对事物的一种向往或积极探索追求的心理倾向,三年级的学生尤其容易对感兴趣的事物产生强烈的探索欲望。创设适当的情境氛围,可以使学生快速进入学习状态,产生学习动力,整节课都会乐此不疲。课的一开始,陈天慧老师出示了赶集漫画图,吸引住了学生的眼球,使学生在感受到社会飞速发展和生活日新月异的同时,初步感知速度的快慢,激发起学生浓厚的学习兴趣。然后自然过渡到开车看到的路牌,初步感知“速度”的含义,再出示汽车仪表盘上时速表,发现“km/h”这一速度单位,在分析与探究中,学生结合生活情境理解了速度的含义与作用、速度单位的表示与区别。

二、联系实际,调动自主探索的积极性

生活是数学的源泉,生活之中到处充满着数学知识。数学知识与学生的生活实际联系得越紧密,学生的学习经验就越丰富,探索过程就会越积极,新知也就会掌握得更牢固。陈天慧老师结合闪电和打雷情境,通过比较光和声的传播速度,使学生在感知速度快慢的同时丰富了科学知识,并将知识迁移到起跑发令情境中,引导学生运用刚刚掌握的知识明白发令枪冒烟的作用。学生在具体、轻松的生活情境中进一步认识和理解了“速度”这一概念以及单位,从而能够运用这些知识解释生活中的自然现象,使枯燥的数学变得鲜活起来。

三、问题导向,提高自主探索的能力 让学生自主探索并不是放任自流,必须有一定的探索方向,这样才能有的放矢,把握住教学重点。“路程÷时间=速度”是学生在小学阶段认识的一个非常重要的数量关系,也是一种基本的模型。本节课陈天慧老师创设了多个情境,但问题都是集中导向了一点,就是路程、时间和速度三者之间的关系,在丰富学生对关系感知的基础上进行归纳构建、巩固提升。如知道路程和时间,计算平均速度;或者知道速度和时间,求路程,在解决问题的过程中引发学生的观点与思维的碰撞,让学生自然而然地更真切地感受到快慢不仅与时间有关,还跟路程有关。再例如从南通到北京的数学问题,小强和小刚谁家离学校近的问题,进一步完善和深化对三者之间关系的认识,并通过应用提升了解决问题的能力。

四、实践应用,拓宽自主探索的空间

数学的价值在于使学生学会运用所学的知识去分析、解决生活中的问题,关键在实践运用。生活中有着丰富的数学资源,它们都是学生实践运用的最佳素材。陈天慧老师从形成问题的基本数量关系拓展到“单价×数量=总价”、“每盘苹果数×盘数=苹果总数”这种“一乘二除”的形式,归纳出“每份数”、“份数”和“总数”之间的关系,引导学生在实践应用中构建了数学模型,从具体到抽象,促进了学生思维的发展和知识体系的完善。

总之,本节课中,教者充分调动学生自主探索、参与学习的积极性,努力为学生创设、营造出一个宽松、浓厚的探索氛围,让学生去想、去做、去说,最大限度地挖掘了学生的思维与创造能力。同时,胆大却心细,细腻的教学艺术引领着学生叩开了数学殿堂的大门,使学生经历了一次灵动美妙的数学探索之旅。从中,我们感受到了教者大胆尝试的精神和勇于创新的魄力。我想:高效的课堂应该是我们每一位老师永恒的追求!

第五篇:年龄问题

例[1] 爸爸、妈妈今年的年龄和是82岁。5年后爸爸比妈妈大6岁。今年爸爸、妈妈两人各多少岁?

例[2] 小红今年7岁,妈妈今年35岁。小红几岁时,妈妈的年龄正好是小红的3倍?

例[3] 6年前,母亲的年龄是儿子的5倍。6年后母子年龄和是78岁。问:母亲今年多少岁?

例[4] 小强今年13岁,小军今年9岁。当两人的年龄和是40岁时,两个各是多少岁?

例[5] 甲、乙两人的年龄和正好是100岁。当甲像乙现在这样大时,乙的年龄正好是甲年龄的一半。甲、乙两人今年各多少岁? 练习:1.父亲今年32岁,儿子今年5岁,再过几年父亲的年龄是儿子的4倍?

2.黄坤今年12岁,丁老师今年38岁。再过多少年,黄坤的年龄是丁老师年龄的3/5?

3.星星今年5岁,她妈妈今年32岁,再过多少年星星与妈妈年龄之比为2:5?

4.甲乙两人的年龄和是63岁。当甲是乙现在年龄的一半时,乙那时的年龄正好是甲现在的年龄。那么,甲是多少岁?

5.父亲比儿子大28岁,母亲比儿子大23岁,父亲与母亲的年龄和是73岁。儿子的年龄是多少岁?

6.甲乙利润年龄的和是45岁,当甲是乙现在年龄的3/5时,乙当时的年龄恰好是甲现在的年龄,那么,乙比甲大多少岁?

7.今年,孙老师和曾校长的年龄和恰好是100岁,当孙老师年龄是曾校长现在年龄的4/7时,曾校长那时刚好是孙老师校长这么大。孙老师比曾校长小几岁?

8.今年王叔的年龄恰好是金老师年龄的4/7。12年后,王叔的年龄又正好是金老师的2/3,今年金老师多少岁

9.王大伯今年46岁,小洁今年7岁。几年后,王大伯的年龄恰好是小洁的4倍?

10.父亲和儿子今年共60岁,又知4年前,父亲的年龄正好是儿子的3倍。儿子今年是多少岁?

作业:

一、填空题

1.甲、乙两人的年龄和是33岁,甲比乙大3岁,那么甲 岁,乙 岁.2.父亲今年47岁,儿子21岁, 年前父亲的年龄是儿子年龄的3倍.3.今年叔叔21岁,小强5岁, 年后叔叔的年龄是小强的3倍.4.小明今年9岁,妈妈今年39岁,再过 年妈妈年龄正好是小明年龄的3倍.5.明明比爸爸小28岁,爸爸今年的年龄是明明年龄的5倍,明明今年 岁,爸爸今年 岁.6.爸爸比小强大30岁,明年爸爸的年龄是小强的3倍,今年小强 岁.7.父亲比儿子大27岁,4年后父亲的年龄是儿子的4倍,那么儿子今年 岁.8.现在母女年龄和是48岁,3年后母亲年龄是女儿年龄的5倍,那么母亲今年 岁,女儿今年 岁.9.叔叔比红红大19岁,叔叔的年龄比红红的年龄的3倍多1岁,叔叔 岁,红红 岁.10.弟弟今年8岁,哥哥今年14岁,当二人年龄之和是50岁时,弟弟 岁,哥哥 岁.二、解答题

11.1992年,妈妈52岁,儿子25岁,哪一年妈妈的年龄是儿子的4倍

12.爸爸和女儿两人岁数加起来是91岁,当爸爸岁数是女儿现在岁数两倍的1时候,女儿岁数是爸爸现在岁数的,那么爸爸现在的年龄是多少岁,女儿现在年

3龄是多少岁.13.甲、乙两人共63岁,当甲是乙现在年龄一半时,乙当时的年龄是甲现在的岁数,那么甲多少岁,乙多少岁.14.父亲与儿子的年龄和是66岁,父亲的年龄比儿子的年龄的3倍少10岁,那么多少年前父亲的年龄是儿子的5倍.

下载数量关系年龄问题word格式文档
下载数量关系年龄问题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    年龄问题

    年龄问题 1、儿子今年6岁,父亲今年32岁,20年后,父亲比儿子大几岁? 2、 爸爸今年35岁,爷爷今年70岁,20年前,爸爸比爷爷小几岁? 3、弟弟今年4岁,哥哥今年12岁,10年后,哥哥比弟弟大几岁?......

    数量关系讲义

    第一节数字拆分 一.数字加法拆分 1.某单位2011年招聘了65名毕业生,拟分配到该单位的7个不同的部门,假设行政部门分得的毕业生人数比其他部门都多,问行政部门分得的毕业生人数至......

    数量关系知识点总结

    山东省考数量关系常用知识点总结 第一章 带入与排除法 一, 直接带入法 直接带入法常用于多位数问题,不定方程问题,同余问题,年龄问题,周期问题,复杂行程问题和和差倍比问题,并与其......

    数量关系知识点总结(精选合集)

    数量关系知识点总结一,能被3,9整除的数的数字特性①判断3/9的倍数的方法是“划”②“A是B的2倍(一半)”则“A+B”是3的倍数③3/9的倍数加减乘3/9的倍数结果还是3/9的倍数④“A+......

    数量关系专题练习(十三)范文大全

    数量关系专题练习(十三) 本部分包括两种类型的试题:一、数学推理 给你一个数列,但其中缺少一项,要求你仔细观察数列的排列规律,然后从四个供选择的选项中选择你认为最合理的一项,来......

    2017银行考试数量关系

    一、数字推理。共10题。给你一个数列,但其中缺少一项,要求仔细观察数列规律,然后从四个供选择的选项中选择你认为最合理的一项,来填补缺项,使之符合原数列的排列规律。 请开始答......

    数量关系方法总结范文合集

    数量 关 系 第一节代入排除法 代入排除法: 范围: 1、特征选项:年龄、不定方程、余数、多位数; 2、选项充分:问法特征:分别、各位、比例。 3、两项必代:只剩两项时,代入一项即可 4、......

    年龄问题(14.5.10)

    14.5.10 年龄问题 【例题1】三年前爸爸年龄是女儿的4倍,爸爸今年43岁,女儿今年多少岁? 练习1: 1.四年前小林年龄是小丽的2倍,小林今年12岁,小丽今年多少岁? 2.五年前爷爷年龄是孙子的......